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Abstract

Are Market Makers Uninformed and Passive?

Signing Trades in the Absence of Quotes

We develop a new likelihood-based approach to sign trades in the absence of quotes.

It is equally efficient as existing MCMC methods, but more than 10 times faster. It

can deal with the occurrence of multiple trades at the same time, and noisily observed

trade times. We apply this method to a high-frequency dataset of the 30Y U.S. treasury

futures to investigate the role of the market maker. Most theory characterizes him as

an uninformed passive liquidity supplier. Our results suggest that some market makers

actively demand liquidity for a substantial part of the day and are informed speculators.

Keywords: market microstructure, signing trades, market makers, treasury futures,

discount rate

JEL: C22, G14, E44

Financial markets rely on traders willing to supply liquidity to accommodate the trading

desire of other traders. In many cases financial market datasets do not specify which of the

traders involved in a transaction supplied liquidity, and which demanded it. Determining

who is the liquidity demanding party (often referred to as ‘signing’ trades) is commonly

done using econometric techniques. We propose a novel technique to sign trades for markets

where there is no quote information available. We apply it to a detailed dataset of the 30

year U.S. treasury futures market to investigate liquidity supply by market makers.

The task of determining the trade initiating party is a challenging one. The difficulty

of this task increases in settings where no quotes are available. For markets with quotes the

observed transaction price is related to the prevailing bid- and ask-quotes. If a trade takes

place closer to the ask (bid) we say the trade is initiated by the buying (selling) party.1 For

markets without quotes, Hasbrouck (2004) suggests implementing a method based on the

Roll (1984) model. Here the observed transaction price is either a half-spread above or below

an unobserved efficient price, depending on whether the trade was initiated by the buying

or selling party. The proposed technique relies on a Bayesian inference method, the Gibbs

Sampler. As this is a simulation based method it is computationally burdensome, and may

be too time-consuming for many datasets. For example, our dataset for the U.S. treasury

futures market consists of more than 42 million trades.

1Lee and Ready (1991) is often cited for such kind of approach. Section 1.1 provides a complete overview.
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We develop an innovative method for determining whether the buying or selling

party initiated a trade. The method we propose follows from the same principles as the

Hasbrouck (2004) method. However, as our model relies on likelihood-based methods of

time-series models in state space form we greatly reduce the computational burden. Applying

Hasbrouck’s method to our dataset would require over 40 hours for one model variation to be

estimated, whereas the method we suggest requires a little over 110 minutes.2 In addition we

develop an approximate approach, in which we deal with two other features that are common

to financial market datasets but have not yet been dealt with in the existing signing literature.

First, the approximate approach can deal with the occurrence of trades that take place at

the same time. Second, it allows to analyze settings in which the trade time is observed

with noise. This is done in both cases by stacking multiple observations and treating them

as equal.

The importance of the new approach goes beyond signing trades. Hasbrouck (2009)

applies the Bayesian Hasbrouck (2004) methodology to a daily CRSP dataset ranging a

long time span from 1926-2006 to obtain an estimate of the daily spread. Moreover, the

Roll (1984) model is used as workhorse model in market microstructure. It is used, e.g.,

to study informational attributes for the case that one security trades on multiple markets

(Hasbrouck (2002) provides an overview of this latter and related settings). Our new fast

implementation can be used in these settings to obtain estimates in a framework closer to

the original Roll (1984) model.

We apply the method to our treasury futures market dataset to study liquidity

demand and supply by market makers. Market makers play an important role in financial

markets. They stand ready to buy and sell in order to accommodate the asynchronous arrival

of sellers and buyers. Classic inventory models assume that they are risk-averse and therefore

need compensation for carrying suboptimal inventory through time. In the process they earn

the bid-ask spread to compensate for bearing inventory risk.3 Empirically, studies measure

inventory control through the rate of inventory mean reversion and results are relatively

poor, i.e. half-life of inventory typically is often long relative to what one might expect.4

2The number of times each of the methods needs to run over all the observations causes the difference
in required calculation time. Hasbrouck (2004) suggests 10,000 swoops over the data, while our likelihood-
based method requires on average 10 maximum likelihood iterations to estimate the two parameters in which
the likelihood is calculated about 6 times. See Section 3.2 for more details on the differences in estimation
procedures and calculation times.

