# Dollar Shortages and Central Bank Swap Lines\*

A. Cesa-Bianchi
Bank of England and CEPR

F. Eguren-Martin

SPX Capital

A. Ferrero
Oxford and CEPR

W. Pagel
Bank of England

September 26, 2025

<sup>\*</sup> The views expressed in this paper are those of the author(s) and do not necessarily represent the views of the Bank of England or its committees.

# The Fed & The March 2020 dollar shortage

# Fed sets up scheme to meet booming foreign demand for dollars

Central bank meets global shortage of greenbacks after scramble for safety



# The March 2020 dollar shortage

**FX markets** 





# The March 2020 dollar shortage

Other asset prices





# Dollar shortages and central bank swap lines

- Dollar shortages are a recurring feature of global crises
  - \* Not limited to Covid, but seen in the global financial crisis and euro area crisis
- Fed introduced and expanded US dollar swap lines with major central banks
  - \* Evolved from temporary measures to standing network, expanded further in scope during Covid

# Dollar shortages and central bank swap lines

- Dollar shortages are a recurring feature of global crises
  - \* Not limited to Covid, but seen in the global financial crisis and euro area crisis
- Fed introduced and expanded US dollar swap lines with major central banks
  - \* Evolved from temporary measures to standing network, expanded further in scope during Covid
- ▶ **Question** What are the macro and financial effects of central bank swap lines?

- **Empirics** High-frequency event study panel local projections
  - \* Construct a novel series of swap lines shocks
  - \* Estimate causal effects of swap lines shocks on aggregate financial variables

- **Empirics** High-frequency event study panel local projections
  - \* Construct a novel series of swap lines shocks
  - \* Estimate causal effects of swap lines shocks on aggregate financial variables
- Model Open economy DSGE
  - \* Introduce swap lines in a model with international intermediation frictions and financial panics
  - \* Quantify effects of dollar shortage shock and role of swap lines

#6

- Empirics High-frequency event study panel local projections
  - \* Construct a novel series of swap lines shocks
  - \* Estimate causal effects of swap lines shocks on aggregate financial variables
- ▶ **Model** Open economy DSGE

still in progress... K

- \* Introduce swap lines in a model with international intermediation frictions and bank runs
- \* Quantify effects of dollar shortage shock and role of swap lines

- Empirics High-frequency event study panel local projections
  - \* Construct a novel series of swap lines shocks
  - \* Estimate causal effects of swap lines shocks on aggregate financial variables
- Model Open economy DSGE

still in progress... K

- \* Introduce swap lines in a model with international intermediation frictions and bank runs
- \* Quantify effects of dollar shortage shock and role of swap lines

#### Results

- \* Swap line shock appreciates currency, boosts equities, reduces spreads and CIP deviations
- \* Swap lines mitigate adverse macro-financial effects of dollar shortage shock

# **Empirics**

# **Empirical evidence**

▶ **Question** What is the effect of swap lines on the economy?

# **Empirical evidence**

- **Question** What is the effect of swap lines on the economy?
- ► Challenges Identification of swap line 'shocks' non-trivial
  - \* Role of confounding factors (stress periods, contemporaneous policies)
  - \* Very few events, scattered irregularly over time
  - Role of expectations

- ▶ **New Approach** Construct a surprise measure from Fed swap line announcements
  - \* Event study high-frequency identification strategy [Gurkaynak et al., 2015]

Introduction Empirics Model Conclusions

# 10

- ▶ **New Approach** Construct a surprise measure from Fed swap line announcements
  - \* Event study high-frequency identification strategy [Gurkaynak et al., 2015]
- ▶ Raw sample 23 episodes where Fed provided new information on its network of swap lines
  - \* New lines, expansions, maturity extensions, pricing changes, expiry extensions (no FIMA)
  - \* 14 affected currencies from 2007 to 2021

