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Rollover Risk and Market Freezes

Abstract

The sub-prime crisis of 2007 and 2008 has been characterized by a sudden freeze in the market
for short-term, secured borrowing. We present a model that can explain a sudden collapse in
the amount that can be borrowed against assets with little credit risk. The borrowing in this
model takes the form of asset-backed commercial paper that has to be rolled over several times
before the underlying assets mature and their true value is revealed. In the event of default, the
creditors (holders of commercial paper) can seize the collateral. We assume that there is a small
cost of liquidating the assets. The debt capacity of the assets (the maximum amount that can be
borrowed using the assets as collateral) depends on how information about the quality of the asset
is revealed. In one scenario, there is a constant probability that “bad news” is revealed each period
and, in the absence of bad news, the value of the assets is high. We call this the “optimistic”
scenario because, in the absence of bad news, the expected value of the assets is increasing over
time. By contrast, in another scenario, there is a constant probability that “good news” is revealed
each period and, in the absence of good news, the value of the assets is low. We call this the
“pessimistic” scenario because, in the absence of good news, the expected value of the assets is
decreasing over time. In the optimistic scenario, the debt capacity of the assets is equal to the
fundamental value (the expected NPV), whereas in the pessimistic scenario, the debt capacity is
below the fundamental value and is decreasing in the liquidation cost and frequency of rollovers.
In the limit, as the number of rollovers becomes unbounded, the debt capacity goes to zero even
for an arbitrarily small default risk. Our model explains why markets for rollover debt, such as
asset-backed commercial paper, may experience sudden freezes. The model also provides an explicit
formula for the haircut in secured borrowing or repo transactions.

J.E.L. Classification: G12, G21, G24, G32, G33, D8.

Keywords: financial crisis, market freeze, credit risk, liquidation cost, haircut, repo,

secured borrowing, asset-backed commercial paper.
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1 Introduction

1.1 Motivation

One of the many striking features of the sub-prime crisis of 2007 and 2008 has been the

sudden freeze in the market for the rollover of short-term debt. While the rationing of firms

in the unsecured borrowing market is not uncommon and has a long-standing theoretical

underpinning (see, for example, the seminal work of Stiglitz and Weiss, 1981), what is

puzzling is the almost complete inability of financial institutions to issue (or roll over) short-

term debt backed by assets with relatively low credit risk. From a theoretical standpoint,

this is puzzling because the ability to pledge assets and provide collateral has been considered

one of the most important tools available to firms in order to get around credit rationing

(Bester, 1985). From an institutional perspective, the inability to borrow overnight against

high-quality assets has been a striking market failure that effectively led to the demise of

a substantial part of investment banking in the United States. More broadly, it led to the

collapse in the United States, the United Kingdom, and other countries of banks and financial

institutions that had relied on the rollover of short-term wholesale debt in the asset-backed

commercial paper (ABCP) and overnight secured repo markets.

The first such collapse occurred in the Summer of 2007. On July 31, 2007, two Bear

Stearns hedge funds based in the Cayman Islands and invested in sub-prime assets filed for

bankruptcy. Bear Stearns also blocked investors in a third fund from withdrawing money. In

the week to follow, more news of problems with sub-prime assets hit the markets. Finally, on

August 7, 2007, BNP Paribas halted withdrawals from three investment funds and suspended

calculation of the net asset values because it could not “fairly” value their holdings:1

“[T]he complete evaporation of liquidity in certain market segments of the US

securitization market has made it impossible to value certain assets fairly regard-

less of their quality or credit rating. . . Asset-backed securities, mortgage loans,

especially sub-prime loans don’t have any buyers. . . Traders are reluctant to bid

on securities backed by risky mortgages because they are difficult to sell on. . .

The situation is such that it is no longer possible to value fairly the underlying

US ABS assets in the three above-mentioned funds.”

This announcement appeared to cause investors in asset backed commercial paper (ABCP),

primarily money market funds, to shy away from further financing of ABCP structures.

These investors could no longer be guaranteed that there was minimal risk in ABCP debt.

In particular, many ABCP vehicles had recourse to sponsor banks that set up these vehicles

as off-balance-sheet structures but provided them with liquidity and credit enhancements

1Source: “BNP Paribas Freezes Funds as Loan Losses Roil Markets” (Bloomberg.com, August 9, 2008).
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(Acharya and Schnabl, 2009a,b). If ABCP debt could not be rolled over, the sponsor banks

would have to effectively take assets back onto their balance-sheets. But, given the assets

had little liquidity, the banks’ ability to raise additional finance – typically rollover debt in

the form of financial CP – would be limited too. Money market funds thus faced the risk

that the assets underlying ABCP would be liquidated at fire-sale prices. This liquidation and

rollover risk produced a “freeze” in the ABCP market, raised concerns about counter-party

risk amongst the banks, and caused LIBOR to shoot upwards. The sub-prime crisis truly

took hold as the European Central Bank pumped 95 billion Euros in overnight lending into

the market that same day in response to the sudden demand for cash from banks.

The failure of Bear Stearns in mid-March 2008 was the next example of a market freeze.2

As an intrinsic part of its business, Bear Stearns relied day-to-day on its ability to obtain

short-term finance through secured borrowing. Beginning late Monday, March 10, 2008 and

increasingly through that week, rumors spread about liquidity problems at Bear Stearns and

eroded investor confidence in the firm. Even though Bear Stearns continued to have high

quality collateral to provide as security for borrowing,3 counterparties became less willing

to enter into collateralized funding arrangements with the firm. This resulted in a crisis of

confidence late in the week, where counterparties to Bear Stearns were unwilling to make

even secured funding available to the firm on customary terms. This unwillingness to fund on

a secured basis placed enormous stress on the liquidity of Bear Stearns. On Tuesday, March

11, the holding company liquidity pool declined from $18.1 billion to $11.5 billion (see Figure

1). On Thursday, March 13, Bear Stearns’ liquidity pool fell sharply and continued to fall

on Friday. In the end, the market rumors about Bear Stearns’ liquidity problems became

self-fulfilling and led to the near failure of the firm. Bear Stearns was adequately capitalized

at all times during the period from March 10 to March 17, up to and including the time of its

agreement to be acquired by J.P. Morgan Chase. Even at the time of its sale, Bear Stearns’

capital and its broker dealers’ capital exceeded supervisory standards. In particular, the

capital ratio of Bear Stearns was well in excess of the 10% level used by the Federal Reserve

Board in its well-capitalized standard.

— Figure 1 about here —

In his analysis of the failure of Bear Stearns, the Federal Reserve Chairman Ben Bernanke

observed:4

2The discussion that follows is based on the Security and Exchange Commission’s Chairman Christopher
Cox’s Letter to the Basel Committee in Support of New Guidance on Liquidity Management, available at:
http://www.sec.gov/news/press/2008/2008-48.htm

3This high quality collateral mainly consisted of highly rated mortgage-backed assets which had low but
not inconsequential credit risk by this time in the sub-prime crisis.

4The quotes are based on Ben Bernanke’s remarks to the Risk Transfer Mechanisms and Financial Stability
Workshop at the Bank for International Settlements, May 29, 2008.
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“[U]ntil recently, short-term repos had always been regarded as virtually risk-

free instruments and thus largely immune to the type of rollover or withdrawal

risks associated with short-term unsecured obligations. In March, rapidly un-

folding events demonstrated that even repo markets could be severely disrupted

when investors believe they might need to sell the underlying collateral in illiquid

markets. Such forced asset sales can set up a particularly adverse dynamic, in

which further substantial price declines fan investor concerns about counterparty

credit risk, which then feed back in the form of intensifying funding pressures. . . In

light of the recent experience, and following the recommendations of the Pres-

ident’s Working Group on Financial Markets (2008), the Federal Reserve and

other supervisors are reviewing their policies and guidance regarding liquidity

risk management to determine what improvements can be made. In particular,

future liquidity planning will have to take into account the possibility of a sudden

loss of substantial amounts of secured financing.”

1.2 Model and results

Our paper is an attempt to provide a theoretical model of such market freezes. We consider

the debt capacity of a finitely-lived asset when (i) the debt is short-term in nature and,

hence, needs to be rolled over; (ii) there is the risk of a fire sale in the event the borrower

defaults and the current lender needs to seize and liquidate the underlying assets; and (iii)

the arrival of information about the quality of the assets may be “pessimistic” in nature (in a

sense to be formalized below). These are essentially the features alluded to in the preceding

discussion of the conditions surrounding the freeze in the market for ABCP and the collapse

of Bear Stearns.

When debt is short-term in nature, it is natural to assume that uncertainty about the

credit risk of the underlying asset will not be fully resolved by the date of the next rollover.

In fact, debt may have to be rolled over several times before information about the asset is

completely revealed. In the period of the 2007-2008 crisis, there were numerous examples of

the slow release of information about the quality of assets held by banks or used as collateral

for asset-backed securities. On the one hand, the difficulty of valuing complex securities

or assets for which no markets existed led to repeated changes in the losses announced by

financial institutions. On the other, these same institutions were loath to reveal all their

holdings of troubled assets. For both these reasons, the true extent of the financial distress

dribbled out over many months. In these circumstances, a lender that is unwilling or unable

to extend credit until the assets mature has to take into account the risk that the borrower

will not be able to find another lender, that is, to roll over his debt. Does such rollover risk

diminish the debt capacity of an asset? The answer to this question depends crucially on

the way in which information is released relative to the rate at which debt is being rolled
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over.

Although the preceding discussion makes it clear that the release of information is en-

dogenous to the market, from the point of view of lenders it can be treated as an exogenous

signal. We consider two different information structures, that is, two different assumptions

about the signals that reach the commercial paper market. In each structure, there is a

constant small hazard of news arriving in each time period, but the nature of the news

is different. The first structure, which we call the “optimistic” structure, is illustrated in

Figure 2a. In the optimistic information structure, at each rollover date, either “bad news”

is released, revealing that the assets underlying the lending have no value, or no news is

released. If bad news never arrives, the value of the asset is positive, so obviously no news

is “good news”. The information structure is “optimistic” in the sense that, as time passes

and bad news has not arrived, the probability that the value of the assets will be positive is

increasing, as illustrated in Figure 2b.