3The costs associated with the inventory risk is one of the three classic explanations for the bid-ask
spread. The other two explanations are information asymmetry (see for example Kyle (1985) and Glosten
and Milgrom (1985)) and order processing costs (such as in Roll (1984)). See O’Hara (1995) for an overview.

4For example, Hasbrouck and Sofianos (1993) show that it takes long to reduce an inventory position,
sometimes up to two months. However, some of the inventory models’ predictions are confirmed by data,
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Two likely explanations for slow inventory mean-reversion are (i) institutional fea-

tures of a market that affect market maker behavior and (ii) active position-taking by market

makers to speculate on private information. Panayides (2007) provides an example of the

first and shows that the New York Stock Exchange specialist is sometimes forced to take on

positions due to the Price Continuity rule. Madhavan and Smidt (1993) illustrate that a sec-

ond reason for slow mean-reversion is speculation. They develop a model where the market

maker actively manages inventory and mean-reverts it to a long-run average position, but,

at the same time, they show that when he has access to private information he speculates by

actively building a short-term position. This could explain the low level of mean-reversion

if the econometrician ignores speculation.5

In the empirical part of this paper, we explore whether (unconstrained) market

makers actively speculate in the sense of Madhavan and Smidt (1993). We examine a large

cross-section of 3,384 market makers active on the 30Y U.S. treasury futures trading pit

on the Chicago Board of Trade.6 We find evidence of inventory control as the end of day

inventory distribution is concentrated around zero. In addition, we find that indeed market

makers actively take positions in the course of the day, i.e. they initiate trades that increase

their inventory position. When we relate the extent of active position taking to proprietary

trading profits we find a significant and positive correlation. This profitable position taking

is consistent with active speculation by the market maker. Our results emphasize the need

for theoretical models that take the informativeness of the market maker into account, such

as the model recently put forward by Boulatov and George (2008).

The current literature provides at best indirect evidence that market makers at times

are speculators. Some studies find that the market maker initiates a significant share of his

trades (Frino and Jarnecic (2000)) and interpret this as evidence of speculation. Initiation in

itself, however, is not the same as speculation as market makers can initiate trades to actively

manage their inventory position back to the long-term mean level. A nice illustration of this

phenomenon is the ‘hot-potato’ trading model of Lyons (1997). Locke and Sarajoti (2004)

find market maker inventory can be split into a desired and undesired position (from a long-

most notably that market makers do manage inventory toward a target (see for example Manaster and Mann
(1996) and Bjønnes and Rime (2005)). Recent evidence, however, shows that inventories mean-revert with
half-life ranging from less than one up to several days (see Hendershott and Menkveld (2009)).

5One outcome of their model is an equation that explicitly explains today’s inventory as the sum of two
components: (i) a fraction of yesterday’s inventory consistent with inventory management and (ii) an active
position on private information. We discuss the equation further in Section 1.

6This is the total number of floor traders active in the trading pit over our sample period. Of these the
great majority, roughly 85% on an average day, trades for own account and thus possibly supplies liquidity.
That these floor traders are market makers is consistent with, for example, Manaster and Mann (1996) and
Chakravary and Li (2003).
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term rational expectations point of view), and that market makers are most aggressive to

offset large undesired positions. Manaster and Mann (1996) and Bjønnes and Rime (2005)

document strong inventory control but, surprisingly, do not find the expected price effects of

inventory.7 They conclude that their results are consistent with active speculative position

taking by floor traders. Anand and Subrahmanyam (2008) show that intermediaries, a

subset of the market makers we study, have information orthogonal to what they could learn

from their client flow and account for greater price discovery. And, contrary to all these

studies, Chakravary and Li (2003) study market making but do not find evidence in favor

of speculation. We add to all of the aforementioned papers, as we are the first to provide

direct evidence of active position taking by market makers. Moreover, when we relate this

position taking to trading profits we find a positive and significant relation, which suggests

that market makers trade for speculative reasons.

