Intermediated Dollar Lending of Last Resort: from Dollar Safety to Treasury Fragility

Ding Ding Karen K. Lewis
MIT Wharton, NBER, and CEPR

 $\begin{tabular}{ll} Yao Zeng \\ Wharton and NBER \end{tabular}$

Dollar Dominance and Global Dollar Lending of Last Resort (LoLR): Background

- Dollar dominance in foreign (developed) economies leads to a demand for dollar assets
 - Dollar dominance in trade invoicing (e.g., Gopinath/Stein 21)
 - \bullet Dollar dominance in financial transactions (e.g., Coppola/Krishnamurthy/Xu 24)
- Lacking dollar deposits, foreign banks rely on wholesale dollar funding yet vulnerable to (both systemic and idiosyncratic) dollar funding shocks
 - Runs on MMFs (e.g., Ivashina/Scharfstein/Stein 15, Schmidt/Timmermann/Wermers 16)
 - Retreat of prime funds after the 2016 MMF Reform (e.g., Anderson/Du/Schlusche 21)
 - \bullet Reluctance of global banks in providing dollar liquidity (e.g., Correa/Du/Liao 22)
- "Scrambling for dollars" during both crisis and normal times

Economic Significance of Dollar LoLR and Short-Term Implications

- U.S. Fed's dollar swap lines as a committed global dollar LoLR
 - Helps to reduce CIP deviations (Bahaj/Reis 20)
 - Helps to stabilize dollar appreciation (Kekre/Lenel 22)
 - Helps to stabilize U.S. Treasuries (Duffie 23)

.

Data: FRED

Contribution: Long-Term Implications of Intermediated Dollar LoLR

What are the long-term implications on global banking, and ultimately, the U.S.?

Contribution: Long-Term Implications of Intermediated Dollar LoLR

What are the long-term implications on global banking, and ultimately, the U.S.?

• Compositional shift in foreign Treasury holdings from more to less stable hands

Figure plots foreign holdings of long-term Treasuries by official and private investors (left), divided by total long-term Treasuries outstanding, excluding those held by the Federal Reserve (right). Sources: Treasury MSPD, Treasury TIC, FRED.

Contribution: Long-term Implications of Intermediated Dollar LoLR

This paper: Formulate the idea of dollar safety to Treasury fragility in several steps

- Some more basics of intermediated dollar LoLR
 - Conceptualizing dollar LoLR as the Fed's commitment
- 2 Stylized facts on intermediated dollar LoLR
 - Substitution between private FX swaps and dollar LoLR
 - Substitution between central bank dollar reserves and dollar LoLR; hinting long-term effects
- 3 A model of intermediated dollar LoLR with headline results:
 - Encourages private dollar debt; crowds out official dollar reserves
 - Unintended compositional changes in Treasury holdings overseas: more private, less official
 - Not just standard moral hazard as in discount window or bailouts; intermediation chain matters

• At time t = 0:

Federal Reserve

• At time t = 0:

• At time t = 1:

• At time t = 1 + m:

• At time t = 1 + m:

How Does the Fed Price Dollar Swap Lines? A Markup View

• NY Fed sets: $r_0 = OIS_{\$} + r_{Fed}$; same for all counterpart central banks

Data: NY Fed

Stylized	Fact	I:	Substitution	between	\mathbf{FX}	Swaps and Swap I	Lines

Understanding Private and Public Dollar Funding Costs

For each pair between the U.S. and a swap line country, define (recall Du/Tepper/Verdelhan 18, for example):

$$\Delta \doteq \text{Market - Swap Line Spread} = \underbrace{(1 + OIS_\$) \frac{F_\$}{\varepsilon_\$} - 1}_{\text{market dollar funding cost}} - \underbrace{(OIS_\$ + r_{\text{Fed}})}_{\text{swap line dollar funding cost}} \tag{1}$$

and

$$r_{\text{basis}, \mathfrak{S}, \mathfrak{S}} = (1 + OIS_{\mathfrak{S}}) \frac{F_{\mathfrak{S}}}{\varepsilon_{\mathfrak{S}}} - (1 + OIS_{\mathfrak{S}}).$$
 (2)

Plugging (2) into (1) to replace $F_{\$}/\varepsilon_{\$}$:

$$\Delta \doteq \text{Market - Swap Line Spread} = \underbrace{\left(OIS_{\text{\in}} + r_{\text{basis},\text{\in},\$}\right)}_{\text{market dollar funding cost}} - \underbrace{\left(OIS_{\$} + r_{\text{Fed}}\right)}_{\text{swap line dollar funding cost}}$$

