Do Software Companies Spread Cyber Risk?

Giorgio Ottonello¹ Emanuele Rizzo²

¹Nova School of Business and Economics

²ESADE Business School

2025 State-of-the-Field Conference on Cyber Risk to Financial Stability

Motivation

Software Companies

• Software companies provided in 2020 15.8 million U.S. jobs and contributed \$933 billion in direct value-added GDP to the U.S. economy alone. (software.org, 2021)

Global damages from cyber crime expected to be \$10.5 trillion by 2025 (Cybersecurity Ventures, 2022)

Our Contribution

• We argue that the growth of software companies is a key driver of the rise in cybersecurity risk.

Our Contribution

- We identify software vulnerabilities as a first-order driver of cyber risk
 - Affect many firms in the economy through software companies' digital supply chain
 - Third party risk that is hard to monitor

- We identify software vulnerabilities as a first-order driver of cyber risk
 - Affect many firms in the economy through software companies' digital supply chain
 - Third party risk that is hard to monitor
- Important to shape firms' policies as well as regulatory actions aimed at mitigating cybersecurity threats
- Implications for recognizing cyber risk as a systematic source of risk

- Assemble a novel database linking vulnerability discoveries to software companies and their customers
- Identify the effect of vulnerabilities discovery on firms and study the market reaction

- Assemble a novel database linking vulnerability discoveries to software companies and their customers
- Identify the effect of vulnerabilities discovery on firms and study the market reaction

Main Findings:

- Exposure to software vulnerabilities:
 - Increases the likelihood of cyberattacks and firm-level risk metrics
 - Depresses firms' capital investment rate and R&D investment rate

- Assemble a novel database linking vulnerability discoveries to software companies and their customers
- Identify the effect of vulnerabilities discovery on firms and study the market reaction

Main Findings:

- Exposure to software vulnerabilities:
 - Increases the likelihood of cyberattacks and firm-level risk metrics
 - Depresses firms' capital investment rate and R&D investment rate
- Stock market only slowly incorporates information about vulnerabilities
 - Frictions likely due to investors struggling to incorporate customer-supplier linkages

- Assemble a novel database linking vulnerability discoveries to software companies and their customers
- Identify the effect of vulnerabilities discovery on firms and study the market reaction

Main Findings:

- Exposure to software vulnerabilities:
 - Increases the likelihood of cyberattacks and firm-level risk metrics
 - Depresses firms' capital investment rate and R&D investment rate
- Stock market only slowly incorporates information about vulnerabilities
 - Frictions likely due to investors struggling to incorporate customer-supplier linkages
- Additional tests support the view that software companies growth and increase in cyber risk are connected Ottonello, Rizzo

• From the vulnerabilities data, we manually identify 66 software companies that distribute vulnerable software.

■ 1,947 software vulnerabilities; 466 vulnerabilities manually linked to cyberattacks.

■ 3,875 unique customer companies; 1,431 customer firms every year, on average.

$CyberAttacks_{c,t+1} = \alpha + \beta_1 Vulnerability_{c,t} + \gamma X_{c,t} + \epsilon_{c,t+1}$

All Attacks _{c,t+1} (1)	Vulnerability $Attacks_{c,t+1}$ (2)	Other Attacks _{c,t+} (3)
0.106^{***} (4.41)	0.187^{***} (5.75)	$ \begin{array}{c} 0.029 \\ (1.43) \end{array} $
Yes Yes	Yes Yes	Yes Yes
Yes 81,125	Yes 81,125	Yes 81,125
	All Attacks _{c,t+1} (1) 0.106^{***} (4.41) Yes Yes Yes 81,125 0.016	$\begin{array}{c c} \mbox{All Attacks}_{c,t+1} & \mbox{Vulnerability Attacks}_{c,t+1} & \mbox{(2)} \\ \hline \begin{tabular}{lllllllllllllllllllllllllllllllllll$

- A vulnerability discovery increases the number of hacking attacks by 0.11 standard deviations.
- Dynamic effects on cyberattack probability Graphs

- Absence of effects on non vulnerability-related attacks is already informative
 - Addresses alternative explanations where suppliers and customers are matched on similar characteristics, such as poor internal cybersecurity policies
- We perform two additional falsification tests:
 - Focus on minor vulnerabilities
 Table
 - Placebo based on Chetty, Looney, and Kroft (2009) block permutation test Graphs

 $Risk \ Var_{c,t+1} = \alpha + \beta_1 Vulnerability_{c,t} + \gamma X_{c,t} + \epsilon_{c,t+1}$