Our dataset of the 30Y U.S. treasury futures over the period 1994-1997 to study

market maker liquidity supply has three advantages. First, we can identify whether trades

are proprietary or on behalf of customers. After signing the trades as buyer- or seller-

initiated this allows us to study not only liquidity supply, but also liquidity demand of the

market maker. Second, of the work that focuses solely on the liquidity supplying role of the

market maker the majority looks at the New York Stock Exchange Specialist,8 who, as was

pointed out earlier, is not a pure market maker as he is sometimes restricted by his obligation

to smooth transaction prices. Therefore it is more natural to study the market maker in

settings where he does not have such an obligation, as in treasury futures markets. Third, an

advantage of our dataset over the existing treasury futures market liquidity supply studies

is that the maturity we look at has the largest share of trading in one market. Manaster and

Mann (1996) and Chakravary and Li (2003) study liquidity supply on the market for the less

liquid 13 week bill, for which trading is split between the spot and futures market. When

this is case one has to account for trading across markets. We therefore feel our dataset is

an appropriate choice to study the issue of liquidity supply and demand by market makers.9

The rest of the paper is structured as follows. Section 1 discusses related literature.

7Demsetz (1968) and Stoll (1978) show that it could be optimal for market makers to not quote symmet-
rically around the efficient price, but deviate in order to create incentives for liquidity demanders to trade
in the direction that brings the market maker inventory back to zero.

8See Section 1.2 for a full overview.
9For the 13 week bill about 55% of volume trades on the futures market. For the 30 year bond almost all

trading takes place on the futures market, about 95%. These calculations are based on Fleming and Sarkar
(1999). For spot the on-the-run security is taken, for futures the nearby contract. The sample size of both
studies illustrate the lower liquidity of the 13 week contract: Manaster and Mann (1996) look at 584 trader
days, Chakravary and Li (2003) study only 6 traders for the treasury futures market (though both studies
include more data, but from other futures contracts).
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In Section 2 we discuss our dataset, provide some institutional background, and provide

summary statistics. Section 3 details the method we use to sign the trades in our dataset.

In Section 4 we present our empirical findings. Section 5 concludes.

1 Related Literature

1.1 Signing Futures Market Trades

Our work relates to the literature on classifying trades according to whether they are initiated

by the buying or selling party (the so-called ‘signing’ of trades). For markets with explicit

quotes a trade is qualified as being initiated by the buying party if it takes place closer to the

ask than the bid (Hasbrouck (1988), Lee and Ready (1991) and Ellis, Michaely, and O’Hara

(2000)).

For markets without quotes identifying whether the buying or selling party initiated

the trade is more challenging as it is difficult to find a good ‘reference’ for the observed

transaction prices. A tick test can be used, where a trade is labeled as being initiated by

the buying party if it is an uptick (i.e. if the transaction price is larger than the previous

price). However, this method has the disadvantage that a trade can be incorrectly labeled as

buyer-initiated simply due to an unrelated and simultaneous price innovation. Alternatively,

Rosenberg and Traub (2007) suggest to use the quotes of a parallel market for the same asset

as a reference: to sign futures market trades they use the quote from the forward market.

Unfortunately, this is not applicable generally as there needs to be such a parallel market.

Hasbrouck (2004) suggests using a Bayesian methodology (the Gibbs sampler) to

explicitly model the price innovation and trade sign. Unlike the aforementioned methods this

grounds in economic theory: it is based on the Roll (1984) model. We follow his approach,

but suggest a much quicker likelihood based algorithm to sign futures market trades. In

addition we develop a method that deals with high-frequency datasets in which it can occur

that there are multiple trades occurring at the same second at the same price and that the

trade time is observed with noise.
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1.2 Market Making and Inventory

Our study of the market maker relates to several strands of literature. First, it relates to the

literature that assumes the market maker is an uninformed passive liquidity supplier. For

example, in Stoll (1978) the market maker adjusts his quotes depending on his inventory

position to get rewarded for the risk of holding a nonzero inventory position. In the adverse

selection models of Kyle (1985) and Glosten and Milgrom (1985) the market maker sets

prices such that in expectation he has no profits and absorbs the net order flow. In both

types of models the market maker is uninformed and a liquidity supplier.

Madhavan and Smidt (1993) are the first to provide an exception to the above

setting. They introduce a model in which the market maker is both a dealer and a speculator.