Market v.s. Fed: A View of Prices and Quantities (Euro Zone)

Data: Bloomberg, NY Fed

Market v.s. Fed: A View of Prices and Quantities (Japan)

Data: Bloomberg, NY Fed

Stylized	Fact II	: Substitution	between	СВ	Reserves	and S	Swap Li	nes

Reserves against Dollar Debt before Dollar LoLR

Data sources: Chinn/Ito/McCauley, IMF, BIS, Bahaj/Fuchs/Reis (swap + FIMA)

 \bullet USD-denominated debt $\uparrow \Rightarrow$ Foreign central bank dollar reserves \uparrow

Reserves against Dollar Debt after Dollar LoLR

Data sources: Chinn/Ito/McCauley, IMF, BIS, Bahaj/Fuchs/Reis (swap + FIMA)

• But relationship gone after establishment of dollar LoLR

USD Reserves v.s. USD Denominated Debt: Regressions

Table: USD Reserves v.s. USD Denominated Debt before Liquidity Lines

	(1)	(2)	(3)	(4)
	A11	Private	Banks	Nonbanks
USD-Denominated Debt	0.55***	0.55***	0.83***	1.42***
	(0.02)	(0.02)	(0.03)	(0.05)
Country FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
N	149	149	149	149
Adjusted R ²	0.952	0.952	0.935	0.952

Table: USD Reserves v.s. USD Denominated Debt after Liquidity Lines

	(1)	(2)	(3)	(4)
	A11	Private	$_{\rm Banks}$	Nonbanks
USD-Denominated Debt	0.05	0.06	0.08	-0.06
	(0.04)	(0.04)	(0.06)	(0.10)
Country FE	Yes	Yes	Yes	Yes
Year FE	Yes	Yes	Yes	Yes
N	160	160	160	160
Adjusted R ²	0.866	0.867	0.868	0.866

Taking Stock: From Dollar Safty to Treasury Fragility

- So far, we understand:
 - Ollar swap lines as dollar lending of last resort
 - 2 Dollar swap lines as imperfect substitution with FX swaps and foreign dollar reserves
 - Oblian Supplies impact dollar debt and CB reserves in the long term
- A model of global banking and dollar LoLR encompassing both short- and long-term effects
 - Dollar exchange rate, CIP deviation, and U.S. Treasury price
 - Foreign dollar debt issuance and foreign dollar reserves
 - Compositional changes in Treasury holdings overseas

Model: Long-Term Implications of Intermediated Dollar LoLR

Setup

- Built upon Lorenzoni 08; extended to two-country setup with asymmetry
- Three dates, t = 0, 1, 2, and two sets of countries, the U.S. and a continuum of "Japan"
 - The spot real exchange rate $\varepsilon_{\$,1}$, $\varepsilon_{\$,2}$ at t=1,2 and the real forward rate $f_{\$}$ at t=1 are expressed in Japanese yen per \$1
- Each country: a continuum of risk-neutral banks and a central bank
 - Banks maximize their date-2 profits
 - Net world interest rate r^* for Japan and normalized to zero for the U.S.
- A sector of competitive, risk-averse global financiers (à la Gabaix/Maggiori 15)
- A single asset class in the world economy: U.S. Treasuries
 - Banks invest dollars in Treasuries according to a production function $g(\cdot)$ which is increasing, strictly concave, and satisfies the Inada conditions
 - U.S. Treasuries mature at t=2, unit value normalized to one dollar

US Banks

• At t = 0, the representative U.S. bank issues dollar deposits b_0 in order to invest in U.S. Treasuries:

$$q_0 = g(b_0)$$

- At t = 1, U.S. bank receives additional dollar endowment z_1 , repays old deposits b_0 , and issues new deposits b_1
- Portfolio choice between investing domestically or abroad
 - Purchasing additional U.S. Treasuries $\Delta q = q_1 q_0$
 - Serve as a dollar provider to the Japanese bank by supplying s_1 synthetic dollars in the FX swap market (à la Du/Tepper/Verdelhan 18)
 - Converts $\$s_1$ to $\$s_1\varepsilon_{\$,1}$ at the spot exchange rate $\varepsilon_{\$,1}$
 - Enters a forward contract at the forward rate $f_{\$}$
 - At t=2, returns $\$s_1\varepsilon_{\$,1}$ to the Japanese bank and receives $\$s_1\varepsilon_{\$,1}/f_{\$}$ in return
- Denote the net return of synthetic dollar provision by μ ; effectively capturing CIP deviation

