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Abstract

We propose a novel estimator for the dynamic panel model, which solves the failure of strict exo-
geneity by the use of nonlinear least squares and an incidental parameters correction. We show that this
estimator performs well as compared with approaches in current use. We extend our incidental parame-
ters correction to propose a general solution to the incidental parameters problem in a class of panel data
models, as well as a general approach whose bias rapidly diminishes with the number of observations per
unit.

1 Introduction

Our paper attempts to contribute to solving two major problems in nonlinear panel data econometrics:
failure of strict exogeneity in dynamic panel estimation and the general incidental parameters problem. The
idea that estimating the dynamic panel equation by OLS will produce biased and inconsistent estimates has
been explored in the literature since Anderson and Hsiao (1982), with Arellano and Bond (1991) proposing
an optimal GMM estimator. The Arellano-Bond estimator exhibits substantial downward bias when the
coe¢ cient on the lagged dependent variable is close to unity, as then the dependent variable follows a
random walk and lagged levels correlate poorly with lagged di¤erences, thus creating a weak instrument
problem. A strand of the literature (Ahn and Schmidt (1995) , Blundell and Bond (1998), Hahn (1999))
solves this problem by imposing further restrictions on the dependent variable process and exploiting the
resulting moment conditions; however, these restrictions may not hold in practice. Hahn, Hausman and
Kuersteiner (2007) follow Griliches and Hausman (1986) and take long di¤erences of the data to improve the
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Humane Studies for funding. This paper solely represents the views of the authors and not of the organizations listed above or
of the Federal Reserve Bank of New York. All errors are our own.
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correlation between levels and di¤erences; however, this approach does not make use of all the data available.
Hence the estimation of dynamic panel models is still an open problem.

The incidental parameters problem has been known in econometrics since Neyman and Scott (1948),
and no general methods of its solution exist. Rasch (1960) showed that conditional logistic estimation
does not su¤er from this problem, and Anderson (1970) developed a methodology for resolving the problem
when the incidental parameters constitute a "su¢ cient statistic" of a likelihood function. Honoré (1992) and
Honoré and Kyriazidou (1999) created an ingenious approach for solving the incidental parameter problem in
models with censoring and truncation. A literature (e.g. Hahn and Newey (2004), Bai (2009)) has developed
general analytical and numerical methods for addressing the incidental parameters problem if the number of
panel units (N) and the number of time periods (T ) both go to in�nity at speci�ed rates. However, we are
not aware of general methods for the case in which T is �xed.

We propose a new estimator for the dynamic panel model, which is based on back-substituting the
dynamic equation into itself until the right-hand side consists only of exogenous regressors and the initial
value of the dependent variable, which should be uncorrelated with the error terms if they do not have serial
correlation. We estimate the resulting equation by nonlinear least squares, with a correction to solve the
incidental parameter problem that arises in this case. We obtain the correction by computing the probability
limit of the �rst-order condition of the nonlinear least squares estimator and creating an estimator for this
probability limit. We expand our estimator to accomodate endogenous regressors and serial correlation
in the error terms. Simulations of the performance of this dynamic panel nonlinear least squares estimator
(DPNLS) against that of previous GMM-based estimators suggests that DPNLS nearly always has lower bias
and variance in its estimates of the coe¢ cient on the lagged dependent variable, and that it is considerably
more e¢ cient in the estimation of the coe¢ cients on the covariates, which often tend to be of primary
interest in applications. A similar estimator has been proposed by Wooldridge (2013) in the context of
dynamic panel estimation with random e¤ects. However, it is the presence of �xed e¤ects that requires the
incidental parameters correction, and applications frequently involve the use of �xed e¤ects to help identify
the parameters of interest.

We further adapt our technique for solving the incidental parameters problem in the dynamic panel
model to other nonlinear panel data models. We show that in models that are a¢ ne functions of the incidental
parameters (of which the dynamic panel data model is a subset), the incidental parameter problem may be
removed completely. We also provide a method for estimating arbitrary nonlinear panel data models that
have linearly independent derivatives, which has very rapidly vanishing bias as the number of time periods
T goes to in�nity.

The rest of the paper is organized as follows. Section 2 presents a simple version of our dynamic
panel estimator and its performance in simulations. Section 3 expands the estimator to accomodate weaker
assumptions on the data. Section 4 presents a general method for eliminating the incidental parameter
problem in models that are a¢ ne in these parameters. Section 5 presents our general approach for estimating
nonlinear panel data models. Section 6 concludes.

2 Dynamic Panel Estimator

We are interested in estimating the equation

yi;t = �0yi;t�1 +X
0
i;t
0 + �i;0 + "i;t (1)

where Xi;t is a K � 1 vector, i = 1; :::; N and t = 1; ::; T .