	$\operatorname{RetVol}_{c,t+1}_{(1)}$	$\operatorname{Ivol}_{c,t+1}$ (2)	$Var \ 95\%_{c,t+1}$ (3)	$LPSD_{c,t+1}$ (4)
$Vulnerability_{c,t}$	0.046^{***} (3.39)	0.035^{***} (2.62)	-0.062*** (-4.66)	0.053^{***} (3.87)
Customer $Controls_{c,t}$	Yes	Yes	Yes	Yes
Customer FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
Observations	81,125	81,125	81,125	81,125
Adjusted r^2	0.560	0.577	0.541	0.438

- A vulnerability discovery increases the return vol. by 0.046 standard deviations
- Dynamic effects on risk variables Graphs

Real $Var_{c,t+1} = \alpha + \beta_1 Vulnerability_{c,t} + \gamma X_{c,t} + \epsilon_{c,t+1}$

	$\stackrel{\mathrm{I}_{c,t+1}/\mathrm{K}_{c,t}}{(1)}$	$\underset{(2)}{\mathbf{R}_{c,t+1}/\mathbf{G}_{c,t}}$	Sale $\operatorname{Growth}_{c,t+1}$ (3)	Cybersecurity Re (4)
$Vulnerability_{c,t}$	-0.044** (-2.38)	-0.043*** (-2.68)	-0.037*** (-2.89)	0.111^{***} (3.36)
Customer $Controls_{c,t}$	Yes	Yes	Yes	Yes
Customer FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
Observations	70,069	70,069	70,069	70,069
Adjusted r^2	0.202	0.756	0.025	0.652

- Literature linking increases in firm risk with decreases in investments (see, e.g., Bloom, 2009, Hassan et al., 2019)
- A vulnerability discovery decreases firm investments by 0.044 standard deviations
- Dynamic effects on real variables Graphs

Ottonello, Rizzo

- Stock market prices do not seem to react in the short-term
- We show that market slowly incorporates the information

- Stock market prices do not seem to react in the short-term
- We show that market slowly incorporates the information
- We document that investors overlook supply chain links between software companies and their customers (see e.g., Cohen and Frazzini (2008))
 - Significant reaction when knowledge of customer-supplier links is not needed

$CAR_{c} = \alpha_{t} + \beta Vulnerability_{c} + \gamma X_{c} + \epsilon_{c}$

	Market-Adjusted CAR_c (1)	$\begin{array}{c} \text{CAPM CAR}_c \\ (2) \end{array}$	5-factor CAR_c (3)
$Vulnerability_c$	-0.008 (-0.23)	$ \begin{array}{c} 0.001 \\ (0.03) \end{array} $	-0.011 (-0.43)
Customer $Controls_c$ Time FE Observations Adjusted r^2	Yes Yes 645,846 0.039	Yes Yes 645,846 0.042	Yes Yes 645,846 0.015

Stock market prices do not seem to react in the short-term

- Three potential explanation for the absence of reaction in the short-run:
 - **1** Vulnerabilities are inconsequential to the firm
 - Unlikely given previous results on cyberattacks and investments
 - 2 Market may be unaware of the consequences
 - Again unlikely given previous results on market-based risk variables
 - 3 Market only slowly incorporates the information
 - We should be able to observe the reaction over a longer window

$R_{c,t+1} = \alpha_t + \alpha_c + \beta_1 Vulnerability_{c,t} + \gamma X_{c,t} + \epsilon_{c,t+1}$

	$\begin{array}{c} \text{Market-Adjusted}_{c,t+1} \\ (1) \end{array}$	$\operatorname{CAPM}_{c,t+1}_{(2)}$	5-factor $Model_{c,t+1}$ (3)
$\operatorname{Vulnerability}_{c,t}$	-0.008** (-2.45)	-0.007*** (-2.86)	-0.006** (-2.08)
Customer $Controls_{c,t}$	Yes	Yes	Yes
Customer FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	77,357	77,357	77,357
Adjusted r^2	0.062	0.062	0.040

■ A vulnerability discovery decreases next quarter risk-adjusted stock returns by 0.6%-0.8%

- Investors may overlook supply chain links between software companies and their customers (see e.g., Cohen and Frazzini (2008))
- To assess this conjecture, we perform two tests where knowledge of customer–supplier links is not needed:
 - **1** Software company's stock price reaction to the discovery of a vulnerability
 - 2 Market reaction to the occurrence of a cyberattack due to a vulnerability

