Topography of the FX Derivatives Market: A View from London

Sinem Hacıoğlu-Hoke^{1,5} Daniel Ostry² Hélène Rey^{3,5} Adrien Rousset Planat³ Vania Stavrakeva^{3,5} Jenny Tang^{4,5}

¹Federal Reserve Board

²Bank of England

³London Business School

⁴Federal Reserve Bank of Boston

⁵CEPR

 4^{th} Annual International Role of the Dollar Conference

The views expressed here do not necessarily reflect the position of the Bank of England or Federal Reserve System.

Motivation

- > 70% of global FX turnover (\$5.4 trillion daily in 2022) occurs in derivatives markets, vs. only 30% in spot markets. [BIS, 2024]
 - Key for exchange rate dynamics, trade and financial flows, policy transmission and spillovers.

Motivation

- > 70% of global FX turnover (\$5.4 trillion daily in 2022) occurs in derivatives markets, vs. only 30% in spot markets. [BIS, 2024]
 - Key for exchange rate dynamics, trade and financial flows, policy transmission and spillovers.
- ► \$80 trillion in outstanding obligations to pay USD via FX derivatives is "in a blind spot" as recorded off-balance sheet.

 [Borio, McCauley, and McGuire, 2022]

Motivation

- ► 70% of global FX turnover (\$5.4 trillion daily in 2022) occurs in derivatives markets, vs. only 30% in spot markets. [BIS, 2024]
 - Key for exchange rate dynamics, trade and financial flows, policy transmission and spillovers.
- ▶ \$80 trillion in outstanding obligations to pay USD via FX derivatives is "in a blind spot" as recorded off-balance sheet. [Borio, McCauley, and McGuire, 2022]
- ► This paper: Exploit over 100 million transactions to construct and analyze <u>daily firm-level</u> <u>net</u> FX derivatives exposures for all 16000 participants in the largest FX market in the world—London (~ 40% of global turnover).
 - Net exposures at firm-level crucial since they determine firms' profits/losses from FX derivatives and so their <u>FX derivatives demand</u>, which matter for exchange rates.

Key Questions

- ▶ What are the motives behind different firms' FX derivatives use?
 - asset managers, dealer & non-dealer banks, market makers, hedge funds, non-financials.
 - Who is mostly hedging? Mostly speculating? Who is providing the liquidity?
 - Market concentration? Within-sector heterogeneity?
- ► How do different firms <u>adjust</u> their net FX derivatives exposures to changes in interest rates, exchange rates, and macroeconomic news?
 - How does the market equilibrate in the face of speculative currency flows?
- ► How does this heterogeneity in firm demand affect exchange rates?
 - Which sectors net FX derivatives exposures most-strongly co-move with exchange rates, both unconditionally and conditional on important aggregate shocks?
 - monetary policy surprises in major jurisdictions
 - US credit spread innovations from macro news surprises

- ► UK segment of the European Market Infrastructure Regulation (EMIR) Trade Repository (TR) dataset on over-the-counter (OTC) FX derivatives transactions.
 - All FX derivatives (swaps, forwards, futures) transactions that have either a UK firm as a counterparty or an EU firm as a counterparty, if transaction occurs in UK/includes GBP.

- ► UK segment of the European Market Infrastructure Regulation (EMIR) Trade Repository (TR) dataset on over-the-counter (OTC) FX derivatives transactions.
 - All FX derivatives (swaps, forwards, futures) transactions that have either a UK firm as a counterparty or an EU firm as a counterparty, if transaction occurs in UK/includes GBP.
- ▶ Using over 100 million transactions (second-by-second), we construct daily firm-level FX derivative net exposures for 16000 firms.
 - Sample runs from January 1, 2015 to December 31, 2020, dictated by data-quality issues pre-2015
 EU firms' ceasing to report in UK due to Brexit post-2020, affecting data coverage.