US Banks

- Financial frictions
 - **4** Additional fraction ξ of the arbitrage position as capital cost
 - 2 Limited commitment constraint on b_1 :

$$b_1 \le \theta p + s_1$$

• At t = 1, U.S. bank faces budget constraint:

$$g^{-1}(\Delta q) + (1+\xi)s_1 + b_0 \le z_1 + b_1$$

• At t = 2, profit is given by

$$\Pi_2 = q_1 + (1 + \mu - \xi)s_1 - b_1$$

Global Financiers

- At t = 1, the representative global financier analogous to the financier in Gabaix/Maggiori 15 and Itskhoki/Mukhin 21 also supplies dollars on the spot market
- At t=2, the global financier is effectively risk-averse in that its profit is given by

$$\widehat{\Pi}_2 = (1 + r^*)d_1\varepsilon_{\$,1} - d_1\varepsilon_{\$,2} - \frac{1}{2}\psi d_1^2$$

- ullet A value-at-risk constraint can micro-found ψ
- Can define UIP deviation as:

$$\nu = (1 + r^*)\varepsilon_{\$,1} - \varepsilon_{\$,2}$$

Japanese Banks

• At t = 0, the representative Japanese bank issues (wholesale) dollar bonds b_0^* in order to invest in U.S. Treasuries:

$$q_0^* = g(b_0^*)$$

- At t = 1, also receives additional dollar endowment z_1^* , repays old dollar bonds b_0^* , and issues new deposits b_1^* but in yen only dollar funding shortage
- Portfolio choice between liquidating Treasuries or dollar borrowing
 - Liquidate Treasury holdings by $\Delta q^* = q_0^* q_1^*$ at market price p
 - Issue new deposits b_1^* denominated in yea and demand $d_1^* + s_1^*$ total dollars

$$(1+r^*)b_0^* \le z_1^* + \frac{b_1^*}{\varepsilon_{\$,1}} + p\Delta q^*$$

where

$$\frac{b_1^*}{\varepsilon_{\$,1}} \le \theta^* p$$
 and $\frac{b_1^*}{\varepsilon_{\$,1}} = d_1^* + s_1^*$

Japanese Banks

• At t = 2, bank profit, denominated in dollars, is given by

$$\Pi_2^* = q_1^* + \left(d_1^* - \frac{d_1^* \varepsilon_{\$,1}}{\varepsilon_{\$,2}}\right) + \left(s_1^* - \frac{(1+r^*)s_1^* \varepsilon_{\$,1}}{f_\$}\right) - \frac{(1+r^*)b_1^*}{\varepsilon_{\$,2}}$$

Market Clearing

• Treasury market clears at
$$t = 1$$
:

$$\Delta q^* = \Delta q$$

2 FX spot market clears at t = 1:

$$d_1^* = d_1$$

3 Synthetic dollar market (i.e., FX swap market) clears at t = 1:

$$s_1^* = s_1$$

• Joinly pin down p for Treasuries, ν for dollars, and μ for FX swaps (i.e., synthetic dollars)

Policy Tool I: BoJ Dollar Reserves

• At t=0, BoJ taxes d^R from Japanese depositors to invest in q^R U.S. Treasuries:

$$q^R = g(d^R)$$

- At t=1, sells them and lends to Japanese banks
- At t=2, rebates any remaining proceeds from maturing Treasury holdings to Japanese banks
- Date-1 budget constraint of the representative Japanese bank becomes:

$$(1+r^*)b_0^* \le z_1^* + \frac{b_1^*}{\varepsilon_{\$,1}} + p\Delta(q^* + q^R)$$

• BoJ chooses d^R to maximize the date-2 profit of the representative bank minus the deadweight cost of taxation $\frac{1}{2}\tau(d^R)^2$

Policy Tool II: Fed Dollar Swap Lines

- At t = 1, Fed borrows s^L from U.S. depositors and lends to BoJ
 - Not capital or taxation costs; effectively a form of QE to foreigners
- At t=2, Fed receives repayment of s^L ; rebated to U.S. banks
- Date-1 budget constraint of the representative Japanese bank becomes:

$$(1+r^*)b_0^* \le z_1^* + s^L + \frac{b_1^*}{\varepsilon_{\$,1}} + p\Delta(q^* + q^R)$$