Equation (6) in their paper gives the optimal trade quantity of the market maker, and

illustrates this dual nature:

It+1 − It = β(It − Id) −
1 + β

2
xt,

with It the market maker’s inventory position at time t, −1 < β < 0 a parameter measuring

the speed of inventory adjustment, Id the long-term desired inventory position and xt rep-

resenting the short-horizon investment strategy. Thus in the Madhavan and Smidt (1993)

model the optimal trade quantity of the market maker consists of two components: the

deviation of his inventory from the long-run desired level and a short-run speculative strat-

egy. In Boulatov and George (2008) liquidity suppliers can also be informed. Specifically,

informed traders may choose whether to act as liquidity demanders or suppliers. In case

of fully anonymous liquidity provision the informed act exclusively as liquidity suppliers. If

there is less than full anonymity some informed traders choose to provide liquidity while

others demand liquidity.10

Second, we relate to empirical studies of liquidity supply and inventory management.

The great majority of these papers look at the Specialist on the New York Stock Exchange,

with other studies looking at the U.S. treasury market, the exchange rate market, the London

Stock Exchange and option data (see Comerton-Forde et al. (2009) for references). In most

of the papers there is at best weak evidence for the empirical predictions of the inventory

models. Manaster and Mann (1996) and Bjønnes and Rime (2005) do document strong

evidence of inventory control by market makers. Surprisingly however, they do not find

10The empirical evidence in Hendershott, Jones, and Menkveld (2007) shows that indeed suppliers seem
to update quotes based on information.
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price effects of the inventory positions. They interpret this as being consistent with active

position taking by floor traders. In this paper we provide direct evidence to support this

conjecture.

2 Data and Institutional Background

To study the market maker and illustrate our signing algorithm we analyze trading in the

30Y U.S. treasury futures pit. This instrument trades on the Chicago Board of Trade

(CBOT). On the trading floor (the ‘pit’) traders (‘floor traders’) gather between 8:20 a.m.

and 3:00 p.m. Eastern Time. Trading takes place through the open outcry method: prices

are negotiated by shouting out orders and indicating direction and quantity using hand

signals.

We look at the 30Y maturity (instead of, e.g., the 5Y) as this is the maturity where

volume is most concentrated on one exchange. For the 30Y maturity about 95% takes place

on the futures market and 5% on the spot, while for the 5Y bond this is 24% and 76%

respectively (see Fleming and Sarkar (1999)). In addition, in our sample period of 1994-

1997 electronic trading is still limited. Thus, by looking at the 30Y treasury futures we have

a setting where we observe almost all trading, and minimize the risk of missing offsetting

trades in the other market or electronically. At each moment in time multiple treasury bond

futures contracts with different expiry months are traded. We focus on the most nearby as

this is the most liquid of these (see Fleming and Sarkar (1999)).

Our dataset records all trades taking place on the futures pit. For each trade are

recorded: the time of the trade; a buy/sell indicator; trade quantity (in contracts); trade

price; a floor trader identifier and a customer type indicator (CTI). Floor traders have

to report their trades in 15 minute brackets. A timing algorithm (the Computerized Trade

Reconstruction) is used to time the reported trades to their nearest second. Though this may

be noisy we believe this timing is fairly accurate.11 It is used by the Commodity Futures

Trading Commission (CFTC) for regulation purposes, and is used in, e.g., the studies of

Fishman and Longstaff (1992) and Manaster and Mann (1996).

11In addition, we apply several data filters. First, we focus on ‘regular’ trades: we remove trades that are,
e.g., indicated to be spread trades. Second, we remove trades that show an unusual transaction pattern.
Specifically, if a transaction return of more than 0.25% is followed by a return in the opposite direction also
larger than 0.25% we expect these trades to suffer from serious timing error and eliminate it. In total we
remove 1.44% of all trades with these two filters.
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The CTI indicates for each trade whether it is a trade for the own account of the

floor trader (a ‘proprietary’ trade), or on behalf of another party. In particular, we have

the following four codes: CTI1: proprietary trade; CTI2: trade for clearing member’s house

account; CTI3: trade for another member present at the floor; CTI4: a trade for (off-

exchange) customers. Consistent with earlier futures market studies (such as Fishman and

Longstaff (1992), Manaster and Mann (1996) and Chakravary and Li (2003)) we restrict

attention to CTI1 and CTI4 trades as they represent most trading volume. Since both

parties report a trade the trades are double counted. For example, a trade between two

market makers each trading for own account appears twice in our dataset with both times

the same quantity, price and CTI but different buy/sell indicator and floor trader identifier.