- ► UK segment of the European Market Infrastructure Regulation (EMIR) Trade Repository (TR) dataset on over-the-counter (OTC) FX derivatives transactions.
 - All FX derivatives (swaps, forwards, futures) transactions that have either a UK firm as a counterparty or an EU firm as a counterparty, if transaction occurs in UK/includes GBP.
- ▶ Using over 100 million transactions (second-by-second), we construct daily firm-level FX derivative net exposures for 16000 firms.
 - Sample runs from January 1, 2015 to December 31, 2020, dictated by data-quality issues pre-2015
 & EU firms' ceasing to report in UK due to Brexit post-2020, affecting data coverage.
- ► To facilitate analysis, we manually classify firms into 5 (8) sectors.
 - (i) asset managers (hedge funds, investment funds and pension funds); (ii) non-financial corporates; (iii) insurers; (iv) (non-bank) market makers; and (v) banks (dealer and non-dealer).

Firms Trading FX Derivatives by Sector

Note. Number of unique firms trading FX derivatives, by sector. Firms included are those in the DTCC and UnaVista trade repositories between January 1 2015 and December 31 2020.

Motives & FX Derivatives Exposures

Consider a UK firm i that chooses its (net) FX derivatives exposure $N_{0,1}^{i,\{USD,GBP\}}$ by solving a two-period ($t = \{0,1\}$) optimization problem:

$$\max_{N_{0,1}^{i,\{USD,GBP\}}} E_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right) - \frac{\rho}{2} Var_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right),$$

$$X_1^{i,H} \text{ is } i\text{'s non-FX derivatives profits, } \pi_{0,1}^{i,FX,deriv} = (S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD})N_{0,1}^{i,\{USD,GBP\}}$$

Consider a UK firm i that chooses its (net) FX derivatives exposure $N_{0,1}^{i,\{USD,GBP\}}$ by solving a two-period ($t = \{0,1\}$) optimization problem:

$$\max_{N_{0,1}^{i,\{USD,GBP\}}} E_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right) - \frac{\rho}{2} Var_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right),$$

 $X_1^{i,H} \text{ is } i\text{'s non-FX derivatives profits, } \pi_{0,1}^{i,FX,deriv} = (S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD})N_{0,1}^{i,\{USD,GBP\}}$

Firm i's optimal 1-period $\{USD, GBP\}$ derivatives exposure is:

$$N_{0,1}^{i,\{USD,GBP\}} = \underbrace{\frac{E_0^i \left(S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD}\right)}{\rho Var_0^i \left(S_1^{GBP/USD}\right)}}_{Spec_0^{i,\{USD,GBP\}}} - \underbrace{\frac{Cov_0^i \left(S_1^{GBP/USD}, X_1^{i,H}\right)}{Var_0^i \left(S_1^{GBP/USD}\right)}}_{Hedge_0^{i,\{USD,GBP\}}}$$

Consider a UK firm i that chooses its (net) FX derivatives exposure $N_{0,1}^{i,\{USD,GBP\}}$ by solving a two-period ($t = \{0,1\}$) optimization problem:

$$\max_{N_{0,1}^{i,\{USD,GBP\}}} E_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right) - \frac{\rho}{2} Var_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right),$$

 $X_1^{i,H} \text{ is } i\text{'s non-FX derivatives profits, } \pi_{0,1}^{i,FX,deriv} = (S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD})N_{0,1}^{i,\{USD,GBP\}}$

Firm i's optimal 1-period $\{USD, GBP\}$ derivatives exposure is:

$$N_{0,1}^{i,\{USD,GBP\}} = \underbrace{\frac{E_0^i \left(S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD}\right)}{\rho Var_0^i \left(S_1^{GBP/USD}\right)}}_{Spec_0^{i,\{USD,GBP\}}} - \underbrace{\frac{Cov_0^i \left(S_1^{GBP/USD}, X_1^{i,H}\right)}{Var_0^i \left(S_1^{GBP/USD}\right)}}_{Hedge_0^{i,\{USD,GBP\}}}$$

▶ Balance between speculative and hedging demand is first order for exchange rates

Consider a UK firm i that chooses its (net) FX derivatives exposure $N_{0,1}^{i,\{USD,GBP\}}$ by solving a two-period ($t = \{0,1\}$) optimization problem:

$$\max_{N_{0,1}^{i,\{USD,GBP\}}} E_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right) - \frac{\rho}{2} Var_0^i \left(\pi_{0,1}^{i,FX,deriv} + X_1^{i,H} \right),$$