- Fed maximizes U.S. banks' date-2 after-rebate profits
- How committed is the Fed?
 - ${\bf 0}$ Discretionary lending s^L at t=1; "ex-post intervention" (Farhi/Tirole 12, Bocola/Lorenzoni 20)
 - ② Optimally committed lending $s^L(z_1, z_1^*)$ at t = 0 (Kydland/Prescott 77, Barro/Gordon 83)

The "Dash-for-Dollar" Episode

Proposition

For any given b_0 , there exists a "dash-for-dollar" equilibrium at t=1 in which p<1, $\nu>0$, and $\mu>0$ without foreign dollar reserves or dollar swap lines, if and only if the following holds:

$$-\frac{g''(b_0)}{g'(b_0)^2}\left(\left((1+\xi)+\xi(1+\psi)\right)\theta+(1+\psi)\theta^*\right)>1$$
(3)

- More severe "dash-for-dollar" when:
 - U.S. Treasury market shallower
 - Collateral constraints facing Japanese banks tighter
 - Value-at-risk constraints facing the global financier tighter
 - Capital costs for U.S. banks higher

The Short-Term Effects of Swap Lines

Proposition

When condition (3) holds, a higher provision of dollar swap lines leads to a higher U.S. Treasury price p, dollar depreciation (i.e., a lower UIP deviation captured by ν), and a lower CIP deviation captured by μ :

$$\frac{\partial p}{\partial s^L} > 0, \frac{\partial \nu}{\partial s^L} < 0, \text{ and } \frac{\partial \mu}{\partial s^L} < 0.$$
 (4)

- Larger U.S. swap line provision leads to:
 - Higher U.S. Treasury price
 - Lower UIP and CIP deviations
- Key: relaxing Japanese bank collateral constraints

Long-Term Effects of Dollar Lending of Last Resort

Proposition

When the Fed designs swap lines in a discretionary manner at t = 1, Japanese banks borrow more b_0^* , purchase more U.S. Treasuries q_0^* , and the BoJ accumulates lower q^R at t = 0 compared to both the case without swap lines and the first-best.

- U.S. dollar swap line as a dollar LoLR leads to, ex-ante:
 - Excessive dollar deposit-taking by Japanese banks; higher private Treasury holdings
 - Insufficient dollar reserves by the BoJ; lower official Treasury holdings
- Key: pecuniary externalities
- Implication: inefficient redistribution of U.S. Treasury holdings
 - Rising share of Treasuries held by foreign mutual funds and hedge funds (Vissing-Jorgensen 21, Kashyap/Stein/Wallen/Younger 25)
 - Shorter liabilities and higher price elasticities (Jansen/Li/Schmid 24, Koijen/Yogo 24, Chaudhary/Fu/Zhou 25)

Long-Term Effects of Dollar Lending of Last Resort

Proposition

When the Fed designs swap lines under a committed rule at t=0, Japanese banks borrow more (less) b_0^* , purchase more (less) U.S. Treasuries q_0^* , and the BoJ accumulates lower (higher) q^R compared to the case without swap lines (with discretionary swap lines). However, the allocation does not implement the first-best.

• A "committed" commitment helps, but can't restore first-best

Conclusion

- Conceptualizing dollar swap lines as intermediated dollar lending of last resort
- Short-term: dollar LoLR addressing dollar funding shortages
- Long-term: higher foreign dollar debt, lower foreign dollar reserves, and inefficient redistribution of Treasury holdings
- Does dollar LoLR ultimately help the dollar?
 - Not necessarily; time-inconsistency problem facing the Fed
 - Intermediation chains further complicate the situation
- John Connally: "Our dollar, your problem."
- "Our dollar, our problem?"

How Foreign Central Banks Distribute and Monitor Dollars

- What private entities are eligible?
 - Commercial banks and dealer banks
 - Non-banks generally ineligible except for brokers/dealers
- What collaterals are required at what haircuts?
 - (Local) government bonds or other high-quality bonds
 - Usual haircut between 5% and 10%
- What mechanism is used by foreign CBs in allocating the dollars?
 - Fixed rate auction under ECB and BoJ; bidders always filled in full
 - Dutch auctions under BoE and BoK
 - Swaps happen after auctions under t+1 settlement