$CAR_s = \alpha_t + \beta Vulnerability_s + \gamma X_s + \epsilon_s$

	Market-Adjusted CAR_s (1)	$\begin{array}{c} \text{CAPM CAR}_{s} \\ (2) \end{array}$	5-factor CAR_s (3)
${\rm Vulnerability}_s$	-0.221***	-0.247***	-0.277***
	(-2.80)	(-2.73)	(-2.97)
$\begin{array}{l} \text{Supplier Controls}_s \\ \text{Time FE} \\ \text{Observations} \\ \text{Adjusted } r^2 \end{array}$	Yes	Yes	Yes
	Yes	Yes	Yes
	213,024	213,024	213,024
	0.012	0.012	0.012

 On average, one vulnerability decreases 3-day CAR by 0.22%-0.27%

$CAR_{c} = \alpha_{t} + \beta Attack_{c} + \gamma X_{c} + \epsilon_{c}$

	$\begin{array}{c} \text{Market-Adjusted CAR}_c \\ (1) \end{array}$	$\begin{array}{c} \text{CAPM CAR}_c \\ (2) \end{array}$	5-factor CAR_c (3)
$\operatorname{Attack}_{c}$	-1.280***	-1.081***	-1.125***
	(-3.59)	(-2.97)	(-2.91)
Customer $Controls_c$	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	49,407	49,407	49,407
Adjusted r^2	0.016	0.025	0.010

■ On average, one attack decreases 3-day CAR by 1.1%-1.3%

- Ongoing regulatory debate on software companies as Systemically Important Entities (Welburn, 2024)
- We study whether the growth of software companies increases cybersecurity risk
 - $\rightarrow\,$ We explore heterogeneity based on software supplier market share
- If software companies were a systemic source of cyber risk, the effect of vulnerabilities should have aggregate implications

 \rightarrow We move the analysis at the industry-level \frown Table

 $\begin{aligned} CyberAttacks_{s,t+1} &= \alpha + \beta_1 \, Vuln_{s,t} + \beta_2 M ktshare_{s,t} \\ &+ \beta_3 \, Vuln_{s,t} \times M ktshare_{s,t} + \gamma X_{s,t} + \epsilon_{s,t+1} \end{aligned}$

	All Attacks _{s,t+1} (1)	Vulnerability Attacks _{s,t+1} (2)	Other Attacks _{$s,t+$} (3)
MktShare _{s,t}	0.165***	0.071**	0.157***
	(4.29)	(2.11)	(3.94)
$Vulnerability_{s,t}$	0.028**	0.030	0.011
	(2.36)	(1.60)	(1.04)
$MktShare_{s,t} \times Vuln_{s,t}$	0.015^{***}	0.015***	0.003
	(2.67)	(2.93)	(0.47)
Supplier Controls _{s.t}	Yes	Yes	Yes
Supplier FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	26,627	26,627	26,627
Adjusted r^2	0.336	0.175	0.262

- Dependent variable is the number of cyberattacks among the customers of the software company
- Results on firm risk, investments, and quarterly returns

Conclusion

- Expansion and concentration of software companies is a significant driver of cybersecurity risk
- Software vulnerabilities spread through digital supply chains, and:
 - Increase probability of cyberattacks for affected customers
 - Increase customer risk
 - Decrease customer investments and sale growth
- Strong link with the growth of software companies:
 - Worse consequences when software supplier has a larger market share
 - All results aggregate at the industry-level

Ottonello, Rizzo

Trends of Vulnerabilities and Affected Customers • Back

Ottonello, Rizzo

$CyberAttacks_{c,t+1} = \alpha + \beta_1 Minor \ Vulnerability_{c,t} + \gamma X_{c,t} + \epsilon_{c,t+1}$

	All Attacks _{c,t+1} (1)	Vulnerability $Attacks_{c,t+1}$ (2)	Other Attacks _{c,t+} (3)
Minor Vulnerability $_{c,t}$	0.011	-0.003	0.014
	(1.24)	(-0.44)	(1.53)
Customer Controls _{c,t}	Yes	Yes	Yes
Customer FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	81,125	81,125	81,125
Adjusted r^2	0.017	0.006	0.013

Block Permutation Test Back

Figure B: Vulnerability Attacks

Ottonello, Rizzo

$R_{c,t+1} = \alpha_t + \alpha_c + \beta_1 Vulnerability_{c,t} + \gamma X_{c,t} + \epsilon_{c,t+1}$

	$\begin{array}{c} \text{Market-Adjusted}_{c,t+1} \\ (1) \end{array}$	$\operatorname{CAPM}_{c,t+1}_{(2)}$	5-factor $Model_{c,t+1}$ (3)
$\mathbf{Vulnerability}_{c,t}$	-0.008** (-2.45)	-0.007*** (-2.86)	-0.006** (-2.08)
Customer $Controls_{c,t}$	Yes	Yes	Yes
Customer FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	77,357	77,357	77,357
Adjusted r^2	0.062	0.062	0.040