 $X_1^{i,H} \text{ is } i\text{'s non-FX derivatives profits, } \pi_{0,1}^{i,FX,deriv} = (S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD})N_{0,1}^{i,\{USD,GBP\}}$

Firm i's optimal 1-period $\{USD, GBP\}$ derivatives exposure is:

$$N_{0,1}^{i,\{USD,GBP\}} = \underbrace{\frac{E_0^i \left(S_1^{GBP/USD} - F_{0,1}^{i,GBP/USD}\right)}{\rho Var_0^i \left(S_1^{GBP/USD}\right)}}_{Spec_0^{i,\{USD,GBP\}}} - \underbrace{\frac{Cov_0^i \left(S_1^{GBP/USD}, X_1^{i,H}\right)}{Var_0^i \left(S_1^{GBP/USD}\right)}}_{Hedge_0^{i,\{USD,GBP\}}}$$

► Key distinction: Hedging demand often one-directional, speculative demand changes sign.

Net Currency-Cross and Currency Stock Exposures

Firm i's net currency-cross derivatives stock exposure to the $\{m, k\}$ cross nets exposures from all non-expired contracts:

$$Stock_t^{i,\{m,k\}} = \sum_{\mu:\tau_{start}^{\mu} \leq t < \tau_{end}^{\mu}} N_{\tau_{start}^{\mu},\tau_{end}^{\mu}}^{\mu,i,\{m,k\}},$$

- ▶ Firm i's net currency l stock exposure: $Stock_t^{i,l} = \sum_k Stock_t^{i,\{l,k\}} + \sum_m \widetilde{Stock}_t^{i,\{m,l\}}$ nets out cross exposures in which i receives and pays currency l across all crosses.
- ▶ Sector S's net currency-cross $\{m,k\}$ or currency l stock exposure: sum over $i \in S$

Largest Client Sectors: Persistent Net-Short USD Stock Exposures

Dealer Bank Sectors Persistent Net-long USD Stock Exposure

Hedge Fund Sector's USD Net Stock Exposures Changing Sign

% of Clients w/ Persistent (> 95%) One-Directional USD Exposures

UK vs. EU Investment and Pension Fund Net Stock Exposures

Non-EU vs. EU Hedge Fund Net Stock Exposures

Heterogeneity and Concentration in Sectoral Net USD Exposures

Net Exposures Adjustment

Carry Trade: Interest Differentials and USD-EUR Net Exposure

$$\frac{Stock_{t+h}^{i,\{m,k\}} - Stock_{t-1}^{i,\{m,k\}}}{\overline{|Stock_{t}^{i,\{m,k\}}|}} = \alpha_i^h + \beta^h [(r_{t+h}^m - r_{t+h}^k) - (r_{t-1}^m - r_{t-1}^k)] + u_{i,t}^h$$

Carry Trade: Interest Differentials and USD-EUR Net Exposure

$$\frac{Stock_{t+h}^{i,\{m,k\}} - Stock_{t-1}^{i,\{m,k\}}}{\overline{|Stock^{i,\{m,k\}}|}} = \alpha_i^h + \beta^h [(r_{t+h}^m - r_{t+h}^k) - (r_{t-1}^m - r_{t-1}^k)] + u_{i,t}^h$$

 $ightharpoonup eta_1 > 0$ consistent with speculation, $eta_1 < 0$ accommodates speculation, could be hedging.

Carry Trade: Interest Differentials and USD-GBP Net Exposure

$$\frac{Stock_{t+h}^{i,\{m,k\}} - Stock_{t-1}^{i,\{m,k\}}}{\overline{|Stock^{i,\{m,k\}}|}} = \alpha_i^h + \beta^h [(r_{t+h}^m - r_{t+h}^k) - (r_{t-1}^m - r_{t-1}^k)] + u_{i,t}^h$$

 $ightharpoonup eta_1 > 0$ consistent with speculation, $eta_1 < 0$ accommodates speculation, could be hedging.