Introduction Empirics Model Conclusions

# 10

- ▶ **New Approach** Construct a surprise measure from Fed swap line announcements
  - \* Event study high-frequency identification strategy [Gurkaynak et al., 2015]
- ▶ Raw sample 23 episodes where Fed provided new information on its network of swap lines
  - \* New lines, expansions, maturity extensions, pricing changes, expiry extensions (no FIMA)
  - \* 14 affected currencies from 2007 to 2021
- **Surprise** Log-change of USD exchange rate in 30-minute window around event (t, k):

$$\epsilon_{it}^{SL} = ln(e_{it,k+20'}) - ln(e_{it,k-10'})$$

- ▶ **New Approach** Construct a surprise measure from Fed swap line announcements
  - \* Event study high-frequency identification strategy [Gurkaynak et al., 2015]
- ▶ Raw sample 23 episodes where Fed provided new information on its network of swap lines
  - \* New lines, expansions, maturity extensions, pricing changes, expiry extensions (no FIMA)
  - \* 14 affected currencies from 2007 to 2021
- **Surprise** Log-change of USD exchange rate in 30-minute window around event (t, k):

$$\epsilon_{it}^{SL} = ln(e_{it,k+20'}) - ln(e_{it,k-10'})$$

**Key assumption** Only swap line news affects exchange rates in tight 30-minute window

#### Identification

- As usual, some threats to identification:
  - \* Ioint Fed announcements (OE, rate cuts)  $\rightarrow$  Cannot isolate swap line effect
  - \* Same-day non-US policy shocks → Outcome responses dominated by larger shocks
- **Solution** Keep only 'clean' announcements Details
  - \* Prioritize internal validity over sample size for causal identification
- Final sample 11 clean events, 14 affected currencies, sample period covering 2008 to 2021

**Empirics** 

# **Swap line announcements: Selected list of events**

| Date        | Time<br>(EST) | Description                                      | Affected currencies                           |
|-------------|---------------|--------------------------------------------------|-----------------------------------------------|
| 18-Sep-2008 | 03:00         | Major \$180B expansion + 3 new CBs [link]        | EUR, CHF, JPY, GBP, CAD                       |
| 24-Sep-2008 | 01:00         | Addition of 4 Nordic/Oceanic CBs [link]          | AUD, SEK, DKK, NOK                            |
| 26-Sep-2008 | 11:00         | \$13B boost to ECB/SNB swap lines [link]         | EUR, CHF                                      |
| 13-Oct-2008 | 02:00         | Swap lines uncapped for major CBs [link]         | EUR, CHF, JPY, GBP                            |
| 28-Oct-2008 | 17:00         | NZ joins swap network [link]                     | NZD                                           |
| 29-Oct-2008 | 15:30         | New swaps with 4 EM CBs [link]                   | BRL, MXN, KRW, SGD                            |
| 09-May-2010 | 21:15         | Swap lines reestablished with 4 major CBs [link] | CAD, GBP, EUR, CHF                            |
| 21-Dec-2010 | 09:00         | Swap lines extended thru Aug 2011 [link]         | CAD, GBP, EUR, CHF, JPY                       |
| 29-Jun-2011 | 09:00         | Extension of swap lines to Aug 2012 [link]       | CAD, GBP, EUR, CHF                            |
| 31-Oct-2013 | 02:00         | Swap lines become standing arrangements [link]   | CAD, GBP, EUR, CHF, JPY                       |
| 16-Jun-2021 | 14:00         | Swap lines extended through Dec 2021 [link]      | AUD, BRL, DKK, KRW, MXN<br>NOK, NZD, SGD, SEK |

# **Swap line surprises: Example**

▶ On 29 Oct 2008 at 15:30 (NY time) the Fed announced a new swap line with Banco the Mexico



# **Swap line surprises**

► Distribution of swap line surprises in our sample



# Panel event-study local projections

Estimate the following specification

$$y_{i,t+h} - y_{t-1} = \alpha_i^h + \beta^h \cdot \epsilon_{it}^{SL} + u_{i,t+h}$$

#### where

- \*  $y_{i,t+h}$  is the (log) level of asset price y in country i, h trading days after the swap line announcement
- \*  $\alpha_i$  is a country/currency fixed effect
- \*  $\epsilon_{it}^{SL}$  is the swap line surprise (standardized)
- Asset prices:
  - \* Exchange rate, Equity index, Corporate bond spread, FX swap basis