The standard result in efficient markets is that the debt capacity5 of an asset is equal

to its NPV or “fundamental” value. We show in the sequel that this result holds when

the information structure is optimistic, the debt capacity of an asset is simply equal to the

expected present value of the asset’s cash flows at maturity. In other words, there is credit

risk but no rollover risk.

— Figures 2a, 2b and 3a, 3b about here —

The standard result breaks down, however, when the information structure is “pes-

simistic.” The pessimistic structure is illustrated in Figure 3a. In the pessimistic structure,

there is a constant hazard at each rollover date that “good news” is released, revealing that

the value of the asset is high. If good news never arrives, the value of the asset is zero, so

in this case no news is “bad news.” The structure is pessimistic in the sense that, as time

passes and good news has not arrived, the probability that the asset will have positive value

decreases, as illustrated in Figure 3b. Intuitively, this information structure is pessimistic

in the sense that investors are waiting for good news and the outlook gets worse each time

good news fails to arrive.

Our main objective in this paper is to characterize the rollover debt capacity6 of an asset

used as collateral for short-term borrowing. Using the methods developed in this paper,

we can show that, under the pessimistic information structure, the rollover debt capacity

of an asset is always smaller than its buy-to-hold debt capacity.7 We also establish that

5The debt capacity is the maximum amount of debt that can be obtained using the asset as collateral.
6The rollover debt capacity is the maximum amount of debt that can be obtained when the debt has to

be rolled over each period.
7The buy-to-hold debt capacity refers to the maximum amount of debt that could be obtained if the term

of the debt guaranteed that the borrower could hold the assets to maturity without risk of liquidation.
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the rollover debt capacity is declining in the rollover frequency, liquidation cost, and credit

risk. In fact, our main result shows that the debt capacity of an asset tends to zero as the

number of debt rollovers grows without bound. We call this phenomenon a “market freeze.”

This remarkable and perhaps counter-intuitive result holds for arbitrarily small credit risks,

capturing the scenario that Bear Stearns experienced during its failure in March 2008.

The intuition for the “market-freeze” result can be explained as follows. In the pessimistic

case, things are going to get worse unless “good news” arrives. When the rate at which good

news is rationally expected to arrive is much slower than the rate at which the debt has to

be rolled over, the borrower anticipates that he will still be in the pessimistic scenario with

probability close to one at the next roll over date. Then debt capacity today is essentially

determined by debt capacity tomorrow. As the final rollover date approaches, however, the

fundamental value of the assets is zero in the pessimistic case, so the debt capacity is zero

as well. By backwards induction the debt capacity at any preceding date in the pessimistic

case must be close to zero as well.

A similar backward induction argument in the optimistic case leads to the opposite

result, since the fundamental value – and hence the debt capacity – increases over time as

the maturity date is approached in the optimistic case.

The two special information structures can be nested in a more general regime-switching

model. More precisely, we assume there are two states, a pessimistic state and an optimistic

state. The value of the asset is determined by the state of the economy in the final period

when the asset matures. If the terminal state is optimistic, the value of the asset is positive;

otherwise, it is zero. In each period, the economy switches, with some small probability,

from the prevailing state to the other one.8 We show that, as the rollover frequency becomes

unbounded, the debt capacity in the optimistic state is bounded away from zero and in the

pessimistic state tends to zero. In particular, a sudden switch in the market’s expectation

from the optimistic state to the pessimistic one can cause the market for rollover asset-backed

debt to freeze.

A sudden market freeze arises in the model because of a change in investors’ rational

expectations. Instead of good news being the default state and bad news being a dreaded

surprise, now bad news is the default state and good news the hoped for surprise. If good

news is likely to arrive at a slower rate than the debt has to be rolled over, the effect on debt

capacity may be catastrophic, even if the fundamental value of the asset (the probability

distribution over terminal states) has not changed significantly.

Something like a switch from optimistic to pessimistic states or expectations may have

8An imperfect analogy is to think about an economy whose state is characterized by a regime-switching
model. When it is more likely to be in the healthy state, the more it stays in that state, the less likely it is
to switch to the recession state before the assets mature. Conversely, when it is more likely in a recession,
the more it stays in that state, the less likely it is to switch to the healthy state before the assets mature.
No news in the healthy state is good news, whereas no news in recession is bad news.
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happened in the second quarter of 2007. The cause was growing awareness of the poor

performance of securities backed by sub-prime mortgages and, more importantly, the failure

of the existing valuation models to predict their market prices, as revealed by BNP Paribas

in its August 9 announcement of suspension of NAV calculation for three of its funds invested

in sub-prime assets. Normal risks are familiar and can be discounted with confidence. The

realization that no one knew how to value these complex securities caused a fundamental

change in attitudes. The future looked bleak, absent the arrival of some new information

that would persuade investors that they could return to business as usual. In the event, such

information did not arrive in time (perhaps was strategically held back) so that investors

were not persuaded that they could carry on business as usual. In fact, many institutions,

especially money market mutual funds, were persuaded that they should not be in the

business of accepting commercial paper backed by these assets. The “freeze” was on. What

occurred was an “adverse dynamic,” to borrow Bernanke’s phrase, whereby a fundamental

change in information structures had reduced debt capacity through backward induction, in

the limiting case diminishing the debt capacity of the assets to zero.

It is important to acknowledge that we take the short-term nature of debt and fire

sales as given. That investment banks are (or used to be!) funded with rollover debt

and that debt capacity can be higher with short-term debt under some circumstances for

many underlying assets, are interesting facts in their own right. Indeed, there exist agency-

based explanations in the literature (for example, Diamond, 1989, 1991, 2004, Calomiris and

Kahn, 1991, and Diamond and Rajan, 2001a, 2001b) for the existence of short-term debt as

optimal financing in such settings. Our model presents a counter-example to the claim that

short-term debt maximizes debt capacity: when expectations are pessimistic, debt capacity

through short-term borrowing may in fact be arbitrarily small, suggesting that institutions

ought to arrange for this possibility by funding themselves also through sufficiently long-

term financing. Providing a micro (for example, an agency-theoretic) foundation for debt

maturity in a model where there is a switch between optimistic and pessimistic regimes is a

fruitful goal for future research, but one that is beyond the scope of this paper.

Our model assumes that when a lender needs to seize assets, these can only be sold to

another buyer who must also finance the assets with short-term debt. Further, the maximum

liquidation price the lender can obtain is proportional to, but smaller than, the new debt

capacity of assets. This assumption captures the idea of a “fire sale” that is rooted either in

the specificity of assets to current owners or in finance constraints for arbitrageurs or both.9

9There is a large body of literature in finance and economics justifying, verifying or employing fire
sales of assets during periods of industry- or economy-wide shocks. On the theoretical front, Williamson
(1988) and Shleifer and Vishny (1992) link this to the notion of specificity of assets, that is, the non-
transferability of assets across industries. On the empirical front, Pulvino (1998), Krugman (1998), Aguiar
and Gopinath (2005), Coval and Stafford (2006), Acharya, Bharath and Srinivasan (2007), and Acharya,
Shin and Yorulmazer (2007) have provided evidence of fire sales in real and financial markets in a variety of
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From the standpoint of our paper, these two features – short-term borrowing and fire sales

– imply that market freezes due to changes in expectations about the rollover risk are most

likely when the borrowing and/or lending horizon is short-term and the underlying assets

are “crowded” in the sense that most financial institutions are on one side of the market for

these assets. The first feature generates rollover risk and the second feature generates fire

sales in asset liquidations.

1.3 Applications

Our results can alternatively be stated in terms of the so-called “haircut” of an asset when it

is pledged for secured borrowing or used in a repo transaction. Measuring the haircut as one

minus the ratio of the debt capacity of an asset to its expected value (or the debt capacity for

buy-to-hold debt), our model shows that the haircut can be calculated simply, based on three

inputs: the credit risk of the asset (the hazard rate of default), the number of times the debt

must be rolled over before the asset matures, and the fire-sale discount incurred in the event

of liquidation of the assets by the lender. Under the optimistic information structure, the

haircut is zero whereas, under the pessimistic structure, the haircut is positive and reaches

100% in the limit as the rollover frequency becomes unbounded. More generally, when there

is the possibility of a switch between the optimistic and the pessimistic scenarios, the haircut

is positive but small in the optimistic case and can switch to a very large number in the

pessimistic case.10 Interestingly, while some of the collateralized debt and loan obligations

(CDO and CLO) have had no secured borrowing capacity at all during the sub-prime crisis,

equities – which are in principle riskier assets – had only around a 20% haircut.11 This is

consistent with our model since, when there is rollover risk, it is not the underlying risk of

asset’s cash flows but its rollover risk which primarily affects its debt capacity.

Overall, our model and results apply to several institutional settings. The most natural

candidate, as we have discussed, is the practice of taking assets off-balance-sheet, putting

enough capital and liquidity/credit enhancements to make them “bankruptcy-remote” and

AAA-rated, and then borrowing short-term against these assets. Such structures, charac-

settings. And, on an applied front, a large literature on financial crises (starting with Allen and Gale 1994,
1998) has employed fire sales as a key modeling device.

10Shin (2008), for example, documents based on data from Bloomberg, that the typical haircuts on trea-
suries, corporate bonds, AAA asset-backed securities, AAA residential mortgage-backed securities and AAA
jumbo prime mortgages are respectively, less than 0.5%, 5%, 3%, 2% and 5%, whereas, in March 2008, these
haircuts respectively rose to between 0.25% and 3%, 10%, 15%, 20% and 30%. Gorton and Metrick (2009)
also show that the hair-cuts on borrowing against a number of securitization tranches (backed by mortgages,
auto loans and corporate bonds and loans) were close to zero during the first half of 2007, but rose gradually
to levels as high as 35% between July 2007 and January 2009. See also the discussion in Brunnermeier and
Pedersen (2005) on widening of haircuts in stress times.

11See Box 1.5 from Chapter 1, Page 42 of IMF (2008).
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terized by a maturity mismatch between assets and liabilities, were prevalent in many forms

(“structured investment vehicles” or SIVs, “conduits,” and others) in the period leading up

to the sub-prime crisis (Crouhy, Jarrow and Turnbull, 2007).

