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Abstract

This paper investigates a collateral pool settlement (CPS) payment system – a system that provides
intra-day liquidity against a collateral pool. First, we show that participants of CPS do not have
incentives to delay payments once they have committed to participate. This is in striking contrast to a
Real Time Gross Settlement (RTGS) system where banks have strong incentives to free-ride on liquidity
provided by incoming payments. Second, we establish conditions under which banks prefer to participate
in a collateral pool instead of settling payments in RTGS. Third, we show that a late payment equilibrium
may arise in RTGS in the presence of a possible intra-day failure of a participant if the cost of intra-day
liquidity is sufficiently high.
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Summary

Over the last two decades large value interbank payment systems across the world have

evolved towards real time settlement. By now it is accepted that large value payment

systems that cannot ensure real time finality of settlement pose unacceptable settlement

risk. Therefore, almost all large value payment systems across the world moved away from

settlement of netted payment flows at the end of the day to real time gross settlement

(RTGS). In this paper we develop a theoretical model of a payment system with real time

finality but net settlement.

In RTGS systems, banks rely on three sources of liquidity to make their payments. The

first one is banks’ own reserves. The second one is an intra-day liquidity facility made

available by the central bank. Holding cash is costly and access to intra-day liquidity

facility carries either an explicit fee or a requirement to post collateral with the central

bank. The third source of liquidity is virtually free – the payment inflow from other

payment system participants. Therefore, by delaying payment outflows banks can

minimize their intra-day liquidity costs.

Mitigating the incentives for settlement delay in RTGS systems is a key issue for central

bankers and the participants of these systems. A range of solutions has been proposed and

implemented. For example, the UK CHAPS payment system imposes throughput

guidelines for a percentage of daily payment flows to be settled by a specific time of the

day, while the Swiss SIC system levies a time varying payment tariff which is increasing

throughout the day. We suggest an alternative mechanism to incentivise early settlement.

In a collateral pool settlement (CPS) system the collateral pool is used to secure the

system wide net payment position. Banks are granted access to the intra-day liquidity

facility only if in aggregate the net payment position across all banks is smaller than the

value of collateral in the collateral pool.

In the model, initially, the intra-day liquidity facility is available to all participants on a

first-come first-served basis. By submitting payment instructions first, a participant
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potentially uses more liquidity than it has posted collateral. For other banks who pay

later, it is likely that they have received payments or that some early payments have offset

and made the collateral pool available again. Either way, the initial payments made are

likely to trigger cascades of further payments in a self reinforcing way.

Payments made throughout the day are immediately final. But the settlement of

obligations takes place at the end of the day. Effectively it is an RTGF (F = finality)

system, with end of day settlement. If at the end of the day not all intra-day net payment

positions are covered, a loss sharing arrangement is triggered where any failed bank’s

collateral in the shared collateral pool is liquidated first. If insufficient, the shortfall is

then covered by liquidating the collateral of the surviving banks. The sum of the net

amounts of the payments never exceeds the value of the collateral pool at any point in

time, which ensures that the settlement agent can guarantee finality in real time without

incurring credit risk. By contrast, in RTGS, banks do not share collateral, thus there is no

need for a loss sharing arrangement, but to make a payment each bank must obtain

intra-day liquidity for itself or rely on incoming payments. This creates an incentive to

delay settlement.

CPS not only eliminates incentives of settlement delay (by making the cost of liquidity

sunk), but also provides additional incentives to submit payments early. Such a payment

system arrangement provides several other theoretical benefits as well. First, it is less

likely to result in a classic gridlock situation as banks can always submit payments to

banks in a net payment position. Second, the collateral pool has the potential to reduce

system wide liquidity needs, as banks sharing the collateral can use it more efficiently to

meet their peak liquidity needs when these occur at different times during the day.
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1 Introduction

This paper proposes a collateral pool arrangement to support intra-day liquidity in real

time payment systems. We compare a collateralized Real Time Gross Settlement (RTGS)

system to a collateral pool settlement (CPS) system – a system that provides intra-day

liquidity against a collateral pool and ensures real time finality of settlement. We show

that the CPS system provides incentives to submit payments early while RTGS leads to

strategic payment delay. We also show that under very general conditions banks prefer to

participate in a collateral pool.

In our theoretical CPS model discussed below, participating banks post collateral into a

“collateral pool” at the beginning of the day. During the day banks can obtain intra-day

liquidity against the collateral on a first-come first-served basis up to the total value of

collateral.1 By submitting payment instructions first, a participant potentially uses more

liquidity than it has posted collateral. For these banks who pay later, it is likely that they

have received payments or that some early payments have offset and have made the

collateral pool available again. Either way, the initial payments made are likely to trigger

cascades of further payments in a self reinforcing way.

Since all payments are backed by collateral, payments made throughout the day are

immediately final in CPS, even though the settlement of obligations takes place at the end

of the day. Effectively it is an RTGF (F = finality) system, with end of day settlement. If

at the end of the day not all intra-day net payment positions are covered, a loss sharing

arrangement is triggered where any failed bank’s collateral in the shared collateral pool is

liquidated first. If insufficient, the shortfall is then covered by liquidating the collateral of

the surviving banks. The sum of the net amounts of the payments never exceeds the value

of the collateral pool at any point in time, which ensures that the settlement agent can

guarantee finality in real time without incurring credit risk.2

1Individual participant limits can be put in place to ensure that not all of the pooled liquidity is used by just one (or

a few) participants. For simplicity, our model does not include such bilateral limits. The main implication of

introducing individual participant limits into our model would be to reduce its liquidity efficiency; but they would not

alter the incentives that we observe in a CPS system.

2The shared collateral arrangements in Canada are different in that the Bank of Canada is potentially exposed in the

unlikely event of multiple bank failures - but there is no need for this to be a feature of a shared collateral pool.
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By contrast, in RTGS, banks do not share collateral, thus there is no need for a loss

sharing arrangement. In RTGS systems, banks rely on three sources of liquidity to make

their payments. The first one is banks’ own reserves. The second one is an intra-day

liquidity facility made available by the central bank. Holding cash is costly and access to

intra-day liquidity facility carries either an explicit fee or a requirement to post collateral

with the central bank. The third source of liquidity is virtually free – the payment inflow

from other payment system participants. If the intra-day liquidity cost is relatively large,

banks find it optimal to delay payments and rely on payment inflows for their source of

liquidity. However, this approach to liquidity saving does not work well if all banks pursue

the same delay strategy.

Mitigating the problem of settlement delay, or the trade-off between intra-day liquidity

cost and intra-day delay cost, is a key issue for central bankers and the participants of

RTGS systems. A range of solutions has been proposed and implemented. For example,

The UK CHAPS payment system imposes throughput guidelines for a percentage of daily

payment flows to be settled by a specific time of the day, while the Swiss SIC system levies

a time varying payment tariff which is increasing throughout the day.

In this paper we set up a general game theoretic structure that we use to compare RTGS

and CPS payment systems. In the model the main trade-offs for the banks are (i) in

deciding if they want to commit collateral to a collateral pool (CPS) or if they would

rather rely on their own liquidity and the liquidity of incoming payments (RTGS); (ii) in

choosing the timing of payments. We solve this dual stage problem backwards and

demonstrate that (i) banks settle their payments as soon as possible in CPS while delaying

them to the end of the day in RTGS, (ii) in anticipation of such equilibrium behavior

banks choose to participate in a collateral pool, unless default probability is high.

In CPS, banks pledge collateral at the beginning of the day to the collateral pool. This is

a similar arrangement to Canadian Large Value Transfer System (LVTS). While in LVTS

banks pledge collateral that goes some way to secure their bilateral net payment position,

in CPS the collateral pool is used to secure the aggregate net payment position. Thus

banks can utilize collateralized intra-day credit facility for payments on a “first come, first

served” basis – banks obtain intra-day credit only if the aggregate net payment position
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across all banks is equal to or smaller than the margined value of collateral in a collateral

pool. Therefore compared to LVTS CPS has an “exhaustibility constraint”.