# **The Effect of Swap Line Shocks**



# **The Effect of Swap Line Shocks**



#### **Robustness**

- ► Keep events with confounding non-US policy shocks
- Add controls (economic surprise index, VIX index, gold)
- ▶ Different event window ([-30', +30']) 60

# An Open Economy Model of Central Bank Swap Lines

#### Overview of the model

- ► Two-country New Keynesian model with financial frictions
  - \* Foreign is the United States
  - \* Home is a small open economy
- Key ingredients
  - \* Frictions between depositors and banks as in Gertler-Karadi-Kiyotaki
  - \* Home banks borrow in both home currency and USD to finance purchases of securities from firms

# 20

\* Agency friction more severe for USD borrowing as in Akinci and Queralto (2023)

#### **Financial flows**



### Home (i.e. non-US) banks

- ► Banks:
  - \* Have limited net worth (Nit)
  - \* Borrow from Home and US households  $(D_{it}, D_{it}^*)$
  - \* Purchase claims on capital (Sit)

| Banks                                   |                                                       |  |  |
|-----------------------------------------|-------------------------------------------------------|--|--|
| Assets                                  | Liabilities                                           |  |  |
| Capital, q <sub>t</sub> S <sub>it</sub> | USD Deposits, $Q_t D_{it}^*$                          |  |  |
|                                         | USD Deposits, $Q_t D_{it}^*$<br>LC Deposits, $D_{it}$ |  |  |
|                                         | Net Worth, N <sub>it</sub>                            |  |  |

▶ Bank can default and abscond with a fraction of funds

$$\theta \left(D_{it} + (1+\gamma)Q_tD_{it}^* + N_{it}\right)$$

► Foreign funds are harder for creditors to recover  $(\gamma > 0)$  → Endogenous UIP deviations  $(\mu^*)$ 

#### A dollar shortage shock

**Narrative device** Increase in monitoring cost of USD debt  $(\gamma \uparrow)$ 



#### A dollar shortage shock

Response of financial variables in line with stylized facts



# **Swap lines**



# **Swap policy rule**

► Similar to Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017):

$$F_t = \phi^F(\mu_t^* - \bar{\mu}^*)$$

- \* Home central bank can draw up to  $F_t$  in USD from Fed at cost  $R_t^*$
- \* UIP deviation  $\mu_t^*$  as barometer of worsening of underlying friction in model

# **Swap policy rule**

► Similar to Del Negro, Eggertsson, Ferrero, and Kiyotaki (2017):

$$F_t = \phi^F(\mu_t^* - \bar{\mu}^*)$$

- \* Home central bank can draw up to  $F_t$  in USD from Fed at cost  $R_t^*$
- \* UIP deviation  $\mu_t^*$  as barometer of worsening of underlying friction in model
- Home banks' balance street constraint becomes

$$q_t S_{it} = D_{it} + Q_t D_{it}^* + Q_t F_{it} + N_{it}$$

Home central bank requires same collateral for USD funding as for local currency funding

$$\theta \left[ D_{it} + \mathcal{Q}_t F_{it} + (1+\gamma) \mathcal{Q}_t D_{it}^* + N_{it} \right]$$

▶ Swap lines allow Home banks to get USD without tightening their financial constraint

#### The effect of swap lines: A counterfactual experiment

- **Calibration** Calibrate swap line policy rule  $(\phi^F)$  and shock  $(\varepsilon_t^{\gamma})$  jointly to match
  - \* Korean won (KRW/USD) CIP deviations in Covid-19 distress period
  - \* Size of swap line allowed between Fed and Bank of Korea
- **Baseline** IRFs to a dollar shortage shock without policy response ( $\phi^F = 0$ )
- ► **Counterfactual** Same shock with active swap line rule

### The effect of swap lines

Difference between baseline and counterfactual in line with empirical estimates



## The effect of swap lines

Significant but transitory effects on real variables



## **Taking stock & Work in progress**

- ► Model captures both unconditional and conditional dynamics well
- But some dimensions can be strengthened
  - \* Swap lines can be effective even without being drawn → Missing role of expectations
  - st As a liquidity backstop, swap lines can rule out bad equilibrium ightarrow Missing multiple equilibria
  - \* Effects appear larger in the data  $\rightarrow$  Need additional amplification
- Our (work in progress) solution
  - \* Introduce financial panics (as in Gertler and Kiyotaki, 2015) in our two-country set up