Yet another candidate is the commercial paper market accessed primarily by financial

institutions, but also by highly-rated industrial corporations, where rollover at short matu-

rities is a standard feature. Consider the balance-sheet of a financial institution (such as

that of Northern Rock or of the investment banks Bear Sterns and Lehman Brothers) where

the funding model inherently resembles that of a SIV, that is, long-term risky assets such as

mortgages are funded by short-term, asset-backed commercial paper. These markets experi-

enced severe stress during the sub-prime crisis and froze (100% haircut) for many days at a

stretch once the expectations about the quality of mortgage assets became pessimistic, even

though, prior to this period, they appeared to be the cheapest form of financing available

(near-zero haircut).

Overall, the sub-prime crisis of 2007 and 2008 illustrates our key assumptions: Assets

were funded with short-term rollover debt; once the crisis broke out, long-term financing was

difficult to obtain for any institution; and there have been substantial discounts in the sale

of assets in SIVs and conduits.12

The rest of the paper proceeds as follows. Section 2 presents a general discrete-time

framework that contains the optimistic and pessimistic information structures as special

cases (subsections 2.3 and 2.4 respectively) show how to derive the debt capacity in each

case; subsection 2.6 extends this analysis to the general case in which the economy can switch

between optimistic and pessimistic regimes. A number of comparative static results for cases

in which there is a closed form solution for the debt capacity, including a continuous-time

model, are gathered together in Section 3. Section 4 discusses the merits of some potential

interventions to help unfreeze rollover markets. Section 5 discusses the related literature.

Section 6 concludes with some ideas for further work. Appendix I contains proofs. Appendix

II extends the discrete-time model to allow for more general information structures.

12See, for instance, “SIV restructuring: A ray of light for shadow banking,” Financial Times, June 18
2008 ; and “Creditors find little comfort in auction of SIV Portfolio assets,” Financial Times, July 18 2008,
which both report that net asset values due to asset fire sales have fallen below 50% of paid-in capital. As
the first article reports: “[W]hen defaults on US subprime mortgages rose last summer, ABCP investors
stopped buying [short-term ABCP] notes – creating a funding crisis at SIVs. . . . This situation prompted
deep concern about the risk of a looming firesale of assets. The prospect was deemed so alarming that the
US Treasury attempted to organize a so-called “super-SIV” last autumn, which was supposed to purchase
SIV assets.”
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2 Model

In the introduction, we described two different information structures, a “pessimistic” one

and an “optimistic” one. In this section we develop a framework that nests the two cases of

optimistic and pessimistic expectations. There are two states, one of which can be identified

with the optimistic regime and the other with the pessimistic regime. The evolution of the

economy is governed by a stationary, finite, Markov chain that switches randomly between

the two regimes (Figure 4). The two structures described in the introduction can be obtained

as limiting cases.

— Figure 4 about here —

2.1 Time

Figure 5 illustrates the timeline.

— Figure 5 about here —

For the sake of illustration, we consider a SIV attempting to raise asset-backed finance.

The SIV is set up at date t = 0 with a collection of assets as collateral. The sponsoring bank’s

objective is to maximize the value of the assets transferred to the SIV. This is equivalent to

maximizing the amount of debt finance that can be raised by the SIV using the assets as

collateral since the sponsoring bank can extract the full amount as payment for the assets.

In a perfectly competitive asset market, the sponsoring bank will make zero profit after

expenses, because the price of the assets in equilibrium will be bid up until they equal the

amount of finance available, i.e., the debt capacity of the assets. So, in equilibrium, finding

the maximum debt capacity is equivalent to determining the market value of the assets.

The assets backing the SIV have a finite life (e.g., mortgages) and we normalize units

of time so that the assets mature at date t = 1. The SIV issues commercial paper with a

maturity denoted by 0 < τ < 1, which implies that the SIV must rollover its debt exactly

N times, where

N + 1 =
1

τ
.

The unit interval [0, 1] is divided into intervals of length τ by a series of dates denoted by tn
and defined by

tn = nτ, n = 0, 1, ..., N + 1,

where t0 is the date the SIV is set up, tn is the date of the n-th rollover (for n = 1, ..., N),

and tN+1 is the final date at which the assets mature and their terminal value is realized.

For the time being we treat the maturity of the commercial paper τ and hence the number

of rollovers as fixed. Later we will be interested to see what happens when the number of

rollovers needed to span the interval [0, 1] increases without bound.
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2.2 Information

There are two states denoted by s1 and s2, where s1 is the “pessimistic” state and s2 is the

“optimistic” state. Transitions between states occur at the dates tn and are governed by a

stationary transition probability matrix

A =

[
a11 a12

a21 a22

]
=

[
p 1− p

1− q q

]
,

where aij is the probability of a transition from state si at date tn to state sj at date tn+1.

We assume q > 1− p. If the economy is in state s1 at date tn, it remains in the same state

at date tn+1 with probability p and switches to state s2 at date tn+1 with probability 1− p.
So, in terms of the story we told in the introduction, p is the probability of no news (which

is in fact bad news here) and 1 − p is the probability of good news. Similarly, in state s2,

the probability of no news (which is in fact good news) is q and the probability of bad news

is 1− q.
The optimistic and the pessimistic information structures illustrated in Figures 2 and

3 are special cases of this more general structure. For example, the pessimistic structure

(Figure 3) is obtained by assuming that the initial state at date t0 is s1 and that state s2

is an absorbing state. This requires that q = 1 and 0 < p < 1. Similarly, we obtain the

optimist information structure (Figure 2) by assuming that the initial state is s2 and that

s1 is an absorbing state, that is, p = 1 and 0 < q < 1. We shall use these special cases to

illustrate the theory, but our main results hold for the more general regime switching model.

The terminal value of the asset is a random variable Ṽ , which is defined by

Ṽ =

{
0 if the state is s1 at the terminal date t = 1

V > 0 if the state is s2 at the terminal date t = 1.

For simplicity, we assume that the asset has a current yield of zero and the risk-free interest

rate is 0. The market is assumed to be risk neutral.

If the SIV is forced to default and liquidate the assets, we assume that the assets fetch a

fraction λ ∈ [0, 1] of the maximum amount of finance that could be raised by the SIV as a going

concern. It is important to note that the recovery rate λ is applied to the maximum debt

capacity rather than to the fundamental value of the assets. If the buyer of the assets were a

wealthy investor who could hold the assets until maturity, the fundamental value would be

the relevant benchmark and the investor might well be willing to pay some fraction of the

fundamental value, only demanding a discount to make sure that he does not mistakenly

overpay for the assets. What we are assuming here is that the buyer of the assets is another

financial institution that must also issue short term debt in order to finance the purchase.

Hence, the buyer is constrained by the same forces that determined the debt capacity in the

first place. While the debt capacity provides an upper bound on the purchase price, there
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is no reason to think that the assets will reach this value. In fact, we assume λ < 1 in what

follows.

2.3 Debt capacity in the optimistic structure

Our problem is to determine the maximum amount that can be borrowed by the SIV using

only the assets as collateral. We denote the maximum value of debt in state i at date tn
as Bi

n when the SIV is solvent. As a benchmark, we consider first the debt capacity in the

optimistic information structure, that is, the special case where p = 1 and 0 < q < 1. We can

do this by backward induction, beginning with the period before the asset matures. There

are two possible situations to consider. Either (i) bad news has arrived, in which case the

value of the asset is 0 for certain, or (ii) bad news has not yet arrived, in which case the

value of the asset remains uncertain.

Suppose that bad news has not yet arrived, that is, the economy is in state s2, at the

penultimate date tN and the SIV issues debt with a face value of D. If D > V , the SIV

defaults next period regardless of the value of the asset and the expected value of the debt

is

qλV + (1− q)× 0 = qλV.

On the other hand, if D ≤ V , then the SIV will only default in state s1 and the expected

value of the debt is

qD + (1− q)× 0 = qD.

Then the value of debt is given by the formula

max {qλV, qD} ,

which is maximized by setting D = V . If we let Bi
n denote the maximum debt that can be

raised in state si at date tn, then we have shown that B2
N = qV , that is, the maximum debt

that can be raised at date tN in state s2 is qV .

Now let’s move back one period and assume again that good news has not arrived. If the

face value of the debt issued is D, the value of the debt in the ante-penultimate period is{
q (λqV ) + (1− q)× 0 if D > qV

qD + (1− q)× 0 if 0 ≤ D ≤ qV.

It is clear that the value of the debt issued is maximized by setting D = qV and hence, in

the notation introduced earlier, B2
N−1 = q2V .

Continuing in this way, we can calculate the maximum value of the debt that can be

raised against the SIV’s collateral at any date tn and find that it is given by the formula

B2
n = qN−n+1V.
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Now qN−n+1 is the probability that Ṽ = V , conditional on reaching tn without receiving bad

news. So the debt capacity at any date tn is simply the fundamental value of the assets.

This could be considered the “normal” result, where there is no haircut in secured borrowing

the absence of risk aversion and asymmetric information.

2.4 Debt capacity in the pessimistic structure

Now consider pessimistic information structure (Figure 3) in which q = 1 and 0 < p < 1. At

any date, there are two possible situations to consider depending on the state the economy.

Either (i) good news has arrived, in which case the value of the asset is V for certain, or (ii)

good news has not yet arrived, in which case the value of the asset remains uncertain. Again,

we can analyze the debt capacity by backward induction, beginning with the penultimate

date tN .

Suppose that goods news has not yet arrived. In the penultimate period, the SIV issues

debt with a face value of D. If D > V , the SIV defaults next period regardless of the value

of the asset and the expected value of the debt is

(1− p)λV + p× 0 = (1− p)λV.

On the other hand, if D ≤ V , then the expected value of the debt is

(1− p)D + p× 0 = (1− p)D.

Then the value of debt is given by the formula

max {(1− p)λV, (1− p)D} ,

which is maximized by setting D = V . Then the maximum debt that can be raised is

(1− p)V or, in the notation introduced earlier, B1
N = (1− p)V .

Now let’s move back one period and assume again that good news has not arrived. If the

face value is D, the value of the debt in the ante-penultimate period is
(1− p)λV + pλB1

N if D > V

(1− p)D + pλB1
N if B1

N < D ≤ V

D if D ≤ B1
N .