Carry Trade: Interest Differentials and EUR-GBP Net Exposure

$$\frac{Stock_{t+h}^{i,\{m,k\}} - Stock_{t-1}^{i,\{m,k\}}}{\overline{|Stock_{t}^{i,\{m,k\}}|}} = \alpha_i^h + \beta^h [(r_{t+h}^m - r_{t+h}^k) - (r_{t-1}^m - r_{t-1}^k)] + u_{i,t}^h$$

 \blacktriangleright $\beta_1 > 0$ consistent with speculation, $\beta_1 < 0$ accommodates speculation, could be hedging.

Momentum: Exchange Rate Changes and USD-EUR Net Exposure

$$\frac{Stock_{t+h}^{i,\{m,k\}} - Stock_{t-1}^{i,\{m,k\}}}{\overline{|Stock^{i,\{m,k\}}|}} = \alpha_i^h + \beta^h [(s_{t+h}^{k/m} - s_{t-30+h}^{k/m}) - (s_{t-1}^{k/m} - s_{t-30-1}^{k/m})] + u_{i,t}^h$$

 \blacktriangleright $\beta_1 > 0$ consistent with speculation, $\beta_1 < 0$ accommodates speculation, could be hedging.

Exchange Rate Macro News and USD-EUR Net Exposure

$$\frac{Stock_{t+h}^{i,\{m,k\}} - Stock_{t-1}^{i,\{m,k\}}}{\overline{|Stock^{i,\{m,k\}}|}} = \alpha_i^h + \beta^h [\boldsymbol{FXMacroNews_{t-1,t+h}^{m,k}}] + u_{i,t}^h$$

 \blacktriangleright $\beta_1 > 0$ consistent with speculation, $\beta_1 < 0$ accommodates speculation, could be hedging.

Net Derivatives Exposures & Exchange Rates

Exchange Rates & Clients' FX Exposures: Unconditional Co-Movement

$$\Delta s_t^{k/m} = \alpha + \sum_{s \in S} \beta^s \frac{\Delta \mathbf{S}_t^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|} + \boldsymbol{\gamma}' \boldsymbol{X}_t + u_t,$$

 $\text{where } \frac{\Delta \mathbf{S}_t^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|} \text{ is change in } \underline{\text{sector-level}} \text{ stock exposure and } \boldsymbol{X} = \{\Delta CIP^{\{m,k\}}, \Delta \log VIX, \Delta(r^m - r^k), \Delta s^{k/m}\}$

Exchange Rates & Clients' FX Exposures: Unconditional Co-Movement

$$\Delta s_t^{k/m} = \alpha + \sum_{s \in S} \beta^s \frac{\Delta \mathbf{S}_t^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|} + \gamma' \mathbf{X}_t + u_t,$$

Fitting Weekly USD/GBP ER Changes with Net Derivatives Exposures

► Hedge funds' & non-financials' positions most associated with exchange rates.

Aggregate Shocks, Conditional Net Exposures & Exchange Rates

$$s_{t+h}^{k/m} - s_{t-1}^{k/m} = \alpha + \beta^{s} \frac{\Delta \mathbf{S}_{t}^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|} + \gamma' \mathbf{X}_{t-1} + u_{t},$$

where we instrument $\frac{\Delta S_s^{t,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|}$ with 2 important aggregate shocks for exchange rates:

Aggregate Shocks, Conditional Net Exposures & Exchange Rates

$$s_{t+h}^{k/m} - s_{t-1}^{k/m} = \alpha + \beta^{s} \frac{\Delta \mathbf{S}_{t}^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|} + \gamma' \mathbf{X}_{t-1} + u_{t},$$

where we instrument $\frac{\Delta \mathbf{S}_{s}^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|}$ with 2 important aggregate shocks for exchange rates:

Monetary policy shocks in major jurisdictions (first stage):

$$\Delta \mathbf{S}_{t}^{s,\{m,k\}}/\overline{|\mathbf{S}^{s,\{m,k\}}|} = \sigma_{0} + \sigma^{s,m}\varepsilon_{t}^{m} + \sigma^{s,k}\varepsilon_{t}^{k} + \boldsymbol{\delta}^{'}\boldsymbol{X}_{t-1} + u_{t}$$