CPS not only eliminates incentives of settlement delay (by making the cost of liquidity

sunk), but also provides additional incentives to submit payments early, as by paying early

a bank is less likely to be exposed to the loss sharing in case of intra-day default.

Counterparty risk in deferred settlement systems emerges only when a risky bank has a

net payment position. Thus a bank can reduce the counterparty risk (= net payment

position) by making a payment to the risky bank.) This is a critical difference from

payment behaviour in RTGS, where making early payments is costly.

But even in RTGS banks may find it optimal to pay early, as late payments increase the

risk to be a net payer at the end of the day. If a bank fails to make a payment, its

recipient is left with unanticipated cash shortfall and is forced to obtain overnight funding

at a probably higher cost. Probability of being in such a situation can be minimized by

making early payments which trigger cascades of incoming early payments. Banks in

RTGS thus face a trade-off between the cost of liquidity and the intra-day risk coming

from the counterparty’s default: early payments reduce the risk of own payment failure

and the risk to be a net payer by the end of the day, but early payments raise the cost of

liquidity. Thus banks pay late, unless the expected intra-day default cost dominates the

cost of liquidity. In CPS such a trade-off does not arise and therefore banks pay early.

CPS arrangement provides several other theoretical benefits as well. First, it is less likely

to result in a classic gridlock situation as banks can always submit payments to banks in a

net payment position. This is possible as making a payment to the bank in a net payment

position does not increase the utilization of a collateral pool. Second, the collateral pool

has the potential to reduce system wide liquidity needs, as banks sharing the collateral can

use it more efficiently to meet their peak liquidity needs when these occur at different

times during the day. Third, the CPS system also ensures that at any point in time the

collateral pledged fully covers the aggregate net debit positions of the banks, thereby

ensuring that the guarantor of the settlement (usually the central bank) does not face

additional credit risk (as is the case with a traditional RTGS arrangement).
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The theoretical model used in this paper has several new features not present in the

literature. First we model credit risk explicitly, as the incentives created by sharing

collateral management is a core feature of this paper. An optimal collateral arrangement

cannot be studied unless we explicitly model payment systems in which participants can

default. Second, CPS and pure RTGS are modeled in the same analytical framework. The

difference between CPS and pure RTGS is described as the difference in parameters. To

our knowledge, this is the first paper that compares the behavior and the performance of

these different payment systems directly. Third, the choice between the payment systems

is modeled explicitly, while the literature usually studies banks’ behavior in a given

payment system.

The rest of the paper is structured as follows. We overview relevant literature in the next

section. We set up a stylized payments model that nests the features of the pure RTGS

and CPS in section 3. Payment timing equilibria for both pure RTGS and CPS are

provided in Section 4. In Section 5 we show the conditions under which banks would

prefer to participate in a collateral pool instead of settling payments in pure RTGS. We

discuss the main results in Section 6 while section 7 concludes.

2 Related Literature

Literature on bank payment behavior in RTGS payment system is well established. As

shown by Angelini (1998, 2000) and Bech and Garratt (2003) banks may find it optimal to

delay payments in an RTGS payment system. This unfortunately appears to be not only a

theoretical possibility, but a practical feature of some payment systems. Armantier,

Arnold and McAndrews (2008) show that a large proportion of payments in Fedwire are

settled late in the day with the peak activity on average at around 5:11pm in 20063.

Significant intra-day payment delay carry a non-pecuniary cost of “delay” (e.g. customer

satisfaction), but most importantly it can exacerbate the costs of an operational failure or

costs due to the default of a payment system participant.

Literature on shared collateral payment systems is scarce and exclusively concentrates on

studying the Canadian LVTS. None of the studies addresses the incentives to submit

3Fedwire is open for payments until 6:30pm.
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payments early.

The risk sharing nature of LVTS T2 is believed to pose limited systemic risk, but it is not

clear if individual participants are robust to other participants’ defaults. McVanel (2005)

evaluates this aspect of LVTS conducting a simulation of unanticipated defaults of one or

several LVTS participants and evaluating the impact of such an event on the surviving

participants. It is found that even taking the maximum possible shortfalls, the surviving

members of LVTS will not incur significant losses measured as a proportion of their

capital. Although resulting losses are small compared to capital, in some cases it leads to a

significant increase in leverage. The major limitation of the study is that the payment

system simulator used at a time did not account for credit limits. Thus some of the

payments in their simulation exercise settle prematurely instead of being delayed. In an

extension of the original paper, Ball and Engert (2007) confirm the results of McVanel

(2005) using an updated payment system simulator that accounts for credit limits and

LVTS queuing arrangements.

When granting Bilateral Credit Limits (BCLs) payment system participants are expected

to evaluate the creditworthiness of the counterparties they are dealing with. Thus it seems

obvious that when a participant is expected to default on a particular day, nobody will

grant a BCL to it. Controversially O’Connor and Caldwell (2008) show that this might

not be the case if the expected credit loss is relatively small. The key argument is that the

network externalities of granting a BCL to a bank that is subject to an imminent closure

may outweigh the losses and may be Pareto improving. The authors also point out that

complex payment systems, like LVTS T2, may have complicated incentive structures and

network effects that need to be better understood before appropriate policy decisions may

be prescribed.

In a related study, O’Connor, Chapman and Millar (2008) evaluate possible network

equilibria of the LVTS T2. The authors assert that virtually all time-critical payments are

settled in LVTS T1. Since non-time critical payments provide more options for strategic

interaction, they focus on LVTS T2. In a highly stylized analysis they find that LVTS T2

is a network of three related subgroups of direct member banks that are quite asymmetric

in terms of their activity, liquidity efficiency, and degree of network centrality. The
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asymmetry that is identified could lead to important non-neutral effects of a system wide

shock. Therefore the asymmetric nature of the different subgroups must be taken into

consideration when evaluating different policy choices.

More generally, this paper is relevant to the studies of payment behavior under risky

circumstances. The first paper studying that issue is Rochet and Tirole (1996). They

argue that if a bank transfers cash to a counterparty that then must transfer cash back to

the bank, the first payer is exposed to its counterparty’s credit risk until the counterparty

has paid back. They show that the exposure is smaller in a deferred net settlement (DNS)

system. Kahn, McAndrews and Roberds (2003) also reach a similar conclusion, by

studying strategic default in a payment system. Mills Jr. and Nesmith (2008) argue that

operational risk incentivises settlement delay in FedWire. All these papers study bilateral

payment relationships.

Mills Jr. and Nesmith (2008) is the closest to our paper. In their model, delay is costless

because no intra-day delay cost is assumed and operational failures are costless for the

stricken bank. A bank falls short of cash if an operational failure hinders a counterparty’s

payment to the bank after the bank has made a payment to the counterparty. A bank has

no reason to be the first payer, because once they observe their counterparty get stricken,

they experience no cost if payments are not made.

This paper also studies credit risk, but the situation analyzed is different. The payment

obligations are multilaterally offsetting, not bilaterally, meaning that making a payment

does not directly expose the payer to the recipient’s counterparty risk. Instead, a

member’s failure (insolvency, or an operational failure) creates a liquidity sink, which is

costly for the other members. In addition the surviving solvent members have to share the

loss of the insolvent member to ensure the finality of payments. We show that the member

banks of CPS are exposed to the other members’ credit risk ex-ante, but the exposure

incentivises early payments: as a result, the ex-post exposure of CPS is contained. In this

sense, this paper is close to Fujiki, Green and Yamazaki (2008) who argues that payment

“systems should be designed to encourage its participants to take optimal degrees of risk

in accordance with their attitude toward risk”.
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3 Payment Model

Chart 1: Payment flows are normalized to 1 and are assumed to be perfectly

offsetting.

There are three ex-ante identical banks (indexed A, B, and C) that have multilaterally

offsetting payment obligations of equal size, p, as shown in Chart 1. For simplicity p is

normalized to 1. It is the most parsimonious structure within which we can capture

important features of both payment system arrangements. Clearly, in reality banks do not

know with certainty that their payment flows are perfectly offsetting, but that seems to be

broadly the case at least on average.