Noting that V > B1
N , it is clear that the value of the debt is maximized by setting D = V

and the maximum value of the debt is B1
N−1 = (1− p)V +pλ (1− p)V = (1 + pλ) (1− p)V .

Unlike in the optimistic structure, the debt capacity at date tN−1 is not equal to the funda-

mental value, which is (1− p2)V . The reason for the divergence is interesting. The value of

the asset is higher in state s2 than in state s1 but the market value of the debt will not reflect
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this higher asset value unless the face value of the debt is higher than the debt capacity in

state s1, i.e., D > B1
N = (1− p)V . So in order to maximize the value of its debt, the SIV

has to choose a face value that will force it to default in state s1 and lose a fraction (1− λ) of

the asset’s value, thus ensuring that the market value of the debt is below the fundamental

value.

2.4.1 The general formula for the pessimistic case

Continuing in this way, we can calculate the maximum value of the debt that can be raised

against the SIVs collateral for any date tn. The general formula is proved by induction. We

want to show that debt capacity at any date tn is given by the formula

B1
n =

(
N−n∑
i=0

piλi

)
(1− p)V. (1)

This formula agrees with the results obtained above, namely, B1
N = (1− p)V and B1

N−1 =

(1 + pλ) (1− p)V , so we have already proved that (1) holds for n equal to N and N − 1.

Now suppose as an induction hypothesis that (1) holds at tn and consider what happens

in the preceding period. Note first that the debt capacity B1
n−1 must satisfy

B1
n−1 = max

{
(1− p)V + pλB1

n, B
1
n

}
,

depending on whether the face value of the debt is set equal to V or to B1
n, and that

B1
n−1 = (1− p)V + pλB1

n (2)

if and only if

(1− p)V + pλB1
n ≥ B1

n

which is equivalent to

B1
n ≤

(1− p)V
1− pλ

=
(
1 + pλ+ p2λ2 + · · ·

)
(1− p)V

=

(
∞∑
i=0

piλi

)
(1− p)V.

Our induction hypothesis guarantees that this inequality is satisfied and hence that (2) is
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satisfied. Then using (2) and the induction hypothesis (1), we calculate

B1
n−1 = (1− p)V + (1− p)λB1

n

= (1− p)V + pλ

(
N−n∑
i=0

piλi

)
(1− p)V

=

(
N−n+1∑
i=0

piλi

)
(1− p)V,

as required.

Thus, we have proved by induction that,

Lemma 1 For any date tn, regardless of the number of rollovers that have taken place, the

maximum amount of finance that can be raised is given by the formula (1).

2.4.2 Market freezes

We say that the market for short-term borrowing by the SIV is experiencing a “freeze” if

the debt capacity of the SIV goes to zero. To characterize a market freeze, we examine the

effect of the number of rollovers N on the maximum finance B1
n that can be raised at each

date tn. There are various ways of interpreting the changes in the model that lead to an

increase in the number of rollovers. We could think of this as involving a shortening of the

maturity of the commercial paper (reducing the length of the time period). Alternatively, we

could think of this as involving an increase in the time horizon. Either way, it is convenient

simply to track the number of rollovers to maturity and treat N as the exogenous variable

in our comparative static analysis. There should, of course, be a ceteris paribus assumption

that the fundamental value of the asset remains constant as we vary N . The natural way to

achieve this is to assume that the time period τ between successive dates tn and tn+1 shrinks

while the probability of a switch between states remains constant per unit of time.

Let p′ be the credit risk of the asset, given by the equation p′ = pN+1. We wish to

evaluate the debt capacity at the initial date B1
0 , holding p′ constant, as N → ∞ or, what

is the same, as τ → 0. Now,

B1
0 =

(
N∑
i=0

piλi

)
(1− p)V

≤ (1− p)V
∞∑
i=0

piλi

= (1− p)V 1

1− pλ

≤ 1

1− λ
(1− p)V.
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Holding p′ = pN > 0 constant implies that p → 1 as N → ∞. Then the inequality above

implies that B1
0 → 0 as N → ∞. Thus, we have shown our main result, the existence of a

“market freeze”.

Proposition 2 Under the pessimistic information structure, the debt capacity of the asset

B1
0 tends to zero as the number of rollovers becomes unbounded, holding constant the credit

risk of the asset held to maturity, provided p′ > 0 and λ < 1.

What is striking about the result is that it holds for arbitrarily small credit risks, capturing

the scenario that Bear Stearns experienced during its failure in March 2008. A corollary of

this result is that, as credit risk increases, fewer debt rollovers are needed to make the debt

capacity of an asset fall below some arbitrary threshold.

2.4.3 Intuitive explanation of the market freeze

Since the result on market freeze is somewhat surprising, we provide an informal description

of why it arises.

It is clear that, as we approach the maturity date in state s1, the fundamental value of the

asset converges to zero. So the debt capacity, which is bounded above by the fundamental,

must also converge to zero as we approach the maturity date in state s1.

At earlier dates, the debt capacity in state s1 may be greater than zero, because of

the possibility of switching to state s2. This raises the important question of how different

factors, such as rollover risk and credit risk, limit the debt capacity when there is a substantial

amount of time left before the assets mature.

One key determinant of the debt capacity is the rate at which the debt is rolled over

relative to the arrival of good news, i.e., a switch to state s2. The faster the debt has to be

rolled over, other things being equal, the smaller the probability that good news will arrive

before the next rollover date. In other words, with high probability, there is no (good) news

before the next roll over date. Then the main determinant of current debt capacity in state

s1 is the future debt capacity in state s1.

Consider the relationship between the face value of the debt and its market value. In-

tuitively, a high face value increases the market value of the debt because of the possibility

that the optimistic state, s2, is realized; but the more likely outcome is that the economy

remains in the pessimistic state, s1, in which case the high face value leads to default and

liquidation. To be more precise, suppose that the debt capacity at the next rollover date is

B. If we issue debt with face value B, the market value of the debt is also B. If we issue

debt with a higher face value, we gain at most V − B if the state switches to s2 before the

next rollover date, but we lose the default cost (1− λ)B if there is no switch. The market

value of the debt increases if and only if

(1− p) (V −B)− p (1− λ)B ≥ 0

17



or

B ≤ (1− p)V
1− pλ

.

Since this inequality holds at each rollover date, it shows that the debt capacity, starting at

zero at the terminal date 1, can never rise above the right hand bound, no matter how many

periods are left before the maturity date. Since the expression on the right converges to zero

as the probability of good news, 1− p, converges to zero, we have the market freeze result.

2.5 Factors driving market freezes

Before we move on to the general case, it may be useful to review the various components

of the model to identify the key drivers of the market freeze phenomenon in our setup.

• Credit risk While some credit risk is necessary for the market freeze result, an arbi-

trarily small value of p′ > 0 is sufficient. The assumption of some (small) credit risk is

natural when one thinks of asset-backed commercial paper and non-government bond

repo transactions.

• Liquidation risk Similarly, as long as there is a positive liquidation cost 1 − λ > 0,

the market freeze result holds. Conversely, if there is zero liquidation cost, for example,

because the underlying asset is fully liquid and requires no asset-specific skills on the

part of the borrower, or there are enough alternative, efficient buyers who do not

require rollover financing, then regardless of credit risk, rollover risk and information

structure, the debt capacity of the asset is equal to the fundamental value of the asset

(set λ = 1 in formula 1).

• Rollover frequency Even under the pessimistic information structure, regardless of

the credit risk and the liquidation cost, the debt capacity of buy-to-hold debt is equal

to the fundamental value of the asset. Hence, rollover risk is critical to obtaining the

market freeze result.

• Information structure The information structure is also crucial for the market freeze

result. In the optimistic structure, the debt capacity is always equal to the fundamental

value, regardless of the other parameters of the model, whereas, in the pessimistic

structure, the debt capacity falls to zero as the number of rollovers increases without

bound, holding constant the credit risk p′.

We conclude that the critical features of the model are the necessity of frequent rollovers

and the information structure, specifically, the existence of the pessimistic state.

While an arbitrarily small liquidation cost is sufficient for the market freeze result, the

magnitude of 1 − λ is an important determinant of debt capacity for a given number of
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rollovers. We see from the formula in (1) that the debt capacity in the pessimistic state is

increasing in λ. A small value of λ is most likely where the likely acquirers of assets are all

on one side of the market. That is, when potential acquirers are likely to be hit by a common

shock or the underlying trade is “crowded”, then its liquidation will lead to fire sales. An

alternative interpretation is that a market freeze is likely in assets that are complex and

where owners of assets have expertise or management skills which are not transferable when

lenders try to seize and liquidate the asset (Williamson, 1988, Shleifer and Vishny, 1992). A

fitting example here might be mortgage-backed securities since prepayment and default risk

of households on home loans are borne by the financial sector as a whole, but the risk gets

repackaged also within the financial sector through these securities. Hence, a common shock

to the financial sector would render this asset class relatively illiquid, as witnessed briefly

during the Long Term Capital Management crisis of 1998 and more extensively during the

sub-prime crisis of 2007-08.

The credit risk has a direct impact on the debt capacity because it determines the fun-

damental value of the asset. But it also has an indirect effect that reduces debt capacity

relative to the fundamental value. In other words, the higher the credit risk, the higher the

“haircut,” as we show formally in Section 3.

2.6 Debt capacity in the general case

We now show that the result on market freezes derived under the pessimistic information

structure of Figure 3 can also be derived under the more general information structure of

Figure 4.

In the general case, the debt capacities in the two states, s1 and s2, are simultaneously

determined and this prevents us from obtaining a closed form expression for the debt capacity.

As in the special cases with absorbing states, we calculate the maximum value of the debt

that can be issued using the assets as collateral by backward induction, beginning with the

period before the asset matures. The arguments are similar to those used in the special cases

discussed above and are relegated to the appendix. The information we need is contained in

the following proposition.

Proposition 3 At the penultimate date tN , the borrowing capacity is (1− p)V in state s1

and qV in state s2. For all dates tn < tN , the borrowing capacities in state s1 and state s2

are denoted by B1
n and B2

n, respectively, and defined recursively by the equations

B1
n = max

{
B1
n+1, pλB

1
n+1 + (1− p)B2

n+1

}
B2
n = max

{
B1
n+1, (1− q)λB1

n+1 + qB2
n+1

}
.