Introduction Empirics Model Conclusions #

## **International banking panics**

- Banking panics ('runs') in closed economy
  - st Banks cannot liquidate their assets at full value in a crisis  $ilde{q}_t < q_t$
  - \* If  $\tilde{q}_t$  is low enough, banks cannot repay everyone in a run  $\rightarrow$  Panic equilibrium exists
  - \* Depositors recognize run-risk and price it in, even in normal times → Risk premia
- In open economy, the risk of banking panics amplifies impact of dollar shortages
  - \* Depositors fear that the dollar shortage could cause a banking collapse
- ► The role of swap lines
  - \* Contain risk premia by anchoring expectations on the 'no panic' equilibrium
  - \* Ease pressure on local currency and on bank funding costs

## **Conclusions**

#### **Conclusions**

- Our contributions
  - \* Conditional evidence on the dynamic effects of swap lines on asset prices
  - \* Open-economy framework to assess broader macro implications
- Swap lines are a standing Fed tool, important to improve our understanding of their workings

# 33

#### References I

- AKINCI, O. AND A. QUERALTO (2023): "Exchange Rate Dynamics and Monetary Spillovers with Imperfect Financial Markets," The Review of Financial Studies, 37, 309–355.
- DEL NEGRO, M., G. EGGERTSSON, A. FERRERO, AND N. KIYOTAKI (2017): "The Great Escape? A Quantitative Evaluation of the Fed's Liquidity Facilities," American Economic Review, 107, 824–857.
- GERTLER, M. AND N. KIYOTAKI (2015): "Banking, Liquidity, and Bank Runs in an Infinite Horizon Economy," American Economic Review, 105, 2011–2043.

# **A1: Swap lines**

## **Swap Line Announcements: Raw List of Events**

| Date        | Time (EST) | Description                              | Affected currencies                                             |
|-------------|------------|------------------------------------------|-----------------------------------------------------------------|
| 12-Dec-2007 | 10:00:00   | First swap lines established             | EUR, CHF                                                        |
| 11-Mar-2008 | 8:30:00    | Expansion of existing swap line capacity | EUR, CHF                                                        |
| 02-May-2008 | 9:15:00    | Technical adjustments to operations      | EUR, CHF                                                        |
| 30-Jul-2008 | 8:45:00    | Further capacity expansion               | EUR, CHF                                                        |
| 18-Sep-2008 | 3:00:00    | Major \$180B expansion + 3 new CBs       | EUR, CHF, JPY, GBP, CAD                                         |
| 24-Sep-2008 | 1:00:00    | Addition of 4 Nordic/Oceanic CBs         | AUD, SEK, DKK, NOK                                              |
| 26-Sep-2008 | 11:00:00   | Quarter-end funding operations           | EUR, CHF                                                        |
| 29-Sep-2008 | 10:00:00   | Total capacity increased to \$620B       | EUR, CHF, JPY, GBP, CAD, AUD, SEK, DKK, NOK                     |
| 13-Oct-2008 | 2:00:00    | Unlimited access for major CBs           | EUR, CHF, JPY, GBP                                              |
| 28-Oct-2008 | 17:00:00   | New Zealand added to network             | NZD                                                             |
| 29-Oct-2008 | 15:30:00   | Emerging markets addition                | BRL, MXN, KRW, SGD                                              |
| 03-Feb-2009 | 10:00:00   | Expiration announcement (Feb 2010)       | AUD, BRL, CAD, DKK, GBP, EUR, KRW, MXN, NZD, NOK, SGD, SEK, CHF |
| 25-Jun-2009 | 12:00:00   | Extension through Oct 2009               | AUD, BRL, CAD, DKK, GBP, EUR, KRW, MXN, NZD, NOK, SGD, SEK, CHF |
| 09-May-2010 | 9:15:00    | Reactivation for Euro crisis             | CAD, GBP, EUR, CHF                                              |
| 21-Dec-2010 | 9:00:00    | Extension through Aug 2011               | CAD, GBP, EUR, CHF, JPY                                         |
| 29-Jun-2011 | 9:00:00    | Further extension                        | CAD, GBP, EUR, CHF                                              |
| 31-Oct-2013 | 2:00:00    | Conversion to standing arrangements      | CAD, GBP, EUR, CHF, JPY                                         |
| 15-Mar-2020 | 17:00:00   | COVID-19: Enhanced terms (OIS+25bp)      | CAD, GBP, EUR, CHF, JPY                                         |
| 19-Mar-2020 | 9:00:00    | COVID-19: Temporary lines reactivated    | AUD, BRL, DKK, KRW, MXN, NOK, NZD, SGD, SEK                     |
| 20-Mar-2020 | 10:00:00   | Daily 7-day operations announced         | CAD, GBP, EUR, CHF, JPY                                         |
| 29-Jul-2020 | 14:00:00   | Extension to March 2021                  | AUD, BRL, DKK, KRW, MXN, NOK, NZD, SGD, SEK                     |
| 16-Dec-2020 | 14:00:00   | Extension to Sept 2021                   | AUD, BRL, DKK, KRW, MXN, NOK, NZD, SGD, SEK                     |
| 16-Jun-2021 | 14:00:00   | Final extension to Dec 2021              | AUD, BRL, DKK, KRW, MXN, NOK, NZD, SGD, SEK                     |