 A vulnerability discovery decreases next quarter risk-adjusted stock returns by 0.6%-0.8%

$CAR_s = \alpha_t + \beta Vulnerability_s + \gamma X_s + \epsilon_s$

	Market-Adjusted CAR_s (1)	$\begin{array}{c} \text{CAPM CAR}_s \\ (2) \end{array}$	5-factor CAR_s (3)
${\rm Vulnerability}_s$	-0.221***	-0.247***	-0.277***
	(-2.80)	(-2.73)	(-2.97)
$\begin{array}{l} \text{Supplier Controls}_s \\ \text{Time FE} \\ \text{Observations} \\ \text{Adjusted } r^2 \end{array}$	Yes	Yes	Yes
	Yes	Yes	Yes
	213,024	213,024	213,024
	0.012	0.012	0.012

 On average, one vulnerability decreases 3-day CAR by 0.22%-0.27%

$CAR_c = \alpha_t + \beta Attack_c + \gamma X_c + \epsilon_c$

	$\begin{array}{c} \text{Market-Adjusted CAR}_c \\ (1) \end{array}$	$\begin{array}{c} \text{CAPM CAR}_c \\ (2) \end{array}$	5-factor CAR_c (3)
$\operatorname{Attack}_{c}$	-1.280***	-1.081***	-1.125***
	(-3.59)	(-2.97)	(-2.91)
Customer $Controls_c$	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	49,407	49,407	49,407
Adjusted r^2	0.016	0.025	0.010

■ On average, one attack decreases 3-day CAR by 1.1%-1.3%

$$\begin{split} \textit{Risk Var}_{s,t+1} &= \alpha + \beta_1 \textit{Vuln.}_{s,t} + \beta_2 \textit{Mktshare}_{s,t} \\ &+ \beta_3 \textit{Vuln.}_{s,t} \times \textit{Mktshare}_{s,t} + \gamma X_{s,t} + \epsilon_{s,t+1} \end{split}$$

	$\operatorname{RetVol}_{s,t+1}_{(1)}$	$\operatorname{Ivol}_{s,t+1}$ (2)	Var $95\%_{s,t+1}$ (3)	$\operatorname{LPSD}_{s,t+1}_{(4)}$
$MktShare_{s,t}$	-0.075*** (-5.50)	-0.091*** (-6.09)	0.061^{***} (4.86)	-0.063*** (-4.63)
$\mathbf{Vulnerability}_{s,t}$	0.010^{***} (3.83)	0.009^{***} (3.76)	-0.009*** (-3.75)	0.011^{***} (4.53)
$MktShare_{s,t}\timesVuln._{s,t}$	0.003^{**} (2.19)	0.003^{**} (1.99)	-0.004*** (-2.41)	0.003^{**} (2.05)
Supplier Controls _{s,t}	Yes	Yes	Yes	Yes
Supplier FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
Observations	26,627	26,627	26,627	26,627
Adjusted r^2	0.530	0.538	0.507	0.460

$$\begin{split} \textit{Real Var}_{s,t+1} &= \alpha + \beta_1 \textit{Vuln.}_{s,t} + \beta_2 \textit{Mktshare}_{s,t} \\ &+ \beta_3 \textit{Vuln.}_{s,t} \times \textit{Mktshare}_{s,t} + \gamma X_{s,t} + \epsilon_{s,t+1} \end{split}$$

	$\stackrel{\mathrm{I}_{s,t+1}/\mathrm{K}_{s,t}}{(1)}$	$\stackrel{\mathbf{R}_{s,t+1}/\mathbf{G}_{s,t}}{(2)}$	Sale Growth _{s,t+1} (3)	Cybersecurity Rel. _{$s,t+1$} (4)
$MktShare_{s,t}$	0.568**	1.304***	-0.066	-0.080
$\mathbf{Vulnerability}_{s,t}$	(2.38) -0.002	(3.65) 0.002	(-0.43) -0.001	(-1.33) 0.014*
$MktShare_{s,t} \times Vuln._{s,t}$	(-0.74) -0.155^{***} (-2.84)	(0.43) -0.115 ^{**} (-2.01)	(-0.28) -0.091** (-2.30)	(1.96) -0.042 (-0.38)
Supplier $Controls_{s,t}$	Yes	Yes	Yes	Yes
Supplier FE	Yes	Yes	Yes	Yes
Time FE	Yes	Yes	Yes	Yes
Observations	23,337	23,337	23,337	23,337
Adjusted r^2	0.141	0.395	-0.001	0.492

$$\begin{split} R_{s,t+1} &= \alpha + \beta_1 \, \textit{Vuln.}_{s,t} + \beta_2 \textit{Mktshare}_{s,t} \\ &+ \beta_3 \, \textit{Vuln.}_{s,t} \times \textit{Mktshare}_{s,t} + \gamma X_{s,t} + \epsilon_{s,t+1} \end{split}$$