The presence of the max operator in these expressions is inconvenient, but we can show

that it is often not binding. Let us first note the following facts.
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Lemma 4 Debt capacity in the pessimistic state (B1
n) and the optimistic state (B2

n) satisfies

the following properties:

1. For each n = 0, 1, ..., N , B2
n > B1

n.

2. B2
n−1 < B2

n for every n = 1, ..., N .

In words, Lemma 4 says that (1) the debt capacity is always higher in the optimistic state

s2 than in the pessimistic state s1, and (2) the debt capacity in the optimistic state s2 is a

strictly increasing function of the date tn. The first result is intuitive. In the penultimate

state, the probability that Ṽ = V is higher in state s2 than in state s1 (because q > 1− p).
This immediately tells us that debt capacity is higher in state s2 than in state s1 at date tN .

Then, assuming that the result holds for some date tn, we can show that it holds for date

tn−1 using the formulae in Proposition 3. The second result is explained by the fact that the

probability that Ṽ = V , conditional on being in state s2, increases as one gets closer to the

horizon.

The evolution of debt capacity in the pessimistic state s1 follows an interesting pattern.

For sufficiently large dates tn the debt capacity must be declining, but there may also be an

initial period during which it is constant, as the following result shows.

Proposition 5 Suppose that q + pλ > 1. Then, there exists a critical value n∗ < N such

that B1
n > B1

n+1 for every n ≥ n∗ and B1
n = B1

n+1 for every n < n∗.

If the likelihood of good news in the pessimistic state is sufficiently small relative to that

in the optimistic state (pλ > 1 − q), then debt capacity in the pessimistic state (weakly)

decreases as the asset matures, i.e., as tn increases. Note that this assumption will always

be satisfied if the time between rollover dates is sufficiently small.

2.7 Limiting value of debt capacity as τ → 0

We want to explore the effect of increasing the number of roll overs, holding constant the

total probability of ending up in the bad state. The most elegant way of doing this is to

reduce the length of the period, τ , holding constant the probability of switching states per

unit of time. In what follows, we denote the debt capacity in state si by Bi
n (τ) to make

clear the dependence on τ and let p (τ) = e−ατ and q (τ) = e−βτ for fixed α > 0 and β > 0.

Consider the behavior of B1
n (τ) as τ → 0. Since B1

n (τ) is non-increasing in n for fixed

τ it is sufficient to consider what happens to the debt capacity B1
0 (τ) at the time of the

original debt issue. We obtain the following formal proposition.

Proposition 6 As the period length τ → 0, B1
0 (τ)→ 0.
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In other words, debt capacity in the pessimistic state goes to zero in the limit as number of

rollover become unbounded, even when there is some chance of switching from the pessimistic

state to the optimistic state. In this sense, the market freeze associated with the pessimistic

state is especially perverse.

By contrast, when we consider the behavior of B2
n (τ), the debt capacity in the optimistic

state, we obtain that in this case, debt capacity is bounded from below by a finite quantity

even as the number of rollovers becomes unbounded. In particular, this is true in spite of

the fact that we hold constant the probability of ending up in the good state s2.

Proposition 7

1. For any n and τ , B2
n (τ) ≥ q (τ)N−n+1 V , where τ = 1

N+1
.

2. As τ → 0 and nτ → t ∈ (0, 1), B2
n (τ) ≥ e−β(1−t) V .

3. If nτ → t ∈ (0, 1) as the period length τ → 0, then B2
n (τ)→ e−β(1−t)V as τ → 0.

We want to find out the effect of letting the number of rollovers increase holding every-

thing else constant. In other words, we want to hold constant the flow of information about

the final state while increasing the relative speed at which debt is rolled over. To make sure

that the information flow is kept constant, we need to examine the transition probabilities

between fixed points in time, rather than between successive periods. The general formula

for the k-step transition probability matrix is given by

P k =

[
p

(k)
11 p

(k)
12

p
(k)
21 p

(k)
22

]

=
1

2− (p+ q)

[
1− q 1− p
1− q 1− p

]
+

(q + p− 1)k

2− (p+ q)

[
1− p p− 1

q − 1 1− q

]
where p

(k)
ij is the probability of a transition from si to sj in k steps. The derivation can be

found in a standard reference such as Feller (1968). The first term in the expression is the

ergodic distribution. To see this, simply note that, if q and p are both strictly less than 1,

then (q + p− 1)k → 0 as k →∞ and

lim
k→∞

P k =
1

2− (p+ q)

[
1− q 1− p
1− q 1− p

]
.

In other words, the probability of being in either state is independent of the initial distribu-

tion for large n.

This is not the ceteris paribus exercise we want to carry out, however, since here we have

held p and q fixed while varying k, which implies that more and more information is accruing

during the interval [0, 1]. Instead, we want to explore the effect of increasing the number of

roll overs, holding constant the credit risk, that is, the probability of ending up in state s1.
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The most elegant way of doing this is to reduce the length of the period, holding constant the

probability of switching states per unit of time. So let p = e−ατ and q = e−βτ , where τ is the

period length. Then as τ → 0, we can approximate p and q by 1−ατ and 1−βτ , respectively.

Substituting these into the N + 1 step transition probability matrix PN+1 representing the

transition probabilities between date 0 and date 1 and setting τ = 1
N+1

, we obtain

Proposition 8 Let p
(∞)
ij denote the probability of a transition from state si at time t = 0 to

state sj at time t = 1 in the limit as τ → 0 and let P∞ =
[
p

(∞)
ij

]
2×2

. Then

P∞ = lim
τ→0

P
1
τ =

1

(α + β)

[
β α

β α

]
+

e−α−β

(α + β)

[
α −α
−β β

]
.

Let κ = α + β and α = γκ. Then we can rewrite the expression above as

P∞ =

[
1− γ γ

1− γ γ

]
+ e−κ

[
γ −γ

− (1− γ) 1− γ

]
.

The first term is the ergodic distribution. We can think of γ as measuring the ratio of α to

β, which determines the probability of the two states in the ergodic distribution, and κ as

measuring the amount of information that arrives over the period [0, 1]. Holding κ and γ

constant ensures the ceteris paribus assumption is satisfied.

The parameters κ and γ have a natural interpretation in terms of the credit risk faced

by the lenders in states s1 and s2, respectively. The probability of ending up in state s1 is

1 − γ (1− e−κ) conditional on being in state s1 at t0 and it is (1− γ) (1− e−κ) conditional

on being in state s2 at t0. The difference in these probabilties is

1− γ
(
1− e−κ

)
− (1− γ)

(
1− e−κ

)
= e−κ.

Thus, e−κ measures the difference in credit risk in states s1 and s2 at the initial date. The

same is true of the probabilities of ending up in state s2 after starting in state s1 or state s2,

respectively. Thus, by assuming κ = α + β large enough, we can ensure that the transition

probabilities from different initial states are as close as we like. Although this is not a

particularly plausible case, it demonstrates that the results in Propositions 6 and 7 are not

driven by different probabilities of ending up in the bad state.

3 Comparative statics

Although the regime switching model allows us to prove a quite general result about market

freezes, it is convenient to have closed form solutions in order to derive comparative static

properties. For this purpose, we revert to the special case of the pessimistic structure, in
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which q = 1 and the good state s2 becomes an absorbing state. Our first exercise is to use

the formula derived in Section 2.4.1 to derive the impact of the parameters on the so-called

“haircut” when an asset is used as collateral.

3.1 A formula for haircuts

Results on debt capacity can be stated in terms of the equivalent haircut of an asset. In

secured borrowing or repo transactions, the haircut on an asset is the proportion of (some

notion of) its fundamental value that the investor cannot borrow against. We define the

fundament value of the asset for as the debt capacity when the debt is held to maturity, that

is, (1− p′)V . Recall that p′ is the credit risk of the asset, given by the equation p′ = pN+1.

Thus, we can measure the haircut H0 in the model as one minus the ratio of B1
0 to (1−p′)V .

The haircut is then given by the formula:

H0 = 1− 1− p
1− p′

(
N∑
i=0

piλi

)
. (3)

The haircut can thus be calculated simply based on three inputs:

1. the credit risk of the asset, p′;

2. the number N of debt rollovers, or its rollover risk; and,

3. the recovery rate λ or, equivalently, the fire-sale discount (1 − λ) incurred in case of

liquidation of the asset by a lender.

Then, it follows from Lemma 1 and Proposition 6 that

Corollary 9 As long as p′ > 0 and λ < 1, the haircut of an asset is strictly positive and

tends to 100% as its rollover risk N becomes unbounded.

Brunnermeier and Pedersen (2005) and Shin (2008) discuss in detail the sharp widening of

haircuts in stress times, even for relatively high quality assets such as AAA-rated asset pools.

The table from Shin (2008) is included in footnote 10. Our model provides an explanation

for why stress times – when credit risk, rollover risk and liquidation risk rise – are associated

with such large swings in haircuts. Figures 6a and 6b provide some illustrative calibrations

to generate haircuts of the magnitude described by Shin (2008), summarized in footnote 10.

— Figures 6a, 6b about here —
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Even more strikingly, Box 1.5 from Chapter 1 of IMF’s Global Stability Report (2008)

shows that while some of the collateralized debt obligations (CDO) have had no secured

borrowing capacity at all during the sub-prime crisis, equities and high-yield bonds – which

are in principle riskier assets – had only around 20% and 25 to 40% haircuts, respectively.

This is also consistent with our model since, whenever there is rollover risk, it is not the

underlying risk of an asset’s cash flows but its liquidation risk that primarily determines the

debt capacity.

Finally, the fact that haircut tends to 100% as the rollover frequency increases without

bound provides a potential explanation for why Bear Stearns experienced a complete inability

in March 2008 to obtain any overnight rollover financing against its even high quality assets.

3.2 A continuous-time model

We can obtain more tractable, closed-form solutions if we assume that time is continuous and

that both information and rollover dates arrive according to independent Poisson processes.

This allows us to consider not only variations in the relative rates of information arrival and

rollovers, but also uncertainty about the number of rollovers that may be necessary before

the underlying asset matures. Below, we provide a closed-form solution for the pessimistic

information structure.