#### **Polluted events**

- ► 13-Oct-2008 02:00 → Massive European/UK bank rescue packages were announced Oct 13 (e.g., UK £37bn recap; Germany's €500bn plan; EU-wide guarantees), dominating markets the same day.
  - \* Polluted countries: EUR, GBP
- O9-May-2010 O9:15 → ECB announced the Securities Markets Programme (SMP) and additional euro-area crisis measures on the same day.
  - \* Polluted countries: EUR
- ► 16-Jun-2021 14:00 → Brazil's COPOM raised Selic 75bp on Jun 16
  - \* Polluted countries: BRL
- ▶ 19-Mar-2020 09:00 → ECB's PEPP (€750bn) had been unveiled late Mar 18; BoE emergency rate cut + QE, RBA easing package, DN rate hike, SNB intervention signal, BoC repo expansion all landed Mar 19.
  - \* Polluted countries: AUD, DKK, GBP, EUR, CHF, CAD, NOK, MXN, NZD, SGD, SEK
- ≥ 20-Mar-2020 10:00 → Fed broadened MMLF to municipal MMFs (same day); Norges Bank cut to 0.25%; Banxico unscheduled 50bp cut + FX measures; BoC announced further liquidity programs; BoE QE purchases started; DN's rate hike became effective.
  - \* Polluted countries: CAD, GBP, EUR, CHF, JPY, NOK, MXN, DKK



### **FIMA vs Swap Lines**

#### Swap lines

- \* Fed swaps USD for foreign currency at market rate + spread.
- \* Counterparty: small set of trusted central banks (ECB, BoJ, BoE, etc.).
- \* Fed books foreign currency on its balance sheet, but cannot redeploy it.
- \* Not collateral in the strict sense; credit risk managed via counterparty selection.
- \* Purpose: allow partner central banks to on-lend USD to domestic banks.

#### FIMA repo facility

- \* Fed provides USD against repoed U.S. Treasuries.
- \* Counterparty: all foreign central banks with Fed custody accounts.
- \* Collateral is genuine and liquid (Fed could sell Treasuries if needed).
- \* True repo, structurally same as domestic Fed repo ops.
- \* Purpose: give official institutions a liquidity backstop without fire-selling Treasuries.

#### Summary:

- \* Swap lines = club good (trust-based, uncollateralized in practice)
- \* FIMA = safety valve (collateralized, broad access).