The settlement game consists of two main components. First, banks decide whether they

want to settle payments in RTGS or would rather pledge collateral ex-ante in order to

participate in the CPS system. The choice of the payment system takes place at t = 0,

before the system opens. If at least one bank determines that participating in CPS is not

in its interest, the CPS system fails to open4 and all banks have to settle their payment

obligations in RTGS. Therefore we can limit our attention to the two simple cases in

which all banks take part in CPS or RTGS.

The second component of the settlement game is choosing optimal payment timing, once

the payment system is chosen. We initially consider the second component (payment

game) assuming that one of the payment systems has been chosen, and then proceed to

study the choice between the systems. Each bank chooses the timing of the payment to be

made within a continuous time interval: ti ∈ [si, 1], for i = {A,B,C}, where 0 ≤ si ≤ 1 is

the payment order arrival time for bank i and can be known ex ante or uncertain.

4This is a modeling simplification and not a necessary feature of a collateral pool arrangement.
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At any point in time a bank may experience an exogenous solvency shock. We assume

that an insolvency of a bank becomes public information after the close of the payment

system. An insolvent bank cannot send payments while it can receive payments (because

the bank is legally still solvent). We assume that the probability that a bank experiences a

solvency shock within a given time period follows a Poisson process with the parameter qi.

Therefore a bank i fails within a time period t with probability Di(t):

Di(t) = 1− e−qit. (1)

3.1 Payment timing strategies

Based on the timing choices made each bank may find itself in 4 different situations:

(i) it becomes the first payer,

(ii) it becomes the second payer after receiving a payment,

(iii) it becomes the third payer after receiving a payment,

(iv) it becomes the second payer without receiving a payment.

Thus each bank has a strategy profile {t1,∆2,∆3, ∆̃3}i. Here to avoid confusion we drop

the subscripts referring to the individual bank. t1 is the time at which a bank would

become the first payer if nobody else has payed. ∆2 is the time that the second payer

delays its payment after receiving a payment from the first payer. ∆3 is the time that a

bank would delay a payment after receiving a payment from the second payer. ∆̃3 is the

time a payer waits to pay after observing the first payment, but not receiving any. If

banks don’t know their payment obligations at the beginning of the day, the delay strategy

is how much to wait, given that a payment order is received.

Without loss of generality we denote the first payer as A and the recipient of the A’s

payment as B, and the payer to bank A as C.

We assume that banks can observe the payments made but cannot observe the solvency

status of the other banks. Note, that in a three banks case it is equivalent to the banks

observing the aggregate collateral pool usage. For tractability we assume that all banks

have the same probability of default process during the day, qi = q ∀i. The cost structure
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of making payments depends on the payment system in place, but the structure of the

game does not change.

3.2 Cost structure

Similar to Mills Jr. and Nesmith (2008) we abstract from an intrinsic ‘delay’ cost

introduced by Bech and Garratt (2003). Instead, banks take into consideration a

possibility of an intra-day default. This turns out to be a significant factor explaining

bank payment timing behavior.

In RTGS if a bank becomes the first payer it has to obtain funds at an intra-day cost of R,

where R is the per unit cost. As the decision to participate in the collateral pool is made

at the beginning of the day in CPS the cost of intra-day liquidity is sunk at the time the

payment is made. But to be able to participate in CPS, each bank i has to post collateral

of Li at a unit cost of R. Note that we assume that the intra-day cost of liquidity in RTGS

is equivalent to the cost of posting collateral in CPS at the beginning of the day.

If by the end of the day a bank fails to make a payment, it incurs a cost of technical

default β. This is introduced to make sure that banks do not end the day without

submitting payments voluntarily.

There is a possibility that a bank may end up the day with a negative net payment

balance. If the bank is solvent it has to cover the net payment position by borrowing funds

overnight at a cost of r. We assume that β > r +R. That is the cost of not settling a

payment is higher than the cost of funding the payment intra-day and/or overnight, which

ensures banks have sufficient incentives to settle payments.

In a collateral pool, a situation unique to this particular payment arrangement may arise.

If a bank in a net payment position (more payments made than received) becomes

insolvent, it effectively has settled a payment at a fraction of the cost. The system

operator will seize the collateral of the failed bank, but by construct this collateral will be

insufficient to cover the full net payment position of the failed bank. Thus although

default is exogenous, given default a bank would prefer to end the day in a net payment
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position. We refer to the difference between the collateral lost and the payment obligation

settled as “default benefit” and denote it by Ui < 0:

Ui = Li − 1,

where Li is the amount of collateral pledged to the collateral pool by the failed bank.

In a situation where a bank i fails to pay the net payment balance, a loss sharing

arrangement is triggered. Assuming symmetric loss sharing, each surviving bank j

experiences a loss of Sj units of collateral:

Sj =
1− Li

2

In CPS Sj > 0, but in RTGS Ui = Sj = 0, since RTGS is a “defaulters pay” system.

Instead, R = 0 in CPS once the payment system opens, as the cost is sunk. Since we have

assumed ex-ante identical banks and we will limit our attention to symmetric equilibria,

the postscripts of S and U are abbreviated below.

3.3 Equilibrium

In the following, we find the Bayesian Nash Equilibrium (BNE) in payment timing

strategies, assuming that all banks have taken part in RTGS or all of them have joined the

CPS. The differences between the payment systems are fully reflected in the parameters

discussed above and the structure of the game is identical irrespective of the payment

system. This allows us to compare the two payments systems within the same theoretical

setup.

The payment timing game has two sub-components. The first one is the choice of the first

payer. Liquidity recycling is an important feature in all payment systems. In RTGS, a

bank may free-ride on payments received as it can use the cash received to settle its own

payment. In deferred net settlement (DNS) systems receiving a payment may relax a

receiving bank’s net debit cap5 allowing it to make additional payments. Consequently,

the decision to be the first payer is the key choice in all payment systems.

5A net debit cap is a common feature of recent DNS systems. It provides an upper bound on member banks’ net

debit positions to limit the credit exposure of the banks. Once a bank’s net debit position hits the upper bound, the

bank’s payment orders are rejected until the bank receives payments that lowers the net debit position.
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The choice to pay first depends on the optimal payment timing of the followers. For

instance, if a bank expects that a follower hoards cash (payment inflow) by the end of the

day, the first payer is at risk: It may be left with a net payment (debit) position at the

closing time and will be forced to obtain costly overnight funding. The second

sub-component of the game, (∆∗
B,∆

∗
C , ∆̃

∗
C)i, the behavior of the followers, is therefore

important as well.

We specify four equilibrium actions (t∗A,∆
∗
B,∆

∗
C , ∆̃

∗
C)i for each i = {A,B,C}. t∗A denotes

the optimal timing when to become the first payer. A bank with the smallest t∗A becomes

the first payer, if it survives by that time and has received a payment order for settlement.

The latter three actions specify the followers’ behavior. ∆∗
B denotes the time interval

(delay) between its receipt from the first payer (tA) and the payment timing of the second

payer, conditional on its receipt from the first payer and having a payment order ready for

settlement. ∆∗
C is the delay of the third payer, conditional on the payments of the first

payer and the second payer and have a payment order ready for settlement. These two can

be denoted as receipt-reactive strategies. ∆̃∗
C denotes a payment reactive delay strategy –

the delay of a bank after observing the first payer making the payment, but without

receiving a payment. For example, if A is the first payer, bank C may pay before bank B

submits a payment. In this case bank C would be executing an optimal payment reactive

timing strategy. Note that in RTGS payment reactive strategy carries a cost of R . While

in CPS banks can make payments to banks with net debit positions without the above

mentioned cost, since it does not increase the aggregate net debit position. Effectively, a

bank paying to the bank in a net debit position “takes over” the net debit position from

the receiving bank.

We limit our attention to pure-strategy, symmetric Bayesian Nash Equilibria. The

equilibrium action profile (t∗A,∆
∗
B,∆

∗
C , ∆̃

∗
C)i is chosen at the beginning of the day, and it

does not change throughout the day. The available information at the beginning of the

day is the risk parameter q, the probability distribution of the arrival timing of a payment

request si, and the cost parameters (R, β, r, S and U). The cumulative probability

distribution of si is strictly monotonically increasing. The hidden states of each bank i

during a day are the realized value of sj∀j 6= i and the solvency of the other banks. While

we are interested in symmetric Bayesian Nash Equilibrium, we show, nevertheless, that the
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equilibria we obtain next are actually Bayesian perfect.