Let α denote the arrival rate of good news (i.e., a switch from state s1 to the absorbing

state s2) and let ρ denote the arrival rate of the rollover date. For simplicity, we assume

that the information arrival process is independent of the rollover process (the correlated

case can be analyzed analogously). Then the probability that a rollover and an information

event occur in the same period of length ∆t is simply the product of the two probabilities

α∆t and ρ∆t, i.e.,

(α∆t) (ρ∆t) = αρ (∆t)2 = o (∆t) .

Let B (t) denote the maximum amount of debt that can be raised at time t assuming that

good news has not yet arrived and that the SIV is solvent.13 Then B (t) must satisfy the

difference equation

B (t) = (1− α∆t− ρ∆t)B (t+ ∆t) + α∆tV + ρ∆tλB (t+ ∆t) + o (∆t) . (4)

With probability (1− α∆t− ρ∆t), no information arrives, the debt is not re-financed in the

period (t, t+ ∆t) and the pledgeable value of the asset is B (t+ ∆t). With probability α∆t,

good news arrives and the pledgeable value is V . And with probability ρ∆t it is necessary

to re-finance the debt and, assuming the face value of the debt is V > B (t+ ∆t), the asset

has to be sold at a fire sale and realizes a sale price of λB (t+ ∆t).

13We have dropped the superscript 1 as we are only focusing on the pessimistic information structure here
(Figure 3).
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Taking limits as ∆t→ 0, we obtain the differential equation

B′ (t) = −αV + (α + ρ (1− λ))B (t) .

Solving this differential equation using standard methods yields

Lemma 10 The debt capacity of the asset at time t is denoted by B (t) and defined by

B (t) =
αV

α + ρ (1− λ)

(
1− e(α+ρ(1−λ))(t−1)

)
. (5)

The maximum finance that can be raised at the initial date is obtained by setting t = 0

in the formula above. Recall that the probability that good news does not arrive in the

interval [0, 1], that is, the probability that the value of the asset is 0, is e−α. Hence, the

fundamental value of the asset is (1− e−α)V . Thus, the haircut at date 0 can be denoted

by H (0) and defined by

H(0) = 1− B(0)

(1− e−α)V

= 1−
α
(
1− e−(α+ρ(1−λ))

)
[α + ρ (1− λ)] (1− e−α)

.

The following proposition provides comparative statics results on the debt capacity and

the haircut.

Proposition 11 Using the formula for the haircut H (0) obtained above, we can derive the

following comparative statics results:

(i) The debt capacity B(0) is decreasing in the rollover frequency, ρ, and the liquidation cost,

(1− λ), and is increasing in α.

(ii) The haircut H(0) is increasing in the rollover frequency, ρ, and the liquidation cost,

(1− λ), and is decreasing in α.

Figure 7 illustrates the results from the above proposition. In particular, we vary ρ to

get a sense of the role of the relative speeds of information arrival and re-financing on debt

capacity (Figure 7a) and haircut (Figure 7b). We choose values of α such that the asset’s

credit risk, e−α, takes values 0.001, 0.01 and 0.1,14, we normalize V = 1, and we use λ = 0.7

to capture the liquidation cost.

— Figures 7a, 7b about here —

14The corresponding α-values are 6.9078, 4.6052, and 2.3026, respectively.
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Note that, as ρ approaches 0, the debt capacity of the asset approaches its fundamental

value, and, in turn, the required haircut approaches 0, for all values of the credit risk.

Furthermore, the rollover risk (captured by ρ) and the credit risk (captured by α) act as

substitutes, that is, for lower levels of credit risk, higher levels of rollover risk are needed to

get the same levels of debt capacity and haircut. Since ρ is equal to the expected number

of rollovers in the unit interval, we can see that there is a substantial haircut even when the

number of rollovers is reasonably small and the level of credit risk is extremely small.

4 Policy implications

It is tempting to ask the question: Can a regulator do something to unfreeze the market?

Note that our model is partial equilibrium. It shows how the nature of information arrival

affects rollover debt capacity. It does not endogenize either the short-term nature of debt or

the liquidation cost in case of default. Hence, any policy implications we draw below must

also be viewed as partial equilibrium ones, narrowly focused at alleviating the market freeze

without attention to any other related efficiency issues or unintended consequences.

We discuss two possible policy interventions.

4.1 Improving the liquidation value of assets

Recall that in our model, debt capacity shrinks with rollovers under the pessimistic informa-

tion structure since in case of default, asset must be sold to another player also constrained

to borrow using rollover debt. If the maturity of borrowing of alternative buyers of assets

lengthens, then the haircut in borrowing would fall and so would liquidation costs. During

a systemic crisis, however, there are few private agents with long-term horizons because the

ultimate providers of finance - the households - themselves become short-term focused. A

regulator such as the Central Bank or the Treasury can, in principle, directly attempt to

improve the liquidation value (λ) of affected assets by lending against the asset as a collateral

based on its full buy-and-hold value.

This argument could provide a rationale for the wide variety of lending facilities created

by the Federal Reserve during the sub-prime crisis to lend to a large number of borrowers,

against a wide variety of collateral, at minimal (if any) haircut.15 In practice, such facilities

15For example, in addition to the traditional tools the Fed uses to implement monetary policy (e.g.,
Open Market Operations, Discount Window, and Securities Lending program), five new programs were
implemented during August 2007 to March 2008: 1) Term Discount Window Program (announced 8/17/2007)
- extended the length of discount window loans available to institutions eligible for primary credit from
overnight to a maximum of 90 days; 2) Term Auction Facility (TAF) (announced 12/12/2007) - provides
funds to primary credit eligible institutions through an auction for a term of 28 days; 3) Single-Tranche OMO
(Open Market Operations) Program (announced 3/7/2008) - allows primary dealers to secure funds for a
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had a temporary effect on most markets they intervened in, but they appear to have failed

to resolve the market freezes completely. While the reason behind this failure remains an

important puzzle, one possible explanation could be the following. Our model suggests that

for haircuts to vanish or become minimal, at each rollover date until maturity of the asset,

the lender should anticipate guaranteed regulatory lending against the assets to potential

buyers. The Federal Reserve facilities were, however, newly introduced and their horizon of

provision was announced as short-term, with discretionary extension in future. The residual

uncertainty left by such discretion may have been a factor that prevented a complete thawing

of asset-backed debt markets in spite of substantial short-term interventions.

4.2 Requiring higher “capital” in asset-backed finance

An alternative policy implication of our model is that while short-term rollover debt entails

little financing cost (if any) in good times, its availability can dry up suddenly when unex-

pected or hitherto unexperienced events happen. The excessive reliance on rollover finance

thus exposes borrowers (such as SIV’s and conduits) to low likelihood but high magnitude

funding risk. It may be more prudent for such borrowers to account for such funding risk and

complement rollover debt in their capital structure with forms of capital such as long-term

debt and equity capital that face lower rollover risk.

Of course, the very information frictions that cause a switch in investors’ expectations

from pessimistic to optimistic ones may also preclude availability of such long-term finance

once a crisis erupts. Hence, the reduced reliance on rollover debt must be a part of prudential

capital structure choice in good times rather than being undertaken during bad times. While

financial institutions should have privately recognized the risks of rollover finance, it cannot

be ruled out that such risks were not yet fully understood. Going forward, a prudential

regulator could play the role of a watchdog, looking out for excessive reliance on rollover

finance, and encouraging in such cases a greater reliance on long-term capital, through moral

suasion or rule-based policies. Since long-term capital may be infeasible beyond a point for

opaque, off-balance-sheet structures such as SIV’s and conduits, such regulatory push will

most likely reduce their incidence in the first place.

term of 28 days. These operations are intended to augment the single day repurchase agreements (repos)
that are typically conducted; 4) Term Securities Lending Facility (TSLF) (announced 3/11/2008) - allows
primary dealers to pledge a broader range of collateral than is accepted with the Securities Lending program,
and also to borrow for a longer term — 28 days versus overnight; and, 5) Primary Dealer Credit Facility
(PDCF) (announced 3/16/2008) - is an overnight loan facility that provides funds directly to primary dealers
in exchange for a range of eligible collateral.
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5 Related literature

Our paper is related to the literature on haircuts, freezes and runs in financial markets.

Rosenthal and Wang (1993) use a model where owners occasionally need to sell their assets

for exogenous liquidity reasons through auctions with private information. Because of the

auction format, sellers may not be able to extract the full value of the asset and this liquida-

tion cost gets built into the market price of the asset, making the market price systematically

lower than the fundamental value. In our model, the source of the haircut is not the private

information of potential buyers. Furthermore, we show that under the optimistic information

structure, even with forced sales (roll over in our case), the asset can generate its full value.

And our regime switching model provides a more general analysis to flesh out the specific

information structures (pessimistic case) that lead to haircuts and market freezes.

He and Xiong (2009) consider a model of dynamic bank runs in which bank creditors have

supplied debt maturing at differing maturities and each creditor faces the risk at the time of

rolling over that fundamentals may deteriorate before remaining debt matures causing a fire

sale of assets. In their model, volatility of fundamentals plays a key role in driving the runs

even when the average value of fundamentals has not been affected. Our model of freeze or

“run” of short-term debt is complementary to theirs, and somewhat different in the sense

that both average value and uncertainty about fundamentals are held constant in our model,

but it is the nature of revelation of uncertainty over time – whether good news arrives early

or bad news arrives early – that determines whether there is rollover risk in short-term debt

or not.

Huang and Ratnovski (2008) model the behavior of short-term wholesale financiers who

prefer to rely on noisy public signals such as market prices and credit ratings, rather then

producing costly information about the institutions they lend to. Hence, wholesale financiers

run on other institutions based on imprecise public signals, triggering potentially inefficient

runs. While their model is about runs in the wholesale market as is ours, their main focus is

to challenge the peer-monitoring role of wholesale financiers, whereas our main focus is the

role of rollover and liquidation risk in generating such runs.