## From Ad Hoc to Standing Architecture: Fed USD Liquidity Abroad

#### **Timeline (selected milestones)**

- **2008–2010**; Global crisis: Fed deploys and repeatedly expands USD *swap lines*; reactivations during euro-area stress (2010).
- ▶ 2013 ; Standing swap lines established among Fed, ECB, BoJ, BoE, BoC, SNB (permanent network).
- ► Mar 2020; COVID shock: temporary FIMA repo facility created (broad official-sector access against U.S. Treasuries); swap lines reactivated/expanded.
- ▶ **Jul 2021**; FIMA repo converted to a *standing* facility (alongside the domestic SRF).

#### Mechanism: two complementary standing tools

- **Standing swap lines** (club-based, trust-driven): USD provided to select central banks via FX swaps; those CBs on-lend to local institutions.
- ► **FIMA standing repo** (broad, collateralized): USD provided against U.S. Treasuries held in Fed custody by foreign official institutions.

**Takeaway:** The Fed's international USD provision is now an *embedded*, *standing policy tool—*a two-tier backstop (swap lines + FIMA) that can be activated quickly in stress.

## **A2: Model Details**

#### Bankers Back

$$\begin{split} V_{i,t} &= \max_{S_{i,t},D_{i,t}^*} & E_t \big[ (1-\sigma) \Lambda_{t,t+1} N_{i,t+1}) + \sigma \Lambda_{t,t+1} V_{i,t+1} \big] \\ \psi_t &\equiv \frac{V_t}{N_t} = E_t \bigg[ \Lambda_{t,t+1} (1-\sigma + \sigma \psi_{t+1}) \frac{N_{t+1}}{N_t} \bigg] \\ \psi_t &= \max_{\phi_t, x_t} & \big[ \mu_t \phi_t + \mu_t^* \phi_t x_t + \nu_t \big] \\ &\text{s.t.} & \psi_t \geq \Theta(x_t, \gamma_t) \phi_t \end{split}$$

#### **Banks' FOCs**

▶ Banks choose scale ( $\phi_t$ ) and funding mix ( $x_t$ )

$$\phi_t = \frac{\nu_t}{\Theta(x_t, \gamma_t) - (\mu_t + \mu_t^* x_t)} \qquad \mu_t^* = \left[\frac{\Theta(x_t, \gamma_t)}{\Theta_x(x_t, \gamma_t)} - x_t\right]^{-1} \mu_t$$

#### where

- \* Leverage:  $\phi_t = q_t S_t / N_t$
- \* Domestic excess return:  $\mu_t = E_t [\Omega_{t+1}(R_{K,t+1} R_{t+1})]$
- \* Foreign excess return:  $\mu_t^* = E_t \left[ \Omega_{t+1} \left( R_{t+1} \frac{Q_{t+1}}{Q_t} R_{t+1}^* \right) \right]$
- \* UIP deviations:  $\mu_t^{FX} = E_t \left[ \Omega_{t+1} \left( R_{K,t+1} \frac{Q_{t+1}}{Q_t} R_{t+1}^* \right) \right]$
- \* Marginal value of internal funds:  $\Omega_{t+1} = \Lambda_{t,t+1} (1 \sigma + \sigma \psi_{t+1})$
- \* Marginal saving from extra unit of net worth:  $v_t = \left[\Omega_{t+1} R_{t+1}\right]$

## **Calibration**

| Parameter                            | Symbol                        | Value         |
|--------------------------------------|-------------------------------|---------------|
| Home discount factor                 | β                             | 0.9925        |
| Foreign discount factor              | $oldsymbol{eta}^*$            | 0.9950        |
| Relative home size                   | ξ/ξ*                          | 0.33          |
| Capital share                        | α                             | 0.33          |
| Depreciation rate                    | δ                             | 0.025         |
| IES                                  | $\sigma$                      | 1             |
| Price mark-up                        | $\boldsymbol{\theta}_p$       | 0.2           |
| Inverse Frisch elasticity            |                               | 3.79          |
| Prob. keeping prices fixed           | $X \in \mathcal{F}_p$         | 0.84          |
| Price indexation parameter           | $\iota_p$                     | 0.24          |
| Investment adjustment cost           | $\dot{\psi}_{I}$              | 0.5           |
| Trade price elasticity               | $(1+\rho)/\rho$               | 1.5           |
| Home trade openness                  | $\omega$                      | 0.2           |
| Foreign trade openness               | $\omega^*$                    | 0.2/0.33      |
| Bank survival rate                   | $\sigma_b$                    | 0.93          |
| Divertable fraction upon default     | θ                             | 0.27          |
| Bank endowment                       | $oldsymbol{arkappa}_{b}^{ss}$ | 0.07          |
| Home bias in bank funding            | $\gamma^{ss}$                 | 3             |
| Policy rate persistence              | $\gamma^r$                    | 0.82          |
| Foreign Taylor rule inflation coeff. | $oldsymbol{\phi}_{\pi}$       | 1.5           |
| Home Taylor rule FX coeff.           | $\gamma_e$                    | 0.05,0.4,0.99 |