4 Payment timing equilibrium

In this section we derive a BNE action profile in payment strategies for the two payment

system. We first derive the equilibrium action of (∆∗
B,∆

∗
C , ∆̃

∗
C)i in both RTGS and CPS,

and then proceed to derive (t∗A)i in each payment system.

In this section, we limit our attention to the cases of stochastic si, the arrival timing of a

payment request. The loss functions of the banks thus include the expectation operators,

which is defined as follows:

E[DA(max(sA, tA))] =

∫ 1

0

DA(max(sA, tA))ψ(sA)dsA (2)

We assume that ψ(sA), the probability density function of sA, is strictly positive for any

sA ∈ [0, 1], and independent across the banks. We will ignore cases like si = max(sj, tj),

which is a measure zero event.

4.1 Optimal receipt reactive behavior (∆C,∆B, ∆̃C)

4.1.1 Optimal ∆C

Optimal delay strategy ∆∗
C can be derived solving for ∆C that minimizes the cost of the

3rd payer C, CC(∆C). We can write the loss function CC(∆C) conditional on (i) the 1st

payer A having survived until tA and thus having paid to B, (ii) the 2nd payer B having

survived until tA + ∆B and having paid to C, and (iii) the third payer C having survived

until tA + ∆B:

CC(∆C ; tA + ∆B) = DC(∆C)DA(1− tA)(S + β) (3)

+ DC(∆C){(1−DA(1− tA))}β

The first term means that if the third payer C enters insolvency before making the

payment (during ∆C) and if the first payer A defaults by the end of the day, the third
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payer has to pay the cost of technical default β (as it failed to settle a payment that day)

and loses a share of its collateral, S (to cover for the net payment position of the first

payer). Even if C fails to make the payment, C does not lose the collateral if A, the net

payer, survives by the end of the day and settles the net position (the second term). By

differentiating this function, we have the following:

Lemma 1 ∆∗
C = arg min∆C

CC(∆C , tA + ∆B) = 0, both in CPS and RTGS.

∆∗
C = 0 means that if the bank observes the other two banks make a payment, it pays

immediately. The intuition is very simple. If the bank waits, there is higher chance for it

to fail to make a payment by the end of the day. If it happens, it experiences a cost of

technical default and risks losing its collateral in case its recipient fails too by the end of

the day. S, the loss sharing rule, is equal to zero in RTGS, and the result is the same.

4.1.2 Optimal ∆B

We need to define two different loss functions of the second payer B. This is because, once

∆B > ∆̃C i.e. B pays to C after C pays to A, the cost structure of B will be different to

the case when B pays to C before C pays to A (∆B < ∆̃C). First, conditional on (i) A

having made the first payment at tA, (ii) B having survived until sB, and (iii) C not

having made the payment to A (i.e. max(tA, sC) + ∆̃C > max(tA, sB) + ∆B), in this case,

C makes its own payment at ∆̃C only when B fails to make the payment by ∆B.

C1
B(∆B; tA, ∆̃C) = DB(∆B)β (4)

+ (1−DB(∆B))E[DC(max(tA + ∆B, sC) + ∆C)]DA(1− tA)S

+ DB(∆B)E[DC(max(tA, sC) + ∆̃C)]DA(1− tA)S

+ DB(∆B)E[1−DC(max(tA, sC) + ∆̃C ]E[DC(1−max(tA, sC)− ∆̃C)]S

B has to give up its collateral in two cases. First, when C fails to pay and A enters

insolvency after its payment (the second and the third terms of the RHS). Second, when B

fails to pay, and when C enters insolvency after making its payment to A (the fourth term).
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If condition (iii) is changed to max(tA, sC) + ∆̃C < max(tA, sB) + ∆B), the loss function is:

C2
B(∆B; tA, ∆̃C) = DB(∆B)β (5)

+ E[DC(max(tA, sC) + ∆̃C)]DA(1− tA)S

+ DB(∆B)E[1−DC(max(tA, sC) + ∆̃C)]E[DC(1−max(tA, sC)− ∆̃C)]S

Differentiating the loss function w.r.t. ∆B, we have the following lemma.

Lemma 2 ∆∗
B = 0 for any ∆̃∗

C , both in CPS and RTGS.

See the appendix for the proof. ∆∗
B = 0 means that the second payer B makes the

payment immediately after receiving the payment.

4.1.3 Optimal ∆̃C

Consider the situation that bank A made its payment at tA, bank C has survived by tA,

and it has not yet received a payment from bank B. Conditional on this and assuming

max(tA, sC) + ∆̃C < max(tA, sB) + ∆B, i.e. C makes its payment before B’s payment to C,

bank C’s loss function C̃C(∆̃C ; tA + ∆∗
B) is defined as follows:

C̃1
C(∆̃C ; tA,∆

∗
B) = (1−DC(∆̃C))R (6)

+DC(∆̃C)β

+(1−DC(∆̃C))E[DB(max(tA, sB) + ∆B)]E[DC(1−max(tA, sC)− ∆̃C)]U

+(1−DC(∆̃C))E[DB(max(tA, sB) + ∆B)]E[1−DC(1−max(tA, sC)− ∆̃C)]r

+DC(∆̃C)DA(1− tA)S

The third and fourth terms of the RHS are the costs when C ends up being a net payer at

the end of the day. The other terms are obvious from the previous sections.
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If max(tA, sC) + ∆̃C > max(tA, sB) + ∆B, i.e. C’s payment is relatively late compared with

B, the loss function is:

C̃2
C(∆̃C ; tA,∆

∗
B) = (7)

+E[1−DB(max(tA, sB) + ∆B)]E[1−DC(max(tA, sB) + ∆B −max(tA, sC))]FC(∆C ; tA,∆B, sC)

+E[1−DB(max(tA, sB) + ∆B)]E[DC(max(tA, sB) + ∆B −max(tA, sC))]β

+E[DB(max(tA, sB) + ∆B)]DC(∆̃C)β

+E[DB(max(tA, sB) + ∆B)]{1−DC(∆̃C)}E[1−DC(1−max(tA, sC)− ∆̃C)]r

+E[DB(max(tA, sB) + ∆B)]{1−DC(∆̃C)}E[DC(1−max(tA, sC)− ∆̃C)]U

+E[1−DB(max(tA, sB) + ∆B)]E[DC(max(tA, sB) + ∆B −max(tA, sC))]DA(1− tA)S

+E[DB(max(tA, sB) + ∆B)]DC(∆̃C)DA(1− tA)S

+E[DB(max(tA, sB) + ∆B)]{1−DC(∆̃C)}R

The first term of the function means that, if B successfully pays to C before C pays to A,

C’s expected loss function becomes equivalent to the equation 3. The second and the third

term mean that C fails to make its payment (i) when C has been insolvent at the time B

pays to C (max(tA, sB) + ∆B), or (ii) when B fails to pay to C, and C enters insolvency

before max(tA, sC) + ∆̃C . The fourth and fifth terms are nearly equivalent to equation 6.

If C fails to make the payment to A and A enters insolvency with a net payment position,

C has to share the loss S.

By taking the derivative of these two loss functions, we have the following lemma.

Lemma 3 ∆̃∗
C = 0 in CPS. In RTGS, ∆̃∗

C ∈ {0,max(tA, sB)−max(tA, sC)}.

See the appendix for the proof. As explained in the proof, ∆̃∗
C is not well specified for

RTGS due to a technical difficulty. But ∆̃∗
C is, however, not very important on the

equilibrium path of RTGS as we will see below.

Working Paper No. <XXX> March 2010 19



4.2 Optimal first payer timing in RTGS

Based on the receipt reactive actions ∆B, ∆C and ∆̃C , we find the optimal timing to

submit the first payment in RTGS, tA, tB and tC . We only consider the choice of A, tA, for

notational simplicity, which does not lose any generality (i.e. denoting the first payer as A).

tA is defined as the payment timing that bank A prefers, if possible. The payment is

actually made when sA arrives, i.e. max(sA, tA). In other word, if tA = 0, bank A wants to

make the payment as soon as possible. if tA = 1, bank A will make the payment at t=1

irrespective of sA.

In RTGS the first payer incurs intra-day liquidity cost as R > 0. If banks submit payments

simultaneously, we assume that only one bank bears the cost of R and others can free-ride

on the first payer’s cash. This makes the banks’ loss function discontinuous in tA. For

given tB = tC , bank A may find it optimal to submit its payment slightly later than the

others, to lower the probability to be the first payer. In fact, we have the following lemma.

Lemma 4 Given that tB = tC , A’s loss function CA(tA) is discontinuous at tA = tB = tC

in RTGS, and CA(tA = tB) > CA(tA = tB + ε) for sufficiently small ε.

See the appendix for the proof. Lemma 4 eliminates almost all possible symmetric

equilibria, ti = [0, 1) for any i, because a bank always finds it optimal to slightly delay its

payment. We have, therefore, unique symmetric equilibrium candidate, ti = 1 for any i.

Thus all we need to confirm is tA = 1 is the best response to the given actions tB = tC = 1.

The loss function assuming tA < tB = tC = 1 is (note that

e−qA max(sA,tA) = 1−D(max(sA, tA))):

CA(tA) = E
[
e−qA max(sA,tA)

]
R

+E
[
e−qA max(sA,tA) ·

(
1− e−qC max(sA,tA,sC)

)
· e−qA(1−max(sA,tA))

]
r

+E
[
1− e−qA max(sA,tA)

]
β
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It is obvious that CA(tA) is strictly increasing against tA as long as β > R, showing

CA(tA = 1; tB = tC = 1) < CA(tA = 0; tB = tC = 1) is sufficient to prove that ti = 1 for any

i is the symmetric NBE.

The loss function given of the first payer is obviously continuous in terms of β and r. This

is because the probability of the technical default is 1− e−q max(tA,sC), and because the

probability of bearing the cost r is independent of whether A is the first payer or not (the

probability of r is the probability that A is left being a net payer by the end of the day: so

the order of payments does not matter here).

Let’s compare the costs to bank A of two possible outcomes: ti = 1,∀i and

tA = 0, tB,C = 1. The cost of managing liquidity to the bank A in those two situations is:

CA (tA = 0; tB,C = 1) = (8)

E
[
e−qA·sA

]
·R +

+E
[
e−qA·sA ·

(
1− e−qC ·max(sA,sC)

)
· e−qA·(1−sA)

]
· r

+
(
1− e−qA·sA

)
· β

CA (tA = 1; tB,C = 1) = (9)

e−qA · e−qB · e−qC ·
{

1

3
·R +

2

3
· 0

}
+e−qA · e−qB ·

(
1− e−qC

)
·
{

1

2
· (R + r) +

1

2
· (R + r)

}
+e−qA ·

(
1− e−qB

)
· e−qC ·

{
1

2
·R +

1

2
· 0

}
+e−qA ·

(
1− e−qB

)
·
(
1− e−qC

)
· (R + r)

+(1− e−qA) · β
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Comparing the two expressions we can derive:

CA (tA = 0; tB,C = 1)− CA (tA = 1; tB,C = 1) = (10)

E
[(
e−qC − e−qC ·max(sA,sC)

)]
· r +

+
(
e−qA − e−qA·sA

)
· β

+

{
e−qA·sA − e−qA ·

(
1− 1

2
· e−qC − 1

6
· e−qB · e−qC

)}
·R

If qi = 0 for any i, Equation (10) is strictly positive and thus ti = 1 is optimal. Since

Equation (10) is also continuous w.r.t. qi, there exists a set of qi ≥ 0 that makes ti = 1

optimal.

Lemma 5 For any si (i ∈ {A,B,C}), r, β and R, ∃q̂ s.t. for ∀max[qA,qB,qC ] ≤ q̂, t∗i = 1

in RTGS.

Since t∗i = 1 holds for any si ∈ [0, 1] as long as max[qA,qB,qC ] ≤ q̂, the proposition above

holds for both stochastic and deterministic payment arrival cases.

4.3 Uniformly distributed payment order arrivals

If si
iid∼ U [0, 1], then it can be shown that:

E[CA (tA = 0; tB,C = 1)− CA (tA = 1; tB,C = 1)] = (11)

e−3d
(
3dedR + dR + 6(d+ 1)e2d(r −R + β)− 6e3d(r −R + β)

)
6d

which is strictly positive, if

R >
6e2d

(
−d+ ed − 1

)
(r + β)

3edd+ d− 6(d+ 1)e2d + 6e3d
(12)
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LEMMA HERE?????

Intuitively, if the intra-day cost of default is significant, banks will delay their payment

until the end of the day. The threshold value of the intra-day cost of liquidity is given in

Equation (12).

4.4 Optimal first payer timing in CPS

In CPS, we find the optimal tA based on R = 0, S > 0 and U < 0. Since the strategy

shifts to ∆B, ∆C and ∆̃C immediately after a bank submits the payment order, tA, the

choice of tA is made conditional on (i) no other payment having been made, and (ii) the

payment request having arrived. We limit our attention on the symmetric equilibria.

tA is defined as the payment timing that bank A prefers, if possible. The payment is

actually made when sA arrives, i.e. max(sA, tA). In other word, if tA = 0, bank A wants to

make the payment as soon as possible. if tA = 1, bank A will make the payment at t=1

irrespective of sA.

In CPS, we cannot regard the deterministic arrival timing of a payment request as a

special case of the stochastic arrival case for the choice tA. We will solve the stochastic

arrival case first, and then show that the deterministic case has the same equilibrium.

4.4.1 Stochastic arrival cases

The loss function when payment orders arrive from their customers at a random timing is

defined as follows:

C(tA) = E[{1−DA(max(sA, tA))}DA(1−max(sA, tA))DC(max(sC , sA, tA))]U (13)

+ E[{1−DB(max(sB, sA, tA))}DB(1−max(sB, sA, tA))DA(max(sA, tA))]S

+ E[{1−DC(max(sC , sA, tA))}DC(1−max(sC , sA, tA))DB(max(sB, sA, tA))]S

+ E[{1−DA(−qA)}DC(max(sC , sA, tA))]r

+ E[DC(max(sA, tA))]β
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This assumes that sB and sC have the same distribution, which is independent across

banks, and that sA is known for bank A. We also assume qi is equal across banks and

U = −2S. We need to consider two cases: tA ≥ E[si] and tA ≤ E[si]. By taking the

derivative of the loss function for the two cases, we have the following proposition.

Lemma 6 There exists a unique equilibrium action t∗A = 0 in CPS, if si is stochastic and

has an identical and independent distribution.

See the appendix for the proof.

4.4.2 Deterministic arrival cases

If the banks know sA,sB and sC ex-ante, we can no longer keep the assumption

E[sB] = E[sC ], and have to consider two cases sB > sC and sB < sC separately(if sB = sC ,

the result is the same as above). Assume further that tB = tC = 0, i.e. B and C want to be

the first payer as soon as possible, to see whether tA = 0 is the best response to the actions.

First, If tA > max(sB, sC), tA matters only when B and C fail to make their payments.

The relevant part of the loss function is therefore,

= E[DC(sC)DC(sB){1−DA(max(sA, tA))}DA(1−max(sA, tA))]U (14)

+ E[DC(sC)DC(sB){1−DA(1)}r

+ E[DC(sC)DC(sB)DA(max(sA, tA))]β

It is strictly increasing in tA, as long as E[si] > 0.

Second, if sC < tA < sB, tA matters only when C fails to make its payment. The relevant

Working Paper No. <XXX> March 2010 24



part of the loss function, which is relevant to tA, is therefore,

= E[DC(sC){1−DA(max(sA, tA))}DA(1−max(sA, tA))]U (15)

+ E[DC(sC){1−DA(1)}]r

+ E[DC(sC)DA(max(sA, tA))]β

It is obviously strictly increasing in tA.

Third, if sB < tA < sC , tA matters only when B fails to make its payment. The relevant

part of the loss function is therefore,

= E[DB(sB){1−DA(max(sA, tA))}DC(sC)DA(1−max(sA, tA))]U (16)

+ E[DB(sB){1−DA(1)}DC(sC)]r

+ E[DB(sB){1−DC(sC)}DC(1− sC)]S

+ E[DB(sB)DA(max(sA, tA))]β

It is also strictly increasing in tA.

Lastly, if tA < max(sB, sC),

= E[{1−DA(max(sA, tA))}DA(1−max(sA, tA))DC(sC)]U (17)

+ E[{1−DB(sB)}DB(1− sB)DA(1−max(sA, tA))]S

+ E[{1−DC(sC)}DC(1− sC)DB(sB)]S

+ E[{1−DA(1)}DC(sC)]r

+ E[DA(max(sA, tA))]β

Again, it is obviously increasing in tA. This completes the proof of the following lemma.
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Lemma 7 If the arrival timing of payment requests si are deterministic variables and

common knowledge ex-ante, there is an equilibrium t∗A = 0 in CPS.

4.5 Payment timing equilibria in RTGS and CPS

From lemmas 1- 3, 6 and 7 now we complete proving the following propositions.

Proposition 8 The BNE action profile of CPS is t∗A = 0,∆∗
B = 0,∆∗

C = 0, ∆̃∗
C = 0 for any

bank i, irrespective of whether payment requests arrive randomly or not.

That is to say, in CPS, the banks make payments as soon as possible, for any risk

parameter q and cost parameters.

Likewise, from the lemmas 1- 3 and 5, we have the following proposition.

Proposition 9 The BNE action profile of RTGS is t∗A = 1,∆∗
B = 0,∆∗

C = 0, ∆̃∗
C = 0 for

any bank i, irrespective of whether payment requests arrive randomly or not, if the risk

parameter q is smaller than q̂.

In RTGS, no bank wants to be the first payer, in order to avoid the cost of intra-day

liquidity R. But once a bank makes its payment, the other banks make their payments as

soon as possible, using the cash received from the first payer.

Although we use Bayesian Nash equilibrium to describe the banks’ behavior, the BNE we

obtained here is actually Bayesian perfect. The hidden states of the game are, in the case

of the stochastic version of the model, (i) whether a bank has already received a payment

request or not and (ii) whether a bank has been stricken by a failure (and unable to make

any payments) or not. If it is deterministic, only the latter is the hidden state. The

observable signal of the game is a bank’s payment, and it is possible to infer the hidden

information from the actions made. But the first half of the payment game, the choice of

the first payer ti, is terminated immediately after the first payment is made. The banks

thus cannot condition their choices of ti based on the other banks’ payment behavior

observed. Namely there is only one information set in the first half of the game, and thus
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sequential rationality and Bayesian updates, the main conditions of Bayesian Nash

equilibrium, are trivially satisfied.

The signal obtained in the first half of the game, the timing and the identity of the first

payer, can be used in the second half of the game (the choice of ∆B, ∆C and ∆̃C). The

identity of the first payer creates three information sets (being the second payer, being the

third payer, or being the second payer before receiving a payment), and the corresponding

optimal behavior is chosen at each one of the sets (∆B, ∆C and ∆̃C respectively). We have

seen that another signal, the payment timing of the first payer, does not affect to the choice

of the optimal actions. Again, sequential rationality and Bayesian updates are satisfied,

although it is not explicitly shown. The Bayesian perfectness holds for both stochastic and

deterministic cases, and for both CPS and RTGS. C.f. Fudenberg and Tirole (1986).

5 Participation

In this section we investigate conditions under which banks are willing to participate in

collateral pool. We assume that a system operator cannot discriminate between the banks

and sets equal terms for all banks. Note, that as we discussed before, CPS system fails to

operate if at least one bank does not find it beneficial to join.

When considering participating in CPS, banks take into consideration the direct costs of

participation (cost of collateral pledged) and the indirect costs that are the result of the

payment timing game played. The way the indirect costs enter the cost function of an

individual bank depends crucially on the payment order arrival time si. Intuitively, the

bank that receives payment orders later in the day may find it less attractive to participate

in a collateral pool as it would not be able to use it until the payment order is received. In

the meantime its counterparties may settle their payments against the liquidity available

in the pool exposing the late payer to the default probability of one of the early payers.

We assume that the system operator required banks willing to participate in a collateral

pool to pledge an equal amount of collateral. Clearly, this does not have to be the case.

Especially if some banks have a higher probability of default or differ from other banks in

some other way (ie receive payment orders at different time of the day). Therefore the
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condition that we derive next is a sufficient condition for participating in CPS but clearly

not a necessary one.

It can be shown that the cost of participating in CPS and RTGS is, respectively:

CRTGS = Da(1)β + (1−Da(1))Dc(1)r + (1−Da(1))

(
1− 1

2
Dc(1)−

1

6
Db(1)Dc(1)

)
R

CCPS =



Da(sa) · β

+[(1−Da(sa))Da(1− sa)]Dc(sc) · −U

+[(1−Dc(sc))Dc(1− sc)]Db(sb) · Sc

+(1−Db(sb))Db(1− sb)Da(sa) · Sb

+(1−Da(1))Dc(sc) · r


+ L ·R

where U is the ’default benefit’, and Sb, Sc denote loss sharing costs due to the failure of

banks b, c respectively. If we maintain symmetry in collateral postings, U = 2/3 (unit

payment settled and 1/3 units of collateral lost), while Sb = Sc = 1/3.

Proposition 10 q < q with q = ln
[

1
2
(2 +

√
6)

]
is a sufficient condition for

CCPS < CRTGS, if si = 0.

Proof. First let’s investigate the case when all banks receive their payment orders at the

beginning of the day, si = 0. The cost of participating in RTGS is:

CRTGS(s = 0) = e−q
(
1− e−q

)
r + e−q

(
1− e−2q

6
− e−q

2

)
R +

(
1− e−q

)
β

while the cost of participating in CPS is:

CCPS(s = 0) =
1

3
R
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It is clear that if the coefficient in front of R in CRTGS is less than 1/3 a bank would be

better off joining the collateral pool than settling payments in RTGS. Therefore we can

establish an upper bound on parameter q in the probability of default function specified in

Equation (1):

e−q

(
1− e−2q

6
− e−q

2

)
< 1/3

⇒

q < ln

[
1

2
(2 +

√
6)

]

If the default probability is sufficiently small, the direct and indirect costs of collateral

(loss sharing and default benefit) are smaller in CPS than in RTGS. If q > q the collateral

costs in CPS are larger than in RTGS, but a trade-off between higher collateral costs and

lower expected costs of overnight liquidity and technical default arise. If the latter

dominate, CPS may be still preferred. Another interpretation is that if the cost of

overnight liquidity increases, CPS is more likely to be preferred. The same applies to the

cost of technical default.

Proposition 11 q < q with q = ln
[

1
2
(2 +

√
6)

]
is a sufficient and necessary condition for

CCPS < CRTGS, if si = 1.

Proof. If all banks receive their payment orders at the end of the day CCPS and CRTGS

are identical in terms of r and β. The only difference is in terms of the collateral cost R:

CRTGS(si = 1) = e−q
(
1− e−q

)
r +

(
1− e−q

)
β + e−q

(
1− e−2q

6
− e−q

2

)
R

CCPS(si = 1) = e−q
(
1− e−q

)
r +

(
1− e−q

)
β +

R

3

Thus e−q
(
1− e−2q

6
− e−q

2

)
< 1/3 or q < ln

[
1
2
(2 +

√
6)

]
is a necessary condition for

CCPS < CRTGS.
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5.1 Uncertain payment order arrival timing

If banks don’t know the payment order arrival time, then their participation decision is

based on comparing the expected costs of participating in either system. Let’s assume that

the payment order arrival time is independent across banks and uniformly distributed over

a unit interval: si
iid∼ U [0, 1].

The expected cost of participating in RTGS is identical to the deterministic case of si = s

as, regardless of the payment order arrival time, banks choose to delay their payments

until the end of the day. Therefore:

E[CRTGS] = e−q
(
1− e−q

)
r + e−q

(
1− e−2q

6
− e−q

2

)
R +

(
1− e−q

)
β

The expected cost of participating in CPS for bank A (expected costs are symmetric

across banks) is:

E[Ca
CPS] =

∫∫∫
0≤sa,sb,sc≤1

CCPS(sa, sb, sc)dsa dsb dsc

=
e−2q (3r + 3eq((q − 1)r + β) + e2q(qR + 3(q − 1)β))

3q

Proposition 12 CPS is preferred to RTGS if q < q and payment order arrival time

si
iid∼ U [0, 1]. If q > q, R < R is sufficient to ensure CPS is still preferred.

q = ln
[

1
2
(2 +

√
6)

]
and R = 6eq(−q+eq−1)(r+eqβ)

q(1+3eq−6e2q+2e3q)
.

Proof. Let’s define

G = E[CCPS]− E[CRTGS].

It can be shown that
∂G

∂R
=

1

6
e−3q (eq (2eq (−3 + eq) + 3) + 1)

with ∂G/∂R > 0 if q > q and ∂G/∂R < 0 if q < q.

Lets find the threshold value R for which G(R) = 0:

R =
6eq (−q + eq − 1) (r + eqβ)

q (1 + 3eq − 6e2q + 2e3q)
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The numerator of the expression above is always positive, while the sign of the

denominator depends on q. It can be shown that the denominator is negative only for

0 < q < q, so that R < 0 if q < q, while R > 0 if q > q. Since R > 0, it is sufficient to

establish that E[CCPS] < E[CRTGS] if q < q. Moreover, E[CCPS] < E[CRTGS] if q > q and

R < R.

If banks are not certain about the payment order arrival time their willingness to

participate in CPS depends on the cost of intra-day liquidity and probability of bank

failure. If the probability of a bank failure is not too large, or, if it is, if the intra-day cost

of liquidity is small, then banks are better off joining the collateral pool than settling

payments in RTGS.

6 Discussion

The collateral pool provides an incentive for early payment submission. While everybody

paying early is a socially desirable equilibrium, banks in RTGS would rather pay late since

they expect the other banks to pay late too. By collecting collateral before a payment

system opens, the payment system can incentivise the member banks to pay early. Two

different mechanisms work here. First, the cost of liquidity becomes sunk and thus the

banks do not need to wait for the other banks’ payment inflow to recycle the cash. Second,

by making an early payment, the bank can minimize the risk of loss-sharing. The incentive

mechanism comes at a cost - there is a risk that due to some other reasons (that are

exogenous and unrelated to strategic payment timing) a counterparty will default

intra-day putting the surviving collateral pool participants’ collateral at risk.

Intra-day default matters not only for banks participating in CPS. Although in RTGS

banks have no reason to worry about loss sharing, they take into consideration a

possibility that they will not be able to settle payments themselves, or will have to obtain

overnight funding after failing to receive a payment.

Clearly the key decision for a bank is to weigh the costs and benefits of CPS in comparison

to RTGS and decide if it is beneficial to participate in a collateral pool. We show that if

intra-day liquidity costs are significant, banks in RTGS will settle their payments late in
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the day. The higher is the possibility of an intra-day default, the lower is the threshold, q,

of intra-day liquidity costs for banks to pay late.

In CPS banks will settle their payments as early as possible. If, on the one hand, banks

have received all of their payment requests at the beginning of they day, in equilibrium all

payments are settled at the beginning of the day, and thus there is no risk of being

exposed to loss sharing. If, on the other hand, banks do not know at which point of the

day a payment obligation will arise, there is a chance that other participants will be able

to utilize the collateral pool before a bank even receives a payment order. We show that

even faced with such uncertainty banks prefer to participate in a collateral pool, if the

probability of bank’s failure is not too high.

Chart 2: Equilibrium payment timing in RTGS: change in R

Chart 3: Equilibrium payment timing in RTGS: change in q
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Chart 4: Equilibrium payment timing in CPS

In RTGS, as shown in Chart 2, the loss function of the first payer (solid line), given the

strategies of the other banks, t−i
1 , is discontinuous in t1. In the first segment of the cost

function the bank will be the first payer (unless it enters insolvency before payment), and

thus the cost of intra-day liquidity R is almost6 certain. In the last segment of the cost

function, the bank becomes the follower (unless the other banks fail to make the payment)

and is unlikely to incur the intra-day liquidity cost, R. At the discontinuity all banks are

equally likely to be the first payers. Clearly, as can be seen from the Chart, every bank has

an incentive to delay its payment slightly later than the others. This is the reason why the

symmetric equilibrium is ti1 = 1. If the expected cost for bank i is smaller at ti1 = 1 than at

ti1 = 0, given that t−i
1 = 1, ti1 = 1 is also a unique equilibrium.

As the intra-day liquidity cost (R) increases, the condition can be satisfied easily. Chart 2

(dashed line) shows how the loss function changes when the intra-day liquidity cost R

increases by ∆R. The expected loss at ti1 = 0 shifts upward by the same amount ∆R. The

loss function in the region t1 < t−i
1 shifts upward. 7 The cost in the region ti1 ≥ t−i

1 also

increases, but the change is smaller than ∆R, because banks may be able to free-ride on a

payment inflow from another bank. To summarize, a late payment equilibrium is more

likely as R increases.

6It could fail before making a payment

7To be precise, the loss function becomes slightly flatter, because the marginal benefit of “not making a payment due

to intra-day failure” decreases as R increases.
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If the risk indicator q increases, the loss function becomes steeper as Chart 3 (dashed line)

shows. This is because settlement delay is more likely to cause the bank’s own payment

failure (cost of technical default β) and because the bank is more likely to be left with the

net payment position at the end of the day, which costs r. The expected loss in the region

of ti1 ≥ t−i
1 may also increase, at least when the level of q is low.8 Since the loss at t1 = 0 is

unchanged for any q,the condition to have a symmetric equilibrium is likely to be violated

if q is very large.

If the condition is violated, we may have an asymmetric equilibrium that one bank pays as

soon as possible while others, although with t−i
1 = 1, follow immediately. Thus an early

payment equilibrium can arise when the system is exposed to high risk (large q) or lower

intra-day cost of liquidity R. This outcome is opposite to Mills Jr. and Nesmith (2008).

We do not discuss the asymmetric equilibrium in detail, since it is less robust. Bank i has

an incentive to pay at ti1 = 0 because the bank believes that other banks would make their

first payment at t−i
1 = 1. But if the bank i deviates from ti1 = 0 and pays later in the day,

other banks will find it optimal to pay early instead. The asymmetric equilibrium is thus

supported by an empty threat – “we will delay, thus if you do not pay early, all payments

are delayed until the last minute”.

In CPS, as shown in Chart 4, the loss function of the first payer is continuous (as R = 0),

thus it is clear that the symmetric Bayesian Nash Equilibrium is ti1 = 0 for all i. The

equilibrium is unchanged even if q increases, as shown by the dashed line.

Another interesting feature of a collateral pool is that a failure of an institution does not

necessarily create a liquidity sink (a situation when all remaining participants do not have

sufficient liquidity to send payments). In CPS banks can keep on settling payments as

institutions in net debit positions would be still able to receive payments from the other

banks. Effectively, by paying a bank in a net debit position, an intra-day credit is granted

to the payer and at the same time extinguished for the payee. In aggregate, the total

amount of intra-day credit granted does not change.

8The sign of the first order condition can be positive and negative, depending on the parameters.
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In this paper we compare collateral pool arrangement against plain vanilla RTGS. In

practice, many RTGS systems have facilities to net offsetting payments (otherwise referred

to as liquidity saving mechanisms). But liquidity saving mechanisms work best if payment

orders are submitted for settlement early as more offsetting opportunities can be identified.

Therefore, since CPS incentivises early payments it may help to make liquidity saving

mechanisms more efficient. Even in the absence of LSMs, the collateral pool arrangement

has an advantage as liquidity savings can be achieved without any delay, while payments

submitted to the offsetting facility may have to wait for an offsetting possibility to arise.