[insert Table 1]

Following the futures market literature (see for example Fishman and Longstaff

(1992), Manaster and Mann (1996) and Chakravary and Li (2003)) we use the CTI codes to

identify three groups of floor traders in our data. On a daily basis we identify traders that

only trade on behalf of customers (we label these as ‘brokers’), traders that only trade for own

account (‘locals’, or local traders) and traders that do both (‘duals’, or dual traders).12 It is

important to distinguish these groups, as recent studies find that order flow coming from the

customers of dual traders, the end-users in the economy, provides information orthogonal

to that from the macroeconomic news (Menkveld, Sarkar, and Van der Wel (2007)), and

customer flow may even predict macroeconomic variables (Evans and Lyons (2008)). Thus,

compared to the local traders, the dual traders have an additional signal which they can use

to update their beliefs of the value of the asset.

Table 1 provides some summary statistics for these groups. Important to note is that

of these three groups the locals and duals trade for own account, and are the market makers

in this setting. On an average day there are 521 traders active, each generating an average

volume of 807 contracts for own account and 793 contracts on behalf of customers. This

illustrates the enormous activity of this market: on an average day 357 thousand contracts

are traded for own account, and 184 thousand contracts are traded on behalf of customers.

Of the 521 traders active on an average day 288 are local traders, 155 dual traders and 78

brokers. Thus, on an average day in our sample 443 floor traders provide market making

services.

12Following the literature we allow for a 2% error margin for this classification (see for example Fishman
and Longstaff (1992) and Chakravary and Li (2003)). That is, if daily volume for a trader on a day consists
of more than 98% (less than 2%) proprietary volume we label him a local (broker), otherwise a dual.
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We combine our above treasury futures dataset with a dataset on macroeconomic

announcements from the International Money Market Services (MMS). As many studies

find that these scheduled releases of news significantly affect returns, volatility, volume and

information asymmetry13 we expect that they may also matter for purposes of liquidity

supply and demand, as market makers anticipate these announcements and their effect on

markets. We consider a broad set of 25 macro announcements such as the PPI, CPI and

Nonfarm Payroll Employment figures (which have previously been studied by, e.g., Green

(2004), Pasquariello and Vega (2007) and Menkveld, Sarkar, and Van der Wel (2007)) that

occur throughout the trading day at fixed times, such as at 8:30 a.m. ET and 10:00 a.m. ET.

For each macro announcement an expectation of market participants is recorded, together

with the first released (i.e. not revised) figure. Consistent with the aforementioned studies,

we focus on the 8:30 announcements as this is where the most significant announcements are.

Using the announcement data we split our sample in two groups. We look at days at which

there is one or more 8:30 announcement, and days at which there are no announcements at

8:30. To make sure the 8:30 announcement is driving the results we are careful to take out

days with other announcements that take place in the morning (that is, at 9:15 and 10:00).

Table 1 also provides summary statistics for these announcement and nonannounce-

ment days. Of the total 1,005 days in our sample we find there are 377 announcement days,

and 350 nonannouncement days. We see a clear increase in trading activity both in average

volume traded and number of traders on announcement days compared to nonannouncement

days. For example, on average on announcement days there are 535 traders active, while on

nonannouncement days there are 501 traders, 6.4% less.

[insert Figure 1]

For each trader we have a record of all his trades in the 30Y treasury futures, plus

the direction of each of these trades. We use this to obtain the inventory for each trader.

Consistent with the previous literature (see for example Manaster and Mann (1996)) we do

this under the assumption that floor traders close out the day with zero inventory.14 In

Figure 1 we plot the end of day inventory that is obtained using this assumption. From

13See, e.g., Ederington and Lee (1993), Fleming and Remolona (1999), and Andersen, Bollerslev, Diebold,
and Vega (2007) for evidence on the effects of macroeconomic announcements on returns, volatility and
trading volume. Green (2004), Pasquariello and Vega (2007) and Menkveld, Sarkar, and Van der Wel (2007)
document changes in information asymmetry after macroeconomic announcements.

14There are some limitations to this way of calculating inventories. As we focus on CTI1 and CTI4 trades
we miss possible CTI2 and CTI3 trades of market makers. In addition we only have a record of the trades in
the 30Y treasury futures, and not in other markets. But similar to Manaster and Mann (1996), we believe
the current method provides the most accurate estimate of inventories.