### **Dollar shortage shock**

**Credit market** 



## The effect of swap lines



## **Banks: Optimization problem**

Bank maximize:

$$\mathbb{V}_{it}^b = \max_{S_{it}, D_{it}^*} (1 - \sigma) \mathbb{E}_t(\Lambda_{t,t+1} N_{i,t+1}) + \sigma \mathbb{E}_t(\Lambda_{t,t+1} V_{i,t+1})$$

subject to an incentive compatibility constraint

$$V_{it} \ge \theta \left(1 + \gamma x_{it}^2\right) q_t S_{it}$$

and the law of motion for net worth

$$N_{i,t+1} = (R_{K,t+1} - R_{t+1})q_tS_{i,t} + \left(R_{t+1} - R_{t+1}^* \frac{Q_{t+1}}{Q_t}\right)Q_tD_{it}^* + R_{t+1}N_{it}$$

## **Households & Employment agencies**

- ► Continuum of households indexed by  $i \in [0, 1]$
- ► Each household is a monopolistic supplier of specialized labor  $L_{it}$  (Erceg, Henderson and Levin (2000))
- Competitive "employment agencies" combine Lit into a homogeneous labor input

$$L_{t} = \left(\int_{0}^{1} L_{it}^{\frac{1}{1+\theta_{w}}} di\right)^{1+\theta_{w}}$$

Retail firms producing intermediate goods pay

$$W_{t} = \left(\int_{0}^{1} W_{it}^{-\frac{1}{\theta_{w}}} dj\right)^{-\theta_{w}}$$

## **Households & Employment agencies**

Households maximize:

$$\mathbb{V}^{h} = \max_{\substack{\{C_{Dt+j}, \ M_{Ct+j}, \ C_{t+j}\}_{j=0}^{\infty}}} \mathbb{E}_{t} \left[ \sum_{j=0}^{\infty} \beta^{j} \left( \frac{\sigma}{1-\sigma} \left( C_{t+j} - \frac{\chi_{o}}{1+\chi} L_{t+j}^{1+\chi} \right)^{\frac{\sigma-1}{\sigma}} \right) \right]$$

subject to

$$P_tC_t + P_tD_t \le W_tL_t + P_tR_tD_{t-1} + R_t^nB_{t-1} + W_{it} + \Pi_t$$

where  $C_t$  is a CES aggregate of domestic  $(C_D)$  and imported  $(M_C)$  composite goods:

$$C_{t} = \left[ (1 - \omega)^{\frac{\rho}{1 + \rho}} C_{Dt}^{\frac{1}{1 + \rho}} + \omega^{\frac{\rho}{1 + \rho}} M_{Ct}^{\frac{1}{1 + \rho}} \right]^{1 + \rho}$$

and  $P_t$  is given by

$$P_{t} = \left[ (1 - \omega) P_{Dt}^{-\frac{1}{\rho}} + \omega P_{Mt}^{-\frac{1}{\rho}} \right]^{-\rho}$$

## Firms & Price setting

- ightharpoonup Retail firms produce intermediates with the following technology  $Y_{it} = K_{it}^{\alpha} L_{it}^{1-\alpha}$
- Prices are set on a staggered basis as in Calvo (1983)
  - \* Probability of not being able to reset prices in t is  $\xi \in [0, 1]$
- ► A retail firm that can reset its price at time t solves

$$\mathbb{V}^f = \max_{P_{Di,t}} \mathbb{E}_t \left[ \sum_{j=0}^{\infty} \xi_p^j \Lambda_{t,t+j} \left( P_{Di,t} Y_{i,t+j} - W_{t+j} L_{i,t+j} - Z_{t+j} K_{i,t+j} \right) \right]$$