7 Summary

In this paper we investigate collateral pool settlement (CPS) payment systems. We

develop a theoretical model that we use to compare CPS and Real Time Gross Settlement

(RTGS) payment systems in terms of optimal bank behavior and costs. Using a unified

analytical framework we show that, unlike in an RTGS system, the CPS system provides

incentives for banks to submit payments early.

Under quite general circumstances payment system participants are willing to participate

in a collateral pool. We show that even if banks are not certain about the time at which

their payment order arrive, they prefer to participate in a collateral pool if the probability

of a bank failure intra-day is not too large and the cost of intra-day liquidity is sufficiently

high. We derive the explicit threshold values.

In our model CPS also provides an additional way for banks to resolve a liquidity sink

situation. While in RTGS banks may run out of liquidity to make payments if some

participant becomes a liquidity sink, some payments in CPS can still be made.

Specifically, a bank with a negative net payment balance can continue to receive payments

from the other participants as it does not increase the aggregate net payment balance.

This paper also contributes to the theoretical payments literature by providing an

alternative to the usual trade-off between paying early and nonpecuniary ‘delay-cost’. In

our model delay costs arise explicitly due to the probability of a bank failure intra-day. We

show that a late payment equilibrium arises in RTGS if intra-day liquidity is costly
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enough. The late payment equilibrium becomes less likely if a probability of a bank failure

increases. Therefore we confirm the result in the literature that an RTGS payment system

may result in a late payment equilibrium, but we show that it may not be necessarily the

case if the intra-day cost of liquidity is very low.

In this paper we assume that payments are perfectly offsetting ex-ante. It would be

interesting to extend the analysis to cases where payments are not perfectly offsetting and

to allow for banks to operate in an environment of parallel streams of CPS and RTGS. The

model could also be extended by making payment flows to failing institutions endogenous.
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Appendix

In the following proofs, we do not use the notation Di(t), but use 1− e−qit for notational

clarity.

Proof of Lemma 2

The first order condition of the loss function given in Equation (4) is:

∂C1
B(∆B; tA, ∆̃C)

∂∆B

= qBe
−qB∆Bβ

+ (−qB)e−qB∆BE[1− e−qC(max(tA+∆B ,sC)+∆C)](1− e−qA(1−tA))S

+ e−qB∆B
∂E[1− e−qC(max(tA+∆B ,sC)+∆C)]

∂∆B

(1− e−qA(1−tA))S

+ qBe
−qB∆BE[1− e−qC(max(tA,sC)+∆̃C)](1− e−qA(1−tA))S

+ qBe
−qB∆BE[1− e−qC(max(tA,sC)+∆̃C)](1− e−qC(1−max(tA,sC)−∆̃C))S

Since max(tA + ∆B, sC) + ∆C < max(tA, sC)− ∆̃C from the assumption, the sum of the

second term and the fourth term is strictly positive. The other terms are obviously

positive, so the FOC is strictly positive.

The first order condition of the loss function given in Equation (5) is:

∂C2
B(∆B; tA, ∆̃C)

∂∆B

= qBe
−qB∆Bβ

+ qBe
−qB∆BE[e−qC(max(tA,sC)+∆̃C)]E[1− e−qC(1−max(tA,sC)−∆̃C)]S

Since in any cases ∆B is optimal to be as small as possible, by the definition of ∆B,

∆∗
B = 0.

Working Paper No. <XXX> March 2010 38



Proof of Lemma 3

The first order derivative of the loss function given in Equation (6) is:

∂C̃1
C(∆̃C)

∂∆̃C

= (−qC)e−qC∆̃CR

+ qCe
−qC∆̃Cβ

− qCe
−qC∆̃CE[1− e−qB(max(tA,sB)+∆B)]U

+ qCe
−qC∆̃C1− e−qA(1−tA)S

In CPS, where R = 0, U < 0 and S > 0, ∂C̃C(∆̃C)

∂∆̃C
> 0. In RTGS, where β > R > 0, U = 0

and S = 0, ∂C̃C(∆̃C)

∂∆̃C
> 0 as well.

The first order derivative of the loss function given in Equation (7) is:

∂C̃2
C(∆̃C)

∂∆̃C

= −qCE[1− e−qB(max(tA,sB)+∆B)]e−qC∆̃C (R + U) (A-1)

+ qCE[1− e−qB(max(tA,sB)+∆B)]e−qC∆̃Cβ

+ qCE[1− e−qB(max(tA,sB)+∆B)]e−qC∆̃C1− e−qA(1−tA)S

In CPS,
∂C̃2

C(∆̃C)

∂∆̃C
> 0 since R + U < 0. Thus, ∆̃C takes its possible minimum,

max(tA, sB) + ∆B −max(tA, sC).

C̃1
C ≤ C̃2

C for any possible sB and sC , because the third and fourth terms of C̃1
C and the

fourth and fifth terms of C̃2
C are equal, and the second and fifth terms of CC1 are equal to

zero when ∆̃C = 0, and R = 0. The optimal ∆̃C is, therefore, ∆̃∗
C = 0 in CPS.

In RTGS, however, C̃1
C and C̃2

C are hard to compare and thus difficult to find the global

minimum. ∆̃∗
C can take, therefore, two possible optimum 0 and
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max(tA, sB) + ∆∗
B −max(tA, sC) = max(tA, sB)−max(tA, sC).

Since ∆̃∗
C is not very important on the equilibrium path of RTGS as we will see below,

Proof of Lemma 4

The probability of paying R, when tA = tB = tC is:

Pr[sA < tA] Pr[sB < tB] Pr[sC < tC ]e−qtA

(
1− 1

2
e−qtC − 1

6
e−qtBe−qtC

)
+ Pr[sA < tA] Pr[sB < tB] Pr[sC > tC ]e−qtA

+ Pr[sA < tA] Pr[sB > tB] Pr[sC < tC ]e−qtA

{
e−qtB · 1

2
+ (1− e−qtB) · 1

}
+ Pr[sA < tA] Pr[sB > tB] Pr[sC > tC ]e−qtA

+ Pr[sA > tA] ·X

X is the probability that A becomes the first payer, conditional on A receives a payment

request after tA. We do not formulate X, because the infinitesimal delay ε from tA does

not change the probability X as long as sA > tA.

The probability of paying R, when tA = tB + ε = tC + ε and ε approaches zero, is:

Pr[sA < tA] Pr[sB < tB] Pr[sC < tC ]e−qtA(1− e−qtB)(1− e−qtC )

+ Pr[sA < tA] Pr[sB < tB] Pr[sC > tC ]e−qtA(1− e−qtB)

+ Pr[sA < tA] Pr[sB > tB] Pr[sC < tC ]e−qtA(1− e−qtC )

+ Pr[sA < tA] Pr[sB > tB] Pr[sC > tC ]e−qtA

+ Pr[sA > tA] ·X

Since 1− 1
2
e−qtC − 1

6
e−qtBe−qtC > (1− e−qtB)(1− e−qtC ), we have

CA(tA = tB) > CA(tA = tB + ε) if ε→ 0. This is sufficient to prove the discontinuity.
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Proof of Lemma 6

The first order derivative of the loss function when tA ≥ E[si] is:

∂C(tA)

∂tA
= {2qe−2q max(sA,tA) − qe−q max(sA,tA) − qe−(q+q max(sA,tA))}U

+ {2qe−2q max(sA,tA) − qe−q max(sA,tA) − qe−(q+q max(sA,tA))}S

+ {2qe−2q max(sA,tA) − qe−q max(sA,tA) − qe−(q+q max(sA,tA))}S

+ qe−(q+q max(sA,tA))r

+ qe−q max(sA,tA)β

The derivative is always strictly positive if tA ≥ sA. The first order derivative of the loss

function when tA ≤ E[si] is:

∂C(tA)

∂tA
= E[−qe−qtA(1− e−qsC )]U

+ E[qe−qtA(e−qsB − e−q)]S

+ qe−(q+qtA)r

+ qe−qtAβ

For any sB ∈ [0, 1] and sC ∈ [0, 1], the derivative is also strictly positive if tA ≥ sA. Since

the bank tries to minimise tA under the condition of tA = sA, tA = sA for any sA ∈ [0, 1].

By definition, it means that t∗A = 0.
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