An alternative modelling device to generate market freezes is to employ the notion of

Knightian uncertainty (see Knight, 1921) and agents’ overcautious behavior towards such

uncertainty. Gilboa and Schmeidler (1989) build a model where agents become extremely

cautious and consider the worst-case among the possible outcomes, that is, agents are uncer-

tainty averse and use maxmin strategies when faced with Knightian uncertainty. Dow and

Werlang (1992) apply the framework of Gilboa and Schmeidler (1989) to the optimal portfolio

choice problem and show that there is an interval of prices within which uncertainty-averse

agents neither buy nor sell the asset. Routledge and Zin (2004) and Easley and O’Hara

(2005, 2008) use Knightian uncertainty and agents that use maxmin strategies to generate

widening bid-ask spreads and freeze in financial markets. Caballero and Krishnamurthy
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(2007) also use the framework of Gilboa and Schmeidler (1989) to develop a model of flight

to quality during financial crises: During periods of increased Knightian uncertainty, agents

refrain from making risky investments and hoard liquidity, leading to flight to quality and

freeze in markets for risky assets.

As opposed to these models, in our model agents maximize their expected utility and

the main source of the market freeze is rollover and liquidation risk which become relevant

when the rate of arrival of good news is slower than the rate at which debt is being rolled

over. While both types of models can generate market freezes, we believe our model, by

emphasizing the rollover and liquidation risk, better captures important features of the

recent crisis where the market for rollover debt completely froze while equities - typically

considered to be more risky - continued to trade with haircuts of only 20%.

6 Conclusion

In this paper, we have attempted to provide a simple information-theoretic model for freezes

in the market for secured borrowing against finitely lived assets. The key ingredients of

our model were rollover risk, liquidation risk, and switch in investors’ expectations from

optimistic to pessimistic, that is, for the waiting-for-good-news type. Such a switch was

shown critical to obtaining the result on market freezes. This potentially explains why in

response to events not witnessed before by market participants (such as the Long Term

Capital Management episode or the sub-prime crisis), markets for rolling over short-term

asset-backed debt experience a sudden drying-up.

In future work, it would be interesting to embed an agency-theoretic role for short-term

debt, which we assumed as given, and see how the desirability of such rollover finance is

affected when information problems can lead to complete freeze in its availability. While we

took the pattern of release of information about the underlying asset as either ordained by

nature or determined by investors’ expectations, it seems worthwhile to reflect on its deeper

foundations, and thereby assess whether a strategic disclosure of information by agents in

charge of the asset can alleviate (or aggravate) the problem of freezes to some extent.

Appendix I: Proofs

Proof of Proposition 3: At date tN , we are either in state s1 or in state s2. Suppose

the SIV is in state s1 and issues debt with a face value of D. By the usual argument, we

can show that it is never optimal to choose D > V and, if D ≤ V the the value of debt

is (1− p)D, which is maximized by setting D = V . Let B1
N = (1− p)V denote the debt

capacity at date tN in state s1.
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Similarly, in state s2 it is never optimal to choose D > V and, if D ≤ V , the value of

the debt is qD, which is maximized by setting D = V . Let B2
N = qV denote the borrowing

capacity at date tN in state s2.

Now let B1
n and B2

n be the borrowing capacities in states s1 and s2, respectively, when

at date tn, in the period when the n-th roll over occurs. If D is the face value of the debt

issued at date tn−1, then the value of the debt in state s1 is
pλB1

n + (1− p)λB2
n if D > B2

n

pλB1
n + (1− p)D if B1

n < D ≤ B2
n

D if D ≤ B1
n.

Clearly, D > B2
n is never optimal, so we choose between D = B1

n and D = B2
n and the

borrowing capacity is

B1
n−1 = max

{
B1,n, pλB

1
n + (1− p)B2

n

}
Similarly, in state s2, the value of the debt is

(1− q)λB1
n + qλB2

n if D > B2
n

(1− q)λB1
n + qD if B1

n < D ≤ B2
n

D if D ≤ B1
n.

Again, D > B2
n is never optimal, the choice is between D = B1

n and D = B2
n and the

borrowing capacity is

B2
n = max

{
B1
n, (1− q)λB1

n + qB2
n

}
.

Proof of Lemma 4:

1. This is certainly true for n = N and assuming it is true for n it follows that

B2
n−1 = max

{
B1
n, (1− q)λB1

n + qB2
n

}
≥ max

{
B1
n, pλB

1
n + (1− p)B2

n

}
= B1

n−1

since q > 1− p and, by hypothesis, B2
n > B1

n. ♦

2. This follows from the fact that B2
n > B1

n and hence

B2
n−1 = max

{
B1
n, (1− q)λB1

n + qB2
n

}
< B2

n.

This proves the stated claim. ♦
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Proof of Proposition 5: Certainly, for n = N − 1 we have

B1
N−1 = max

{
B1
N , pλB

1
N + (1− p)B2

N

}
= max {(1− p)V, pλ (1− p)V + (1− p) qV } .

Then B1
N−1 > B1

N if and only if

q + pλ > 1,

which we assumed to hold. Let n∗ denote the smallest value of n such that B1
n > B1

n+1 for

all n ≥ n∗. Then for n = n∗, we have B1
n−1 = B1

n and

B1
n−2 = max

{
B1
n−1, pλB

1
n−1 + (1− p)B2

n−1

}
≤ max

{
B1
n, pλB

1
n + (1− p)B2

n

}
= B1

n−1,

since B1
n−1 = B1

n and B2
n > B2

n−1.

But the same argument could be extended indefinitely, since it only depends on the

assumption that B1
n−1 = B1

n and B2
n > B2

n−1. This completes the proof. ♦

Proof of Proposition 6: We consider two cases in turn. Suppose first that n∗ (τ) >> 0 for

infinitely many values of τ → 0. For fixed τ , we know that B1
n (τ) ≤ B1

n∗ (τ) for any n ≤ N .

From the definition of n∗ (τ),

0 = B1
n∗+1 (τ)−B1

n∗ (τ)

= (1− p (τ))B2
n∗ (τ) + p (τ)λB1

n∗ (τ)−B1
n∗ (τ)

= (1− p (τ))B2
n∗ (τ)− (1− p (τ)λ)B1

n∗ (τ)

=
(
1− e−ατ

)
B2
n∗ (τ)−

(
1− e−ατλ

)
B1
n∗ (τ) .

Then

B1
n∗ (τ) ≤ (1− e−ατ )

(1− e−ατλ)
B2
n∗ (τ) .

Since the right hand side is bounded and e−ατ → 1 as τ → 0, we see that B1
n∗ (τ) → 0 as

τ → 0, which means that B1
0 (τ)→ 0 as τ → 0.

Now suppose that n∗(τ) = 0 and B1
0 (τ) >> B1

1 (τ) for infinitely many values of τ → 0.

Then

B1
0 (τ) = p (τ)λB1

1 (τ) + (1− p (τ))B2
1 (τ)

≤ p (τ)λB1
0 (τ) + (1− p (τ))B2

1 (τ)
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which implies

B1
0 (τ) ≤ 1− p (τ)

1− p (τ)λ
B2

1 (τ)

=
1− e−ατ

1− e−ατλ
B2

1 (τ) .

Since B2
1 (τ) is bounded and e−ατ → 1, as τ → 0, we see that B1

0 (τ)→ 0 as τ → 0. ♦

Proof of Proposition 7:

1. For each n,

B2
n (τ) = max

{
B1
n+1 (τ) , q (τ)B2

n+1 (τ) + (1− q (τ))λB1
n+1

}
≥ q (τ)B2

n+1 (τ)

= q (τ) max
{
B1
n+2 (τ) , q (τ)B2

n+2 (τ) + (1− q (τ))λB1
n+2

}
≥ q (τ)2B2

n+2 (τ)

· · ·
= q (τ)N−nB2

N (τ) = q (τ)N−n+1 V.

This proves the stated claim. ♦

2. From the preceding result,

B2
n (τ) ≥ q (τ)N−n+1 V

=
(
e−βτ

)N−n+1
V

=
(
e−βτ

) 1−nτ
τ V

= e−β(1−nτ)V.

Then

lim
τ→0

e−β(1−nτ) = e−β(1−t)

follows from the fact that nτ → t as τ → 0. ♦

3. For fixed τ ,

B2
n (τ) = q (τ)B2

n+1 (τ) + (1− q (τ))λB1
n+1

= q (τ)2B2
n+2 + (1− q (τ))λB1

n+1 + q (τ) (1− q (τ))λB1
n+2

= q (τ)N−n+1 V +
N−n∑
i=1

(1− q (τ))λq (τ)i−1B1
n+i (τ)

≤ q (τ)N−n+1 V +
N−n∑
i=1

(1− q (τ))λq (τ)i−1 max
i
B1
n+i (τ)

= q (τ)N−n+1 V + λ
(

1− q (τ)N−n
)

max
i
B1
n+i (τ) .
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Now let N + 1 = 1
τ

and τ → 0. As max
i
B1
n+i (τ) converges to zero and q (τ)N converges

to e−β(1−t), the left hand side converges to e−β(1−t)V . ♦

Proof of Proposition 8:

Substituting the expressions for p and q into PN+1 and setting τ = 1
N+1

gives us

P
1
τ =

1

(α + β) τ

[
βτ ατ

βτ ατ

]
+

(1− (α + β) τ)
1
τ

(α + β) τ

[
ατ −ατ
−βτ βτ

]
=

1

(α + β)

[
β α

β α

]
+

(1− (α + β) τ)
1
τ

(α + β)

[
α −α
−β β

]
.

Now

lim
τ→0

(1− (α + β) τ)
1
τ = e−α−β

so

P∞ = lim
τ→0

P
1
τ =

1

(α + β)

[
β α

β α

]
+

e−α−β

(α + β)

[
α −α
−β β

]
.

Proof of Corollary 9: From Proposition 6, when p′ > 0 and λ < 1, B1
0 < (1 − p′)V for

n > 1, and B1
0 → 0 as n → ∞. In turn, the haircut H0 is always positive under these

conditions and goes to 100% as number of rollovers become unbounded. ♦

Proof of Lemma 10: Consider the difference equation (4). To see that it is optimal to

set the face value of the debt equal to V , consider the effect of choosing D < V as the face

value. Clearly, there is no point choosing D > B (t+ ∆t) or D < B(t + ∆t) so consider

D = B (t+ ∆t) for some period ∆t. Then the value of the debt with face value D is

(1− α∆t− ρ∆t)B (t+ ∆t) + α∆tB (t+ ∆t) + ρ∆tB (t+ ∆t) + o (∆t) =

B (t) + α∆t (B (t+ ∆t)− V ) + (1− λ) ρ∆tB (t+ ∆t) + o (∆t) .