Final output is a CES composite of retail firms' output:

$$Y_{t} = \left(\int_{0}^{1} Y_{i,t}^{\frac{1}{1+\theta_{p}}} di\right)^{(1+\theta_{p})}$$

## **Capital goods producers**

- Capital producers produce new capital goods subject to cost of adjusting investment
- ► The representative capital producer solves

$$\mathbb{V}^{i} = \max_{\left\{I_{t+j}\right\}_{j=0}^{\infty}} \mathbb{E}_{t} \left[ \sum_{j=0}^{\infty} \Lambda_{t,t+j} \left( q_{t+j} I_{t+j} - \frac{p_{D,t+j}}{P_{t+j}} \phi_{lt} \right) \right]$$

where  $I_t$  is a CES aggregate of domestic  $(C_D)$  and imported  $(M_C)$  composite goods:

$$I_{t} = \left[ (1 - \omega)^{\frac{\rho}{1 + \rho}} I_{Dt}^{\frac{1}{1 + \rho}} + \omega^{\frac{\rho}{1 + \rho}} M_{lt}^{\frac{1}{1 + \rho}} \right]^{1 + \rho}$$

► Investment adjustment cost:

$$\phi_{l,t} = \frac{\psi_l}{2} (I_t/I_{t-1} - 1)^2 I_t$$

## **Foreign economy**

- ▶ US households analogous to Home, but they invest in EM bank deposits (no US banks)
- ► US economy mirrors EM except for:
  - \* Size
  - \* Financial frictions

## **Market clearing and BoP**

Market-clearing home good:

$$Y_{t} = C_{Dt} + I_{Dt} + \frac{\xi^{*}}{\xi} (M_{Ct}^{*} + M_{It}^{*}) + \phi_{It}$$

Market-clearing claims on physical capital (held by banks):

$$S_t = (1 - \delta)K_t + I_t$$

Balance of payments:

$$C_t + I_t + p_{d,t}\phi_{It} - p_{d,t}Y_t = Q_t(D_t^* - R_t^*D_{t-1}^*)$$

## **Monetary policy**

► Monetary policy follows inertial Taylor rule:

$$R_{t+1}^n = \left(R_t^n\right)^{\gamma_r} \left(\beta^{-1} \pi_t^{\frac{1-\gamma_e}{\gamma_e}} \left(e_t/e_{t-1}\right)^{\frac{\gamma_e}{1-\gamma_e}}\right)^{(1-\gamma_r)} u_t^r$$

with

$$\pi_{t} = P_{D,t}/P_{D,t-1} = \pi_{c,t}p_{Dt}/p_{Dt-1}$$

$$\mathcal{E}_t = \mathcal{Q}_t P_t / P_t^*$$

# **A3: Bank Runs**

## Depositors price in the risk of runs

▶ Deposits pay a non-contingent gross rate  $\bar{R}_{t+1}$ . But if there is a run, depositors face equal haircuts

$$R_{t+1}^d = \begin{cases} \bar{R}_{t+1} & \text{if no bank run} \\ h_{t+1}\bar{R}_{t+1} & \text{if bank run} \end{cases}$$

So, with the probability of a bank run  $p_t$ , deposit rate is:

$$\mathbf{1} = \left[ (\mathbf{1} - p_t) \, \mathbb{E}_t (\Lambda_{t,t+1}) + p_t \, \mathbb{E}_t \big( \tilde{\Lambda}_{t,t+1} h_{t+1} \big) \right] \bar{R}_{t+1}$$

The risk of financial panics is reflected in higher funding costs for banks

\* 
$$p_t \uparrow$$
 or  $h_{t+1} \downarrow \Rightarrow \bar{R}_{t+1} \uparrow$ 

▶ Identical for foreign depositors and  $\bar{R}^*$  (work in progress)