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Contributions. What is done?

We construct (i) coincident risk indicators and (ii) early warning
signals for financial distress.

(i) = ‘thermometers’to read off the ‘heat’in financial system.
Common stress based on shared risk factors, and likelihood of
simultaneous failure of financial intermediaries.

(ii) = ‘barometer’, forward looking indicator, based on deviations of
credit risk conditions from macro-financial fundamentals.

How? Model latent macro-financial and credit risk components for
the U.S., EU-27, and rest of the world.
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Motivation: cost of crisis and regulatory response

Reinhart and Rogoff (Ch. 10, 2009): A systemic banking crisis is followed
by 56% ↓ in equity prices, 36% ↓ in real estate prices, 9% ↓ in RGDP, 7%
↑ unemployment, 86% ↑ gov’t debt, and 16% ↓ in sovereign rating score.

Financial Stability departments need to extend their toolkits.

Model-based ‘thermometers’and ‘warning signals’in addition to market
intelligence and stress tests. Dirt cheap!
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System failure analogy

Financial systems have crises,
people have heart attacks.

What are the risk factors?
(un)conditional probabilities?
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An early warning system
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Economics of systemic risk

1. Time series of SR:

• SR buildup may occur when measured risk is low;
• SR buildup may be linked to financial sector growth,
underwriting standards, degree of monitoring, risk
management of market participants.

• Challenge to build forward looking measures.

2. Cross section of SR:

• Fire sale externality: deleveraging spills across institutions
due to market illiquidity.

• Hoarding externality: institutions hoard lending capacity.
• Runs: e.g. on the shadow banking system.
• Network externality: building up of counterparty credit risk
due to interlocking of claims.
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Empirical systemic risk literature
(very incomplete listing)

Systemic risk contribution: Adrian and Brunnermeier (2009), Huang,
Zhou, Zhu (2009, 2010), Acharya, Pedersen, Philippon, Richardson
(2010), Brownlees and Engle (2010), White, Kim, and Manganelli
(2010),..

Common exposure to macro risk factors/stress testing: Aikman et
al (RAMSI, 2009), Segoviano and Goodhart(2009), Giesecke and Kim
(2010), De Nicolo and Lucchetta (2010), Castren, Dees, Zaher (2010),
Koopman, Lucas, and Schwaab (2010, 2011),..

Early warning signals/financial imbalances: Borio and Lowe (2002),
Reinhart and Rogoff (2008, 2009), Borio and Drehmann (2009), Alessi
and Detken(2009), Barell, Davis, Karim, Liadze (2010),..
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The model setup

Mixed obs Yt = (y1,1t , ..., yR ,Jt , x1t , ..., xNt , z̄1t , ..., z̄St )
′.

yr ,jt |f mt , f dt , f it ∼ Binomial(kr ,jt ,πr ,jt ) Act default experience

xit |f mt , 0, 0 ∼ Normal(µit , σ
2
i ) Macro-fin. covariates

z̄st |f mt , f dt , f it ∼ Normal(µ̄st , σ̄
2
s ) Transformed EDFs

πr ,jt = [1+ e−θr ,jt ]−1 Default probability firm j

Signals θr ,jt = λ0,rj + β
′

rj f
m
t + γ

′
rj f

d
t + δ

′
rj f

i
t

Factors ft = (f m′t , f d ′t , f
i ′
t )
′

= Φft−1 + ηt , ηt ∼ NID(0, I −ΦΦ′)
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Monte Carlo Maximum Likelihood

The observation density of y = (y ′1, ..., y
′
T )
′ can be expressed as

p(y ;ψ) =
∫
p(y |f ;ψ)p(f ;ψ)df .

A MC estimator of p(y ;ψ) based on importance sampling is given by

p̂(y ;ψ) = ĝ(ỹ ;ψ)M−1
M

∑
k=1

p(y |f (k );ψ)
g(ỹ |f (k );ψ)

, f (k ) ∼ g(f |ỹ ;ψ).

Remarks:
* Based on Durbin and Koopman (1997) and KLS (2010, 2011).
* Importance density g(f |ỹ ;ψ) is Laplace approximation to p(f |y ;ψ).
* Details in technical appendices A1 to A3.
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Broad financial sector failure rate
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Implied financial sector failure rate vs mean EDF for largest 20 financials.
Sector rate is aggregated across banks and other financials, see Giesecke
and Kim (2010).
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The likelihood of simultaneous FI failures in EU-27
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The likelihood of simultaneous FI failures in EU-27
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The probability of k% or more simultaneous failures as a (decreasing)
function of k.
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Credit risk deviations indicator
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"The indicator signals the extent to which local stress in a given industry
(financials) and region is unexpectedly different from what would be
expected based on macro-financial fundamentals".
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Ranking of credit based early warning indicators

Indicators loss opt signal % booms % good % bad N2S cond avg lead

threshold called signals signals ratio prob time

Global PC gap 0.30 65 71% 62% 25% 0.40 0.58 5.56

CRD fin EU 0.33 90 54% 27% 6% 0.23 0.70 3.89

CRD fin US 0.37 90 44% 20% 8% 0.41 0.58 3.45

PC/GDP gap 0.37 85 56% 27% 14% 0.51 0.57 3.83

Loan/Deposits gap 0.40 90 17% 7% 5% 0.78 0.28 2.17

Total Assets / GDP 0.42 95 6% 3% 3% 0.98 0.30 1.25

Total Assets / Capital 0.47 60 59% 39% 35% 0.89 0.29 4.72

Test sample: 11 EU countries 1984Q1/1998Q1 to 2008Q4.
Methodology as in Alessi and Detken (2011).
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Credit quantities and risk: surveillance
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Punchlines/lessons

1. Credit risk and business cycle dynamics do not coincide. They have
decoupled in the past during lending bubbles (2004-06) and credit
crunches (1988-1990). Each lead to macro stress further down the
road.

2. Call to action: Track credit risk conditions over time in addition to
credit quantities/aggregates.

3. Factor models can be a versatile tool in an overall FS surveillance
and assessment, despite complexity.
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Thank you.
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