Now

α (B (t+ ∆t)− V ) + (1− λ) ρB (t+ ∆t) +
o (∆t)

∆t
< 0

for ∆t sufficiently small if

α

(
1− V

B (t+ ∆t)

)
+ ρ (1− λ) < 0. (6)

We assume this condition is satisfied for the time being and check it later.
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Re-arranging the terms of (4), we obtain

B (t+ ∆t)−B (t)

∆t
= −αV + (α + ρ (1− λ))B (t+ ∆t) +

o (∆t)

∆t
.

Taking limits as ∆t→ 0, we obtain the differential equation

B′ (t) = −αV + (α + ρ (1− λ))B (t) .

This can be solved to yield a general solution of the form

B (t) =
αV

α + ρ (1− λ)
+ Ce(α+ρ(1−λ))t

where C is an undetermined coefficient. Setting t = 1 and using the boundary condition

B (1) = 0, we get

0 =
αV

(α + ρ (1− λ))
+ Ce(α+ρ(1−λ))

or

C = − αV

(α + ρ (1− λ))
e−(α+ρ(1−λ)).

Then the solution is as given in equation (5).

It is clear that B (0) > B (t) for any t > 0, so in order to confirm condition (6) it is

sufficient to show that it holds for t = 0. Then

α

(
1− V

B (0)

)
+ (1− λ) = α

(
1− α + ρ (1− λ)

α (1− e−(α+ρ(1−λ)))

)
+ ρ (1− λ) < 0,

as required. ♦

Proof of Corollary 11:

(i) We already showed that

B (0) =
αV

α + ρ (1− λ)

(
1− e−(α+ρ(1−λ))

)
.

Let x = α + ρ (1− λ) so that dx
dρ

> 0, dx
d(1−λ)

> 0, and B(0)
αV

= 1
x

(1− e−x) . Hence,

sign
(
∂B(0)
∂ρ

)
= sign

(
∂B(0)
∂(1−λ)

)
= sign

(
∂(B(0)

αV )
∂x

)
. We can show that

∂
(
B(0)
αV

)
∂x

= − 1

x2

(
1− e−x

)
+

1

x
e−x =

1

x2

(
(1 + x)e−x − 1

)
.
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Let f(x) = (1 + x)e−x − 1. Note that f(0) = 0 and f ′(x) = −xe−x < 0 for x > 0. Hence,

we obtain ∂B(0)
∂ρ

< 0 and ∂B(0)
∂(1−λ)

< 0.

Next, we show ∂B(0)
∂α

> 0. We obtain

∂B (0)

∂α
=

(
V [α + ρ (1− λ)]− αV

[α + ρ (1− λ)]2

)(
1− e−(α+ρ(1−λ))

)
+

αV

α + ρ (1− λ)
e−(α+ρ(1−λ)).

=
V

x

(
1− α

x

) (
1− e−x

)
+
αV

x
e−x > 0,

since α < x = α + ρ(1− λ). ♦

(ii) We can show that
∂H (0)

∂x
= − α

x2 (1− e−α)
f(x) < 0,

since f(x) = (1 + x)e−x − 1 < 0 for x > 0. Hence, we obtain ∂H(0)
∂ρ

> 0 and ∂H(0)
∂(1−λ)

> 0.

Next, we show ∂H(0)
∂α

< 0. We can write H(0) = 1 − g(α,y)
g(α,0)

where y = ρ + (1 − λ), and

g(α, y) = 1−e−(α+y)

α+y
. We can write

dH (0)

dα
=
g(α, y)

g(α, 0)

[
gα(α, 0)

g(α, 0)
− gα(α, y)

g(α, y)

]
,

where
gα(α, y)

g(α, y)
=

e−(α+y)

1− e−(α+y)
− 1

α + y
=

1

e(α+y) − 1
− 1

α + y
.

Let h(y) = gα(α,y)
g(α,y)

, so that

dH (0)

dα
=
g(α, y)

g(α, 0)
[h(0)− h(y)] .

Hence, dH(0)
dα

< 0 if and only if g(0) < g(y). We can write

g′(y) = − e(α+y)

(e(α+y) − 1)
2 +

1

(α + y)2 = − 1

e(α+y) − 2 + e−(α+y)
+

1

(α + y)2 .

Using the power series expansions for e(α+y) and e−(α+y), we get

g′(y) = − 1

2

(
∞∑
i=1

(α+y)2i

(2i)!

) +
1

(α + y)2 > 0 for all y.

Hence, we obtain dH(0)
dα

< 0. ♦
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Appendix II: General information structures

The binomial example that has been used extensively in this paper is insightful, but it is also

a rather special case. To establish the robustness of these results, we consider a more general

class of information structures in this appendix. We assume for simplicity that re-financing

occurs at a fixed sequence of regular intervals.

Suppose there are N + 1 periods, where the period length corresponds to the maturity

of the commercial paper issued. The information revealed in each period is represented by a

random variable with a finite number of values. Without loss of generality we assume there

are S different outcomes in period n and denote them by ωn = 1, ..., S. The information

set in period n can be identified with the vector ωn = (ω1, ..., ωn) and the states of nature

can be identified with the vector ω = (ω1, ..., ωN+1) ∈ Ω = {1, ..., S}N+1. The probability of

state ω is denoted by P [ω].

Again, we assume the assets have a terminal value VN+1 (ω) in period N + 1 but no yield

in periods n = 1, ..., N and for simplicity we assume that the short-term interest rate is 0.

Our task is to calculate the maximum amount of finance that can be raised in the initial

period, before any information has been released. We compute this amount by backward

induction, starting with the last period before the assets’ value is realized. The assets are

worth V (ω) at in state ω in period N + 1 so, assuming the face value of the debt is D , the

SIV is solvent if and only if

D ≤ V (ω) .

The payoff function of the SIV is denoted by BN+1 (ω;D) and defined by

BN+1 (ω;D) =

{
D if D ≤ V (ω)

λV (ω) if D > V (ω)
,

for any state ω and face valueD. Then the expected value of the debt in periodN , conditional

on the face value D and the information set ωN , is

E
[
BN+1 (ω;D) | ωN

]
.

The maximum pledgeable value of the asset is denoted by VN
(
ωN
)

and defined by

VN
(
ωN
)

= max
D≥0

E
[
BN+1 (ω;D) | ωN

]
.

Now suppose that we have defined Bn (ωn;D) and Vn (ωn) for n = N − k, ..., N . For

n = N − k − 1 we define Vn (ωn) by putting

Vn (ωn) = max
D≥0

E
[
Bn+1

(
ωn+1;D

)
| ωn

]
.
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Then we can define Bn (ωn;D) in the obvious way, putting

Bn (ωn;D) =

{
D if D ≤ Vn+1 (ωn+1)

λVn+1 (ωn+1) if D > Vn+1 (ωn+1)
.

By induction, we have defined Vn (ωn) for every period n = 1, ..., N and every information

set ωn. V0 is the maximum amount of finance that can be raised at the first date.

We make two assumptions that are counterparts to the parametric assumptions in the

text.

A.1 The terminal value of the asset V (ω) is bounded by V̄ < ∞ for every terminal state

ω ∈ Ω.

A.2 There exists a terminal state ω̄ = (ω̄1, ..., ω̄N+1) such that V (ω̄) = 0 and, for every

period n, P [ω̄n+1|ω̄n] ≥ 1− p > 0 .

Under the maintained assumptions we can show that

V0 ≤ pV̄ .

To prove this, we begin by considering the information set ω̄N and note that, under the

maintained assumptions A.1 and A.2, the maximum finance that can be raised must be

bounded by

E
[
V
(
ωN+1

)
| ω̄N

]
≤ (1− p)× 0 + pV̄ = pV̄ .

Thus, VN
(
ω̄N
)
≤ pV̄ . Now suppose that

Vn (ω̄n) ≤
[
1 + (1− p)λ+ · · ·+ (1− p)N−n λN−n

]
pV̄

=

[
N∑
k=0

(1− p)k λk
]
pV̄

and use the maintained assumptions to conclude that the inequality holds for n− 1.

Conversely, we can show that there is a lower bound to the amount of finance that can

be raised.

A.3 For some constants v̄ > 0 and p > 0, P
[
V (ω) ≥ v̄ | ωN

]
≥ π, for any information set

ωN .

Then, under Assumption A.3, it can be shown that

Vn (ωn) ≥ pv̄,

for any information set ωn. The proof is obvious.
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Bear Stearns Liquidity Pool
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Figure 1: Bear Stearns’ liquidity pool just before its near failure (Source: SEC Chairman Christopher Cox’s letter 
to Basel Committee in support of New Guidance on Liquidity Management, available at: 
http://www.sec.gov/news/press/2008/2008-48.htm). 



 
Figure 2a: Optimistic information structure 
 
 
 
 

 
Figure 2b: Probability of the high return V over time in the optimistic information structure conditional 
on no news. 
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Figure 3a: Pessimistic information structure 
 
 
 
 
 

 
Figure 3b: Probability of the high return V over time in the pessimistic information structure conditional 
on no news. 
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Figure 4: State transitions in the model with nested information structures. 
 
 
 
 
 
 
 
 

 
Figure 5: Timeline (illustrating N+1 state transitions and N rollovers). 
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Haircut and rollover risk (different credit risk)
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Figure 6a: Haircut as a function of n for different levels of credit risk (1-p’) for  = 0.7. 
 

Haircut and rollover risk (different liquidation cost)
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Figure 6b: Haircut as a function of n for different levels of liquidation risk (1-) for p’= .60. 
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Figure 7a: Debt capacity as a function of  for different levels of credit risk ( 0.001,e    0.01, and 0.1) for V = 1,  

and  = 0.7. 
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Figure 7b: Haircut as a function of  for different levels of credit risk ( 0.001,e    0.01, and 0.1) for V = 1, and  
= 0.7. 
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