	$\begin{array}{c} \text{Market-Adjusted}_{s,t+1} \\ (1) \end{array}$	$\operatorname{CAPM}_{s,t+1}_{(2)}$	5-factor $Model_{s,t+1}$ (3)
$MktShare_{s,t}$	-0.003 (-0.45)	0.002 (0.26)	0.046^{***} (4.76)
$\mathbf{Vulnerability}_{s,t}$	-0.001 (-0.51)	-0.004 (-1.26)	-0.007 ^{**} (-2.16)
$MktShare_{s,t} \times Vuln._{s,t}$	-0.006*** (-3.42)	-0.006*** (-2.09)	-0.003*** (-2.15)
Supplier Controls _{s.t}	Yes	Yes	Yes
Supplier FE	Yes	Yes	Yes
Time FE	Yes	Yes	Yes
Observations	25,112	25,112	25,112
Adjusted r^2	0.621	0.167	0.069

$CyberAttacks_{i,t+1} = \alpha + \beta_1 Vulnerabilities_{i,t} + \epsilon_{i,t+1}$

	All Attacks _{$i,t+1$} (1)	Vulnerability $\operatorname{Attacks}_{i,t+1}$ (2)	Other Attacks _{<i>i</i>,<i>t</i>+1} (3)
$\mathbf{Vulnerabilities}_{i,t}$	0.091^{***} (5.56)	0.104^{***} (11.09)	$ \begin{array}{c} 0.004 \\ (0.23) \end{array} $
Industry FE Observations Adjusted r^2	Yes 3,381 0.130	Yes 3,381 0.209	Yes 3,381 0.074

 Dependent variable is the number of cyberattacks in each of the Fama-French 49 industries

Risk $Var_{i,t+1} = \alpha + \beta_1 Vulnerabilities_{i,t} + \epsilon_{i,t+1}$

	$\operatorname{RetVol}_{i,t+1}_{(1)}$	$\operatorname{Ivol}_{i,t+1}$ (2)	$\operatorname{Var} \begin{array}{c} 95\%_{i,t+1} \\ (3) \end{array}$	$\operatorname{LPSD}_{i,t+1}_{(4)}$
$\mathbf{Vulnerabilities}_{i,t}$	0.026^{***}	0.037^{***}	-0.016**	0.016^{**}
	(3.73)	(4.62)	(-2.38)	(2.38)
Industry FE	Yes	Yes	Yes	Yes
Observations	3,381	3,381	3,381	3,381
Adjusted r^2	0.180	0.293	0.143	0.139

Real $Var_{i,t+1} = \alpha + \beta_1 Vulnerabilities_{i,t} + \epsilon_{i,t+1}$

	$\stackrel{\mathrm{I}_{i,t+1}/\mathrm{K}_{i,t}}{(1)}$	$\mathbf{R}_{i,t+1}/\mathbf{G}_{c,t}$ (2)	Sales $\operatorname{Growth}_{i,t+1}$ (3)	Cybersecurity Relation _{$i,t+$} (4)
$\mathbf{Vulnerabilities}_{i,t}$	-0.104* (-1.78)	-0.098* (-1.78)	$ \begin{array}{c} 0.013 \\ (0.38) \end{array} $	$0.148^{***} \\ (6.63)$
Industry FE Observations Adjusted r^2	Yes 3,228 0.049	Yes 3,228 0.050	Yes 3,228 0.024	Yes 3,228 0.800

Real $Var_{i,t+1} = \alpha + \beta_1 Vulnerabilities_{i,t} + \epsilon_{i,t+1}$

	$\begin{array}{c} \text{Market-Adjusted}_{i,t+1} \\ (1) \end{array}$	$\operatorname{CAPM}_{i,t+1}_{(2)}$	5-factor $Model_{i,t+1}$ (3)
$\mathbf{Vulnerabilities}_{i,t}$	-0.003**	-0.004 ^{**}	-0.001*
	(-2.39)	(-2.57)	(-1.71)
Industry FE	Yes	Yes	Yes
Observations	3,381	3,381	3,381
Adjusted r^2	-0.003	0.012	0.006