Aggregate Shocks, Conditional Net Exposures & Exchange Rates

$$s_{t+h}^{k/m} - s_{t-1}^{k/m} = \alpha + \beta^{s} \frac{\Delta \mathbf{S}_{t}^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|} + \gamma' \mathbf{X}_{t-1} + u_{t},$$

where we instrument $\frac{\Delta S_t^{s,\{m,k\}}}{|\mathbf{S}^{s,\{m,k\}}|}$ with 2 important aggregate shocks for exchange rates:

Monetary policy shocks in major jurisdictions (first stage):

$$\Delta \mathbf{S}_{t}^{s,\{m,k\}}/\overline{|\mathbf{S}^{s,\{m,k\}}|} = \sigma_{0} + \sigma^{s,m}\varepsilon_{t}^{m} + \sigma^{s,k}\varepsilon_{t}^{k} + \boldsymbol{\delta}^{'}\boldsymbol{X}_{t-1} + u_{t}$$

US credit spread innovations from macro news (first stage):

$$\Delta \mathbf{S}_{t}^{s,\{USD,k\}}/\overline{|\mathbf{S}^{s,\{USD,k\}}|} = \sigma_{0} + \sigma^{s,CS} CSMacroNews_{t}^{US} + \boldsymbol{\delta}^{'}\boldsymbol{X}_{t-1} + u_{t},$$

Aggregate Shocks and Net Derivative Exposures: First-Stage Results

	$\Delta \mathbf{S}_{t}^{s,\{m,k\}}/ \mathbf{S}^{s,\{m,k\}} $		
	Hedge Funds	Investment Funds	
$arepsilon_t^m$.424**		
	(.181)		
$arepsilon_t^k$	461*		
	(.247)		
$CSMacroNews_{t}^{m=US}$.016***	
		(.005)	
Controls	Yes	Yes	
F-Stat	13.67	26.66	
# Panels	4	2	
N	342	4022	

Hedge Funds & Monetary Policy; Investment Funds & Credit Risk

lacktriangle Monetary tightening shock in m o hedge funds more long m vs. k o m appreciation vs. k

Ş

lacktriangle News raises US credit spreads ightarrow investment funds less short USD ightarrow USD appreciates

80

70

60

50

Days

10 20

30

50

60

40

Davs

ล่ก

70

Conclusion: New Facts about World's Largest FX Market

- Motives: Investment & pension funds, non-financials & insurers mostly hedge;Dealer banks provide liquidity; and Hedge funds mostly speculate with FX derivatives
- Adjustment: Hedge funds adjust exposures in line with classic FX investment strategies. Hedgers, especially non-financials, accommodate this. Dealers remain neutral and 'toll-take'.
- ► <u>Transmission</u>: Hedge funds help transmit monetary policy shocks to exchange rates; Investment funds contribute to USD appreciations when credit risk rises.
- Overall: Range of heterogeneous firms, guided by distinct objectives, interact to determine exchange rates. Suggests need to move away from 'arbitrageur-noise trader' models.

Appendix

Exchange Rate Changes and Sectors' FX Derivatives Positions

	$\Delta_{s_i^{k/m}}$			
	USD/GBP	EUR/USD	JPY/USD	EUR/GBP
$\Delta S_t^{s,\{m,k\}}/\overline{ S^{s,\{m,k\}} }$				
Hedge Funds	1.20***	1.36***	1.55***	11
	(.44)	(.52)	(.58)	(.30)
Investment Funds	3.13	6.03***	1.54	6.29
	(6.06)	(2.25)	(1.16)	(3.94)
Pension Funds	-1.63	3.04	42**	.49
	(1.63)	(2.05)	(.20)	(1.63)
Non-Fin. Corporates	-44.90***	-8.58***	51	-23.84***
	(5.80)	(2.70)	(1.31)	(3.17)
Insurers	-1.66	02	.14	2.38***
	(2.49)	(.92)	(.14)	(.85)
Non-Dealer Banks	23	37	.50	38*
	(0.86)	(0.71)	(.34)	(.21)
Market Makers	.33**	57**	08	.02
	(.15)	(.27)	(.09)	(.19)
R^2	.42	.25	.45	.41
N	233	233	233	233

Notes: Regression results from fitting exchange rates with derivatives positions. Lags of derivatives positions and controls are suppressed

for compactness, *** denotes p < 0.01, ** p < 0.05 and * p < 0.10 based on newey-west standard errors with 12 lags.