We make the following assumptions:

rank
�
E
�
Xi;tX

0
i;t

��
= K (A1)

E ("i;tjX�;� ) = 0 for all (i; t; �; �) (A2)

E ("i;t"�;� jX) = 0 for (i; t) 6= (�; �) (A3)

Assumption A1 is the traditional full rank assumption in regression analysis. Assumption A2 ensures
that the regressors are strictly exogenous, so the only identi�cation problem is the one arising from the
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presence of a lagged dependent variable. Assumption A3 rules out serial correlation in the error terms. This
is a traditional assumption in the analysis of panel data models with lagged dependent variables, as the
lagged variable tends to capture the serial correlation in the error. We will show how this assumption can
be relaxed in Section 2.

The traditional approach has been to estimate this model by di¤erencing equation 1 and using GMM
(Arellano and Bond 1991, Blundell and Bond 1998). We proceed di¤erently by back-substituting for yi;t�1
into equation 1 so as to express the right hand-side in terms of the current and lagged values of the regressors
Xi;t and the strictly exogenous initial value yi;0

yi;t = �t0ysi;0 +

 
�=t�1X
�=0

��0X
�
i;t

!0

0 + �i;0

�=t�1X
�=0

��0 +
�=t�1X
�=0

��0"i;t�� (3)

(I use the notation X�
i;t to designate Xi;t�� .) Since yi;0 is determined before "i;1; :::; "i;T , we have

E ("i;tjy�̂;0; X�;� ) = 0 for all (i; t; �; �̂; �)

and we no longer have the endogeneity problem. Here, we rely on Assumption A3 to ensure that
there is no correlation between "i;0 and yi;0 because of possible serial correlation between "i;0 and "i;�1.

The most straightforward way to estimate 3 is by nonlinear least squares. This approach has been
used by Wooldridge (2013) in a context in which the individual e¤ects �i;0 could be viewed as random e¤ects.
However, if the individual e¤ects are treated as �xed e¤ects, and if S ! 1 while T remains �xed (as is
plausible for much microeconometric data), we have an incidental parameters problem, because the �xed
e¤ects are inconsistently estimated. Speci�cally, the �rst order conditions of the nonlinear least squares
minimization problem imply:

�̂i =

24 1
T

TX
t=1

 
�=t�1X
�=0

�̂�

!235�1 24 1
T

TX
t=1

0@yi;t � �̂tyi;0 � �=t�1X
�=0

�̂�X�
i;t

!0

̂

1A �=t�1X
�=0

�̂�

35 (4a)


̂ =

24 1

NT

NX
i=1

TX
t=1

 
�=t�1X
�=0

�̂�X�
i;t

! 
�=t�1X
�=0

�̂�X�
i;t

!035�1 1

NT

NX
i=1

TX
t=1

 
yi;t � �̂tyi;0 � �̂i

�=t�1X
�=0

�̂
�

! 
�=t�1X
�=0

�̂�X�
i;t

!
(4b)

0 =
1

NT

NX
i=1

TX
t=1

2664
�
yi;t �

�
�̂tyi;0 +

�P�=t�1
�=0 �̂�X�

i;t

�0

̂ + �̂i

P�=t�1
�=0 �̂�

��
��

t�̂t�1yi;0 +
�P�=t�1

�=0 ��̂��1X�
i;t

�0

̂ + �̂i

P�=t�1
�=0 ��̂��1

�
3775 (4c)

Hence, if �̂ = �0, the true value of �, it is clear that 
̂ is a consistent estimator of 
, and �̂i is an
unbiased, though inconsistent, estimator of �i;0 if T is �xed.

De�ne 
 (�̂) and f�i (�̂)g
N
i=1 as the solutions to the system of equations (4b) and (4a) for all i. Then, we

can express equation 4c as a function of �̂ alone:

�N;0 (�̂) :=
1

NT

NX
i=1

TX
t=1

2664
�
yi;t �

�
�̂tyi;0 +

�P�=t�1
�=0 �̂�X�

i;t

�0

 (�̂) + �i (�̂)

P�=t�1
�=0 �̂�

��
�
�
t�̂t�1yi;0 +

�P�=t�1
�=0 ��̂��1X�

i;t

�0

̂ (�̂) + �i (�̂)

P�=t�1
�=0 ��̂��1

�
3775 = 0 (4e)

From equation (4e) it is clear that
plim
N!1

�N;0 (�0) 6= 0

and hence, �̂ is not a consistent estimator of �0. This is just a restatement of the standard result that
nonlinear least squares is typically inconsistent in the presence of incidental parameters. Our approach is to
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exploit the linear structure of the model in equation (3) to estimate the value of E (�0 (�0)) and subtract it
from �0 (�̂) to obtain an equation that is annihilated by �0 in expectation.
We see that

plim
N!1

�N;0 (�0) = lim
N!1

1

N

NX
i=1

E

"
1

T

TX
t=1

" �
�i;0 � �̂i (�0)

� �=t�1X
�=0

��0 + �i;t (�0)

! �
�i;0 � �̂i

� �=t�1X
�=0

����10

!##

= lim
N!1

1

N

NX
i=1

Si (�) =: S (�)

where

Si (�) :=
1

1
T

PT
t=1 (D (�:t))

2

1

T 2

TX
t=1

TX
t0=1

8><>:D (�:t)
�
D (�:t0)K (�)� @

@�
D (�; t0)

�0B@�t+t0
0B@q=min(t;t0)X

q=1

��(2q)
�
E
�
"2i;q
��1CA

1CA
9>=>;

D (�; t) =

 
�=t�1X
�=0

��

!

K (�) =
1
T

PT
t=1D (�; t)

@
@�D (�; t)

1
T

PT
t=1 (D (�; t))

2

To correct the incidental parameter problem, we need a feasible estimator of S (�), and speci�cally of
E
�
"2i;t
�
for any i and t. We can obtain such an estimator by using the de-meaned residuals

"̂i;t (�) =

 
yi;t �

1

T

TX
t=1

yi;t

!
� �

 
yi;t�1 �

1

T

TX
t=1

yi;t�1

!
�
 
Xi;t �

1

T

TX
t=1

Xi;t

!0

 (�)

and by de�ning the moment

"̂
(2)
i;t (�) :=

1

T � 2

"
T "̂2i;t (�)�

1

T � 1

 
TX
t=1

"̂2i;t (�)

!#

Then,

plim
N!1

1

N

NX
i=1

"̂
(2)
i;t (�) = lim

N!1

1

N

NX
i=1

E
�
"2i;t
�

and a feasible, consistent estimator of S (�) is

ŜN (�) :=
1

1
T

PT
t=1 (D (�:t))

2

1

T 2

TX
t=1

TX
t0=1

8><>:D (�:t)
�
D
�
�:t0

�
K (�)� @

@�
D
�
�; t0

��0B@�t+t0
0B@q=min(t;t0)X

q=1

��(2q)
 
1

N

NX
i=1

"̂
(2)
i;t (�)

!1CA
1CA
9>=>;

De�ne the estimator �̂DPNLS by

�N (�̂DPNLS) := �N;0 (�̂DPNLS)� ŜN (�̂DPNLS) = 0 (6)

Then, assuming that a unique value for �̂DPNLS exists, we have the following proposition

Proposition 1 The estimator �̂DPNLS is a consistent estimator of �0. Furthermore, if E
�
"4i;t
�
�M <1

for all i and t, this estimator is
p
N -consistent for and asymptotically normal estimator of �0
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Proof. Outlined in text. The consistency of �̂DPNLS follows from the fact that

plim
N!1

�N (�0) = 0

The asymptotic normality follows from writing �N (�̂) as

�N (�0) =
1

N

NX
i=1

266664
1
T

PT
t=1

24 �
yi;t �

�
�t0yi;0 +

�P�=t�1
�=0 ��0X

�
i;t

�0

 (�0) + �i (�0)

P�=t�1
�=0 ��0

��
�
�
t�t�10 yi;0 +

�P�=t�1
�=0 ����10 X�

i;t

�0

̂ (�0) + �i (�0)

P�=t�1
�=0 ����10

� 35
� 1

1
T

PT
t=1(D(�0;t))

2
1
T2

PT
t=1

PT
t0=1

�
D (�0; t)

�
D (�0; t

0)K (�)� @
@�
D (�0; t

0)
��
�t+t

0
0

�Pq=min(t;t0)
q=1 �

�(2q)
0 "̂

(2)
i;t (�0)

���
377775

Hence, �N (�0) is an average of independent random variables with bounded variance, and therefore
satis�es a central limit theorem. The asymptotic normality of �̂DPNLS follows by the delta method, since

p
N (�̂DPNLS � �0) =

p
N�N (�0)

�0N (�0)

Corollary 2 Under the conditions of Proposition 1, 
 (�̂DPNLS) is a consistent, asymptotically normal
estimator of 
0.

Solving equation 6 in �nite samples may be impossible because the equation may fail to have a zero. For
data realizations for which a zero fails to exist, we take �̂DPNLS to be the local minimum of �̂ (�̂0)

2 in the
region in which �̂ (�̂0) > 0. This correction vanishes asymptotically, but is numerically important even for
samples with N = 200, as will be shown.

2.1 Monte Carlo Simulation

We test the performance of the nonlinear least squares estimator against that of the traditional Arellano-
Bond estimator and the Blundell-Bond estimator. We set the number of panel units equal to 200, and the
number of time periods to 5 (not counting an initial observation of the dependent variable). We create a
correlated, lognormally distributed covariate xi;t, which enters the equation for yi;t with a coe¢ cient of 0:1
and we allow for time �xed e¤ects. Speci�cally, we generate the data as follows:

xi;t = �xi;t�1 + (1� �) �i;t�1; E
�
ln
�
�i;t
��
= 0, var

�
ln
�
�i;t
��
= �2X , � = 0:7; �

2
X = 1

xi;0~N

 
exp

�
1

2 (1� �)�
2
X

�
;
�
exp

�
�2X
�
� 1
�
exp

�
�2X
� (1� �)2
1� �2

!

yi;t = �yi;t�1 + 
xi;t + �i + �t + "i;t, �i~N
�
0; �2�

�
; "i;t~N

�
0; �2"

�
; �2� = �2" = �2� = 1

We consider two di¤erent distributions for the initial condition yi;0. The �rst is a normal distribution
with the mean and variance of the stationary distribution for yi;t.

yi;0~N

 



1� � exp
�

1

2 (1� �)�
2
X

�
+

�i
1� �;

1

1� �2

"
�2" + �

2
� + 


2
�
exp

�
�2X
�
� 1
�
exp

�
�2X
� (1� �)2
1� �2

#!

The second distribution is a nonstationary distribution used by Blundell and Bond (1998):

yi;0~N (2�i; 4=3)
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First, consider the estimation results for the autoregressive parameter �. Table 1 presents a distribution
of the estimates from the Monte Carlo simulation when the starting values are drawn from the stationary
distribution. As is well-known, the Arellano-Bond estimator performs poorly because the correlation be-
tween the instruments and the lagged di¤erence approaches zero as � approaches unity. The Blundell-Bond
estimator does not su¤er from this problem, but instead, slightly overestimates the autoregressive parameter.
Our estimator, �̂DPNLS , underestimates the parameter � on average, but only slightly. Its mean squared
error is comparable to (and occasionally, lower than) that of the minimum of the mean squared errors of
the Arellano-Bond and Blundell-Bond estimators. When we consider Monte Carlo simulations of � when
the initial condition is nonstationary, we see that the nonlinear least squares estimator not only compares
well with the existing estimators in terms of mean squared error, but performs consistently across a variety
of conditions in which the existing estimators perform poorly. With a nonstationary initial condition, it is
the Arellano-Bond estimator performs very well (because during the transition to a stationary distribution,
the autoregressive process is substantially di¤erent from a random walk) and the Blundell-Bond estimator
performs very poorly, typically overestimating the true parameter on average. The nonlinear least squares
estimator performs similarly to Arellano-Bond in this setting (slightly worse for high values of �). Hence,
the nonlinear least squares estimator performs well regardless of the initial condition, while the two existing
GMM estimators are sensitive to the choice of the initial condition.
Second, consider the estimation of the coe¢ cient 
 in Table 2. Often, the purpose of panel data analysis

is not to explore the dynamic behavior of yi;t but to better understand the association between yi;t and
xi;t. Regardless of whether the initial condition is stationary or nonstationary, and regardless of the value of
the autoregressive coe¢ cient �, the nonlinear least squares estimator regularly provides a much lower-MSE
estimate of 
 than does either Arellano-Bond or Blundell-Bond. The bias is much smaller and the standard
deviation is at most half of the standard deviation of either of the GMM estimators. Such a result is not
counterintuitive; we have replaced GMM estimation with a regression technique, which tends to reduce the
variance of our estimators. However, the improvement in our estimation of 
 is striking.1

To better understand the working of the nonlinear least squares estimator, I present histograms of the
distributions of the estimator for various values of � when we draw the initial values from the stationary
distribution. We see that the distributions are asymmetric, and that they have pronounced peaks slightly
to the right of the true estimator value. These peaks re�ect the cases in which the function � (�) does not
have a zero, and the estimate of � is based on its local minimum. We see that this procedure might slightly
overestimate �, but that it does not do violence to the estimation of �.
Finally, Table 3 assesses the importance of the incidental parameters correction. We see that failing

to correct for incidental parameters generates substantial bias under the stationary initial condition if the
parameter � is close to unity. For the nonstationary initial condition, the incidental parameters bias is
smaller but still present.

3 Instrumental Variables and Optimal Instruments-GMM

We now consider the estimation of the dynamic panel data model in the case that the regressors are en-
dogenous. Suppose there exists a matrix Z that is NT � J , where J � K + 1. We make the following
assumptions:

rank
�
E
�
Xi;tX

0
i;t

��
= K (AIV1a))

rank
�
E
�
Xi;tZ

0
i;t

��
= K (AIV1b))

E ("i;tjZ�;� ) = 0 for all (i; t; �; �) (AIV2)

E ("i;t"�;� jZ) = 0 for (i; t) 6= (�; �) (AIV3)

In general, we can estimate the dynamic panel model under these assumptions using a GMM approach .
De�ne the residual function of the model to be

�i;t (�) = yi;t � �yi;0 �
�=t�1X
�=0

��X� 0
i;t
 � �i

t�1X
�=0

��

1Unfortunately, when we try to estimate the long-run e¤ect of a unit increase in xs;t, which is de�ned by


1�� , we do not

get substantial improvement from using the nonlinear least squares estimator.
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where
� = (�; 
; f�ig

n
i=1)

Assumption AIV2 implies that
E
�
�i;tF (Zi;t)

�
= 0

for any (vector) function F . Newey (1995) shows that the optimal (minimum-variance) GMM estimator to
use is given by

F � (Zi;t) =
1

E
�
�2i;tjZi;t

�E �@�i;t
@�

jZi;t
�

Under homoskedasticity, this function is just

F � (Zi;t) = E

�
@�i;t
@�

jZi;t
�

Now, in our context,

E

�
@�i;t
@�

jZi;t
�
= �

0B@ t�t�1E (yi;0jZi;t) +
P�=t�1

�=0 ����1E
�
X�
i;tjZi;t

�

0 + �i

P�=t�1
�=0 ����1P�=t�1

�=0 ��E
�
X�
i;tjZi;t

��P�=t�1
�=0 ��0

�n
i=1

1CA
so all we need are expectations of yi;0 and the regressors, conditional on the instrument set Zi;t.
We can compute estimators of E

�
X�
i;tjZi;t

�
and E (yi;0jZi;t) via regression. Let X̂�

i;t and ŷi;0 denote the
predicted values. De�ne

�̂i (�̂) =

24 1
T

TX
t=1

 
�=t�1X
�=0

�̂�

!235�1 24 1
T

TX
t=1

0@yi;t � �̂tyi;0 � �=t�1X
�=0

�̂�X�
i;t

!0

̂ (�̂)

1A �=t�1X
�=0

�̂�

35

̂ (�̂) =

24 1

NT

NX
i=1

TX
t=1

 
�=t�1X
�=0

�̂�X�
i;t

! 
�=t�1X
�=0

�̂� X̂�
i;t

!035�1 1

NT

NX
i=1

TX
t=1

 
yi;t � �̂tyi;0 � �̂i (�̂)

�=t�1X
�=0

�̂
�

! 
�=t�1X
�=0

�̂� X̂�
i;t

!
and

�GMM
N (�0) =

1

N

NX
i=1

266664
1
T

PT
t=1

24 �
yi;t �

�
�t0yi;0 +

�P�=t�1
�=0 ��0X

�
i;t

�0

̂ (�0) + �̂i (�0)

P�=t�1
�=0 ��0

��
�
�
t�t�10 ŷi;0 +

�P�=t�1
�=0 ����10 X̂�

i;t

�0

̂ (�0) + �̂i (�0)

P�=t�1
�=0 ����10

� 35
� 1

1
T

PT
t=1(D(�0;t))

2
1
T2

PT
t=1

PT
t0=1

�
D (�0; t)

�
D (�0; t

0)K (�)� @
@�
D (�0; t

0)
��
�t+t

0
0

�Pq=min(t;t0)
q=1 �

�(2q)
0 "̂

(2)
i;t (�0)

���
377775

De�ne �̂OI�GMM as the solution to the equation �GMM
N (�̂) = 0 (assuming it is unique). Then, the

following proposition holds:

Proposition 3 The estimator �̂OI�GMM is a consistent estimator of �0. Furthermore, if E
�
"4i;t
�
�M <1

for all i and t, this estimator is
p
N -consistent for and asymptotically normal estimator of �0

The proof is analogous to that in Section 2.
Note that DPNLS and OI-GMM are equivalent if the instrument set is

Zi;t = [yi;0; Xi;t]

3.1 Serial Correlation in the Error Terms

Suppose that Assumption (A2) holds, so the regressors act as their own instruments, but Assumption (AIV3)
fails. Then, DPNLS fails, but we may still perform OI-GMM by setting

Zi;t = [Xi;t; Xi;t�1; :::; Xi;1]

However, we then need a di¤erent formula for the correction term S (�̂).
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3.2 Predetermined Regressors

Suppose that instead of Assumption (A2) we only have

E ("i;tjX�;� ) = 0 for all (i; �) and t � �

Then, we can perform OI-GMM by setting

Zi;t = [Xi;1; Xi;0]

3.3 Monte Carlo Simulation

We consider a Monte Carlo simulation with the same parameters as in Section 1, but with the regressors
now predetermined rather than exogenous. Speci�cally,

xi;t = �xi;t�1 + (1� �) �i;t�1 +  "i;t�1

We consider only the stationary initial condition and compare the DPNLS and OI-GMM estimators for
N = 1000. Tables 4 and 5 present results for � and 
 respectively. We see that OI-GMM does exactly
what was ordered: it is unbiased when there is no endogeneity problem ( = 0), though it has much higher
MSE than does DPNLS, while it has much lower bias (and MSE) than does DPNLS in the case when an
endogeneity problem is present ( = 1).

4 Incidental Parameters Problem in an Arbitrary A¢ ne Model

Suppose that we wish to estimate a model with a vector of �xed e¤ects that a¤ects yi;t a¢ nely. Speci�cally,

yi;t = f (xi;t; 
) + g (xi;t; 
)
0
�i + "i;t

where 
 is a Q� 1 parameter vector, �i is an L� 1 vector, and g (xi;t; 
) is an L� 1 vector. We also assume

rank
�
g (xi;t; 
) g (xi;t; 
)

0�
= L (AA1)

E ("i;tjxi;t) = 0 (AA2)

E ("i;t"j;sjXi;�) = �2 ((i; t) = (j; s)) (AA3)

The variance assumption (AA3) may be weakened considerably, and is made for expositional convenience.
We can use analogous methods to Section 1 to estimate 
 consistently. Once again, de�ne the �xed e¤ect

as a function of the parameter vector 
 to be

�i (
) =

 
1

T

TX
t=1

g (xi;t; 
0) g (xi;t; 
0)
0
!�1 "

1

T

TX
t=1

(yi;t � f (xi;t; 
)) g (xi;t; 
)
#

Estimating the error variance is now more complicated because �i is a vector and the components of �i are
multiplied by functions of xi;t. To do this, we consider stacks of L observations, so that it is possible to
isolate �i by premultiplying each stack by the inverse of the matrix multiplying the vector �i. Then, we
construct de-meaned residuals and proceed as before. The full (and admittedly, complicated) procedure is
given below.

1. (a) For each i, de�ne M as the least common multiple of T and L. Then construct the M � 1
vector "(1)i (
) with �

"
(1)
i (
)

�
m
= yi;m0 � f (xi;m0 ; 
)

where
m0 = mmodT

and mod denotes the modulo function.
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(b) Break up this vector into M=L components, each of size L � 1, and call each component "(1;k)i ,
where k = 1; :::;M=L = K: Denote m(k) (j) as the value of m corresponding to the jth element
of component k: for example, m(2) (2) = L+ 2.

(c) For each "(1;k)i;Pk
, construct

"
(2;k)
i (
) =

�
F
(k)
i (
)

��1
"
(1;k)
i (
)

where Fi;Pk is a L� L matrix with elementh
F
(k)
i (
)

i
p;q
=
�
g
�
xi;m(k)(q); 


��
p

(d) Next, compute

"
(3;k)
i (
1) = "

(2;k)
i (
)� 1

K

KX
k=1

"
(2;k)
i (
)

(e) Finally, de�ne the estimator of the true error variance as

�̂2 (
) =
1

N

NX
i=1

tr

�
"
(3;1)
i (
)

�
"
(3;1)
i (
)

�0�
tr (Di)

where

Di =
�
F
(1)
i (
)

��1
U1;1

��
F
(1)
i (
)

�0��1
� 2
K

KX
k=1

�
F
(k)
i (
)

��1
U1;k

��
F
(1)
i (
)

�0��1

+
1

K2

KX
k=1

KX
k0=1

�
F
(k)
i (
)

��1
Uk;k0

��
F
(k)
i (
)

�0��1
where tr () denotes the trace function, and where Uk;l is a L� L matrix de�ned as follows:

[Uk;l]p;q = 1
��
m(k) (p)modT

�
=
�
ml (q)modT

��
In other words, Uk;l is a matrix of indicators for whether the pth error term in component k
corresponds to the error term from the same observation as the qth error term in component l.

The following proposition holds:

Proposition 4 Let 
IP�NLS solve

0 = � (
) :=
1

N

NX
i=1

1

T

TX
t=1

�
yi;t � f (xi;t; 
)� g (xi;t; 
)0 �i (
)

� �
f
 (xi;t; 
) + g
 (xi;t; 
)

0 �i (
)
�

� �̂
2 (
)

T

1

N

NX
i=1

1

T

TX
t=1

2664
�
1
T

PT
t=1

�
g (xi;t; 
)

0
�
1
T

PT
t=1 g (xi;t; 
) g (xi;t; 
)

0
��1

g (xi;� ; 
)

��
���

g
 (xi;t; 
)
0
�
1
T

PT
t=1 g (xi;t; 
) g (xi;t; 
)

0
��1

g (xi;� ; 
)

��
3775

+
�̂2 (
)

T

1

N

NX
i=1

24 1
T

TX
t=1

0@g
 (xi;t; 
)0 1
T

TX
t=1

g (xi;t; 
) g (xi;t; 
)
0

!�1
g (xi;t; 
)

1A35
where �̂2 (
) and �i (
) are de�ned above. Then 
IP�NLS is consistent and, if E

�
"4i;t
�
� M < 1 for all i

and t, is
p
N -consistent and asymptotically normal.
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5 General Approach to Incidental Parameters Problem in Non-

linear Models

Suppose that we wish to estimate the arbitrarily nonlinear model

yi;t = f (xi;t; 
; �i) + "i;t

under the assumptions

E ("i;tjxi;t) = 0

E ("i;t"j;sjXi;�) = �2 ((i; t) = (j; s))

The variance assumption is made for convenience and can be relaxed. Once again, T is assumed to be
�xed. The complication is that the model is now nonlinear in the �xed e¤ect.
We propose an estimator whose asymptotic bias goes to zero much faster than (to our knowledge) has

been observed in the literature. First, we obtain an estimator for �i, denoted by �i, by solving the �rst-
order condition. Then, we consider a Taylor expansion of f around �i to T � 1 terms, and allow the
coe¢ cients on the derivative terms to be unrestricted. Hence, we transform the nonlinear model into a
model with a vector of T �1 �xed e¤ects that enters linearly. We can solve the transformed model by setting
f (xi;t; 
) := f (xi;t; 
; �i), and g (xi;t; 
) =

h
1
j!f

(j) (xi;t; 
; �i)
iT�1
j=1

. In particular, Assumption (AA3) implies

that we need the Wronskian of the �rst T � 1 derivatives of f to be nonsingular for generic xi;t, 
, and �i.
However, the remainder from the Taylor expansion gives rise to the inconsistency. In particular, since �i

will depend on the average of the error terms for panel unit i, we will have

�i = �i +OP

�
1p
T

�
By Taylor�s Theorem, the remainder term for each panel unit i will satisfy

jRT�1;i;tj �
K

T !
(�i � �i)

T
=
K

T !

�
OP

�
1p
T

��T
so

(T !)T
T
2 RT�1;i;t = OP (1)

Hence, the bias will be of order 1=
�
(T !)T

T
2

�
, which goes to zero extremely quickly, as shown in the table

below. ����������������

T T !T
T�1
2

2 4
3 31:177
4 384
5 6708:2
6 1:5552� 105
7 4:5738� 106
8 1:6515� 108

����������������
6 Conclusion

We have presented a new method of estimating the basic dynamic panel model with covariates. We
have shown through simulation evidence and empirical examples that this method appears to outperform
GMM-based methods in terms of both bias and variance of the estimates, and that it appears to make a
di¤erence in applications. We have also expanded this method to wider classes of dynamic panel models,
as well as relaxed some of the more stringent assumptions underpinning it. Furthermore, we have adapted
the methodology behind the derivation of our dynamic panel estimator to solve the incidental parameters
problem for a large class of nonlinear panel data models, and we have proposed a general approach of
estimating nonlinear panel data models with �xed-T asymptotics, whose bias is rapidly diminishing in T .
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7 Tables and Figures

Table 1

Simulations of � for DPNLS and GMM-Style Estimators
T=5, N=200

Method Mean SD RMSE Median 1st pctile 25th pctile 75th pctile 99th pctile
Stationary Initial Condition

Arellano-Bond, �=.25 .235 .054 .055 .230 .125 .202 .267 .366
Arellano-Bond, �=.50 .472 .072 .077 .468 .329 .419 .529 .639
Arellano-Bond, �=.75 .669 .126 .150 .674 .369 .571 .752 .973
Arellano-Bond, �=.90 .601 .278 .408 .651 -.223 .426 .774 1.155
Arellano-Bond, �=.95 .474 .315 .570 .489 -.549 .286 .714 1.101
Blundell-Bond, �=.25 .280 .057 .065 .273 .174 .242 .323 .400
Blundell-Bond, �=.50 .549 .069 .085 .543 .407 .503 .593 .709
Blundell-Bond, �=.75 .839 .071 .114 .848 .665 .788 .888 .989
Blundell-Bond, �=.90 .979 .042 .090 .975 .886 .951 1.004 1.127
Blundell-Bond, �=.95 .995 .020 .049 .993 .956 .982 1.006 1.059
DPNLS, �=.25 .248 .060 .060 .245 .108 .209 .280 .397
DPNLS, �=.50 .499 .068 .068 .491 .340 .451 .536 .664
DPNLS, �=.75 .759 .096 .096 .750 .558 .695 .801 .962
DPNLS, �=.90 .888 .092 .093 .895 .676 .828 .976 1.024
DPNLS, �=.95 .913 .087 .094 .923 .701 .847 .991 1.033

Nonstationary Initial Condition

Arellano-Bond, �=.25 .237 .048 .049 .235 .141 .206 .270 .348
Arellano-Bond, �=.50 .468 .080 .086 .470 .301 .409 .525 .650
Arellano-Bond, �=.75 .719 .102 .107 .718 .470 .647 .799 .944
Arellano-Bond, �=.90 .897 .039 .039 .897 .819 .869 .929 .980
Arellano-Bond, �=.95 .948 .030 .030 .948 .887 .926 .972 1.013
Blundell-Bond, �=.25 .452 .066 .213 .452 .296 .414 .494 .599
Blundell-Bond, �=.50 .540 .069 .080 .546 .382 .493 .590 .683
Blundell-Bond, �=.75 .980 .014 .230 .981 .939 .971 .991 1.006
Blundell-Bond, �=.90 1.102 .009 .202 1.102 1.069 1.098 1.109 1.118
Blundell-Bond, �=.95 1.139 .008 .189 1.139 1.105 1.135 1.144 1.153
DPNLS, �=.25 .249 .059 .059 .247 .128 .212 .285 .405
DPNLS, �=.50 .503 .093 .093 .494 .297 .444 .544 .773
DPNLS, �=.75 .752 .085 .085 .750 .575 .688 .807 .959
DPNLS, �=.90 .896 .040 .040 .894 .799 .868 .923 .988
DPNLS, �=.95 .947 .032 .032 .946 .869 .924 .968 1.021

(1)
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Table 2

Simulations of 
 for DPNLS and GMM-Style Estimators
True 
=0.10 For All Speci�cations, T=5, N=200

Method Mean SD RMSE Median 1st pctile 25th pctile 75th pctile 99th pctile
Stationary Initial Condition

Arellano-Bond, �=.25 .066 .158 .161 .069 -.262 -.028 .148 .548
Arellano-Bond, �=.50 .069 .156 .159 .069 -.248 -.028 .152 .551
Arellano-Bond, �=.75 .084 .156 .156 .083 -.241 -.019 .164 .546
Arellano-Bond, �=.90 .139 .160 .165 .137 -.200 .023 .235 .615
Arellano-Bond, �=.95 .186 .165 .186 .169 -.141 .076 .284 .702
Blundell-Bond, �=.25 .064 .145 .150 .056 -.274 -.024 .151 .437
Blundell-Bond, �=.50 .055 .146 .153 .045 -.278 -.036 .141 .426
Blundell-Bond, �=.75 .037 .152 .165 .027 -.302 -.063 .128 .401
Blundell-Bond, �=.90 .043 .146 .157 .045 -.275 -.058 .126 .428
Blundell-Bond, �=.95 .056 .143 .150 .056 -.249 -.043 .142 .440
DPNLS, �=.25 .115 .060 .062 .107 -.013 .078 .154 .291
DPNLS, �=.50 .115 .062 .064 .108 -.020 .075 .146 .297
DPNLS, �=.75 .116 .066 .068 .114 -.027 .071 .153 .302
DPNLS, �=.90 .117 .068 .070 .114 -.033 .071 .153 .303
DPNLS, �=.95 .116 .068 .069 .113 -.036 .070 .153 .300

Nonstationary Initial Condition

Arellano-Bond, �=.25 .064 .162 .166 .067 -.360 -.034 .155 .546
Arellano-Bond, �=.50 .070 .162 .164 .074 -.320 -.032 .164 .547
Arellano-Bond, �=.75 .074 .154 .156 .073 -.204 -.028 .160 .543
Arellano-Bond, �=.90 .069 .157 .160 .070 -.219 -.035 .147 .547
Arellano-Bond, �=.95 .069 .159 .162 .070 -.221 -.040 .149 .556
Blundell-Bond, �=.25 -.132 .353 .422 -.176 -.981 -.314 .047 1.114
Blundell-Bond, �=.50 .048 .149 .157 .041 -.304 -.046 .138 .421
Blundell-Bond, �=.75 .035 .177 .188 .042 -.475 -.085 .133 .560
Blundell-Bond, �=.90 .071 .218 .219 .064 -.540 -.043 .174 .967
Blundell-Bond, �=.95 .087 .236 .237 .073 -.563 -.034 .183 1.106
DPNLS, �=.25 .115 .060 .062 .106 -.010 .077 .154 .291
DPNLS, �=.50 .115 .062 .064 .108 -.019 .074 .146 .298
DPNLS, �=.75 .115 .065 .067 .107 -.038 .075 .149 .297
DPNLS, �=.90 .116 .067 .068 .108 -.034 .072 .148 .298
DPNLS, �=.95 .116 .067 .069 .109 -.034 .071 .150 .298

(2)

13



Figure 1
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Table 3

Simulations of � for DPNLS �IP Correction
T=5, N=200

Method Mean RMSE Median 25th pctile 75th pctile
Stationary Initial Condition

DPNLS, Corrected, �=.25 .244 .072 .244 .187 .298
DPNLS, Corrected, �=.50 .497 .080 .491 .435 .544
DPNLS, Corrected, �=.75 .756 .101 .736 .674 .820
DPNLS, Corrected, �=.90 .883 .094 .873 .802 .972
DPNLS, Corrected, �=.95 .911 .095 .908 .837 .988
DPNLS, Uncorrected, �=.25 .252 .070 .255 .197 .305
DPNLS, Uncorrected, �=.50 .483 .067 .481 .432 .522
DPNLS, Uncorrected, �=.75 .678 .091 .673 .630 .710
DPNLS, Uncorrected, �=.90 .764 .144 .761 .730 .793
DPNLS, Uncorrected, �=.95 .782 .174 .779 .751 .808

(3)

Table 4

Simulations of � for Optimal GMM Estimator
T=5, N=1000, Stationary Init. Cond., �=0.9

Model Method Mean RMSE Median 25th pctile 75th pctile
 =0 Optimal GMM, DPNLS Instruments. .899 .055 .894 .857 .951
 =0 Optimal GMM, Init. Value. Instruments .921 .069 .921 .870 .959
 =1 Optimal GMM, DPNLS Instruments. .809 .093 .810 .796 .824
 =1 Optimal GMM, Init. Value. Instruments .919 .075 .922 .865 .955

(4)
Table 5

Simulations of 
 for Optimal GMM Estimator
T=5, N=1000, Stationary Init. Cond., 
=0.1

Model Method Mean RMSE Median 25th pctile 75th pctile
 =0 Optimal GMM, DPNLS Instruments. .099 .029 .099 .080 .119
 =0 Optimal GMM, Init. Value. Instruments .104 .060 .103 .065 .144
 =1 Optimal GMM, DPNLS Instruments. .040 .062 .040 .028 .052
 =1 Optimal GMM, Init. Value. Instruments .089 .042 .092 .063 .118

(5)
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