10



the figure it is clear that end of day inventory is indeed centered around zero. The most

common end of day inventory position is a flat position. Of the nonzero positions most are

below 15 contracts in absolute terms, which is small compared to the average market maker’s

trade size of 807 contracts. This suggests that the assumption that is used to construct the

inventory series is a reasonable one.

3 Signing Futures Market Trades

An important variable that is not available in many datasets is the trade sign, which specifies

which of the parties initiated a trade. Motivated by the above typical and rich futures market

dataset, we develop an efficient algorithm to estimate this sign.

3.1 Methodology

Signing the trades in a dataset amounts to determining for each trade whether it is initiated

by the buying or selling party. For markets with explicit bid and ask quotes algorithms for

this challenging task are available, an often employed technique that relates the transaction

price to the average of the bid and ask quote (the ‘midquote’) is put forward by Lee and

Ready (1991). For markets without quotes the identification is an even more challenging

task. Whereas in the former case the observations consist of transaction prices and both bid

and ask quotes, for the latter only the transaction prices are observed.

Hasbrouck (2004) proposes a new Bayesian methodology to deal with the challenge

of estimating the unobserved sign of the trades from the observed transaction prices. The

methodology is based on the Roll (1984) model of the bid-ask spread.15 In this model the

logarithm of the unobserved efficient price mt evolves as a random walk:

mt = mt−1 + ut, ut ∼ N(0, σ2

u). (1)

15In addition, Hasbrouck (2004) suggests several extensions to the Roll (1984) model that can be estimated
in the Bayesian framework he proposes. As our main purpose is the signing of trades we choose a standard
setting and therefore remain in the set-up of the Roll (1984) model. Note that in addition to this standard
setting, we also develop an alternative method to sign futures trades that allows for more flexibility and that
also our standard setting can be extended in multiple directions.
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The actually observed log transaction prices pt are either above or below this unobserved

efficient price, depending on whether the trade is initiated by the buyer or the seller of the

transaction. If we let qt ∈ {−1, +1} denote the direction of a trade, with +1 a buyer-initiated

trade and −1 a seller-initiated trade, and c the transaction costs we can write the observed

log transaction price as:

pt =

{

mt + c, if qt = +1,

mt − c, if qt = −1,
(2)

or simply pt = mt + cqt.

Hasbrouck (2004) suggests a Markov Chain Monte Carlo (MCMC) methodology

(the Gibbs Sampler), in which iteratively draws from the parameters c and σ2
u are obtained,

together with draws for the unobserved time series of signs qt, t = 1, . . . , n. For a large

number of draws the simulated distribution will be equal to the desired joint posterior dis-

tribution of the parameters and sign time series, conditional on the observed prices. An

obvious disadvantage of these simulation based techniques is that they are computationally

expensive and require a lot of simulations to obtain convergence. As we have over 42 million

observations this MCMC technique requires long computation time.

Instead of the above Bayesian methodology we propose to estimate the Roll (1984)

model parameters c and σ2
u and the series of trade initiating signs qt in a State Space Form

(SSF) framework. This class of time-series models builds on the idea that an observed series

can be explained by several unobserved components.16 If we write the Roll (1984) model in

this framework we obtain:

pt = mt + cqt, qt ∈ {−1, +1},

mt = mt−1 + ut, ut ∼ N(0, σ2
u).

(3)

As the qt are not Gaussian but binary distributed (assumed to be initiated by the buying

or selling party with equal probability, an assumption that can easily be relaxed in this

framework) this is not a standard linear Gaussian state space model. However, since qt can

only take on two values this model can be seen as a special case of state space models with

regime switching. Kim and Nelson (1999) discuss the implementation of regime switching

models in the state space framework, and show that it is a combination of the Kalman Filter

for SSF models and the Hamilton (1989) filter for regime switching models. By implementing

16See Durbin and Koopman (2001) for an introduction. Menkveld, Koopman, and Lucas (2007) also look
at Gaussian state space models in a market microstructure context; Glosten and Harris (1988), Harris (1990)
and Hasbrouck (1999) employ non-Gaussian state space methods.
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the recursions of this algorithm we obtain a likelihood value, which we can maximize using

standard optimization techniques. The appendix provides details of how we implement these

recursions for the Roll (1984) model.

There are a few additional issues when applying our State Space Form Regime

Switching (SSF-RS) signing methodology to financial market data. As is the case for our

dataset, for very actively traded instruments it occurs that there are multiple trades at the

same second. In fact, it can even occur that in the futures pit there are trades at different

prices in the same second. For example, in our dataset this happens at more than 1% of all

seconds at which trading takes place.17 Since in the Roll (1984) model the transaction cost

and efficient price innovation and thus the sign does not depend on quantity, we summarize

the information of all trades in this second to one single observation. In addition, transaction

times can be observed with noise. This is something of particular importance for futures

markets, and as we pointed out in Section 2, is also the case for our data as the time stamps

of the trades are obtained using the Computerized Trade Reconciliation algorithm. Though

we believe the stamps are fairly accurate they are noisy to some extent and they can not be

used to determine the exact sequence of transactions.

To deal with these issues, which are not addressed in Hasbrouck (2004), we imple-

ment an alternative signing algorithm. This algorithm is also based on the state space model,

but now we aggregate all trades within a certain interval by stacking them. We approximate

the Roll (1984) model of equation (3) with a linear Gaussian state space model:

~pt = ι mt + ~vt, ~vt ∼ N(0, I σ2
v),

mt = mt−1 + ut, ut ∼ N(0, σ2
u),

(4)

with ~pt a vector collecting all price observations at time t, ι a vector with ones that is of the

same dimension as ~pt, ~vt a vector collecting the noise elements in the observation equation

and I the unit matrix. In this model we have for each of the elements i in the noise vector

~vt mean E[vit] = E[cqit] = 0 and variance V[vit] = V[cqit] = c2. As we now do not need the

additional calculations of the Hamilton (1989) filter we can straightforwardly implement a

multivariate version of this model using fast standard state space form computing packages.

This allows to aggregate the trades within a certain interval (10 seconds for example, or 1

minute) by creating a multivariate price vector for each time. The fact that in the above

algorithm the size of the price vector varies is not a problem for SSF models as this class

17These time periods of high trade intensity might well be disproportionally important for price discovery.
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of models is particularly well-suited for models with missings. In addition, one can use

this approach to deal with the situation that in some seconds there are trades occurring at

different prices.

3.2 Simulation Study

[insert Table 2]

Table 2 provides results from a simulation study of the accuracy and speed of the various

signing algorithms. For a number of replications (100 in this set-up) we generate a fixed

number of observations (chosen to be 50 here) with Roll (1984) as the Data Generating

Process (DGP). For each of these replications we estimate the parameters of the Roll model

and the sign (buyer- or seller-initiated) of each trade. We compare the following methods:

the State Space Form Regime Switching (SSF-RS) method, the SSF Approximation (SSF-

Approx) method and Hasbrouck’s (2004) MCMC (H-MCMC) method. In addition, we

compare the parameter estimates to those obtained from the method of moments, where the

distributional properties of the Roll model are used to obtain estimates of c and σ2
u. We also

compare the trade sign to a tick test, in which a trade is considered to be buyer-initiated if

it is an uptick.

We find that the method of moments, SSF Regime Switching and Hasbrouck’s

method all provide good estimates of the Roll model parameters. The results for the SSF

Regime Switching and Hasbrouck’s method are very similar. For some parameter values and

number of observations our SSF-RS method performs slightly better, for other parameter

values and number of observations the H-MCMC method performs a bit better.18 The SSF

Approximating method performs very poor to estimate the model parameters.19

In terms of estimating the sign of the trades we see both the SSF Regime Switching

method and Hasbrouck’s MCMC method perform very well, with an accuracy of over 95%

and greatly outperforming the tick test. The MCMC and SSF-RS methods provide the

most accurate results, signing at least another extra 0.5% of trades correct compared to the

18From the results reported in the table it may seem that the Hasbrouck (2004) MCMC method is more
biased and less efficient than the SSF Regime Switching method. However, this is due to the chosen number
of swoops and burn-in in the MCMC method. With a greater burn-in results similar to the SSF-RS can be
obtained with the H-MCMC method, though this will add to the calculation time.

19We believe that the bias originates in, in a way, the approximating distribution having fatter tails.
That is, the fourth moment of the approximating normal distribution is 3σ4

v, whereas it is c4 for the true
distribution.
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competing methods. Interestingly, while the SSF Approximating method performs poor in

obtaining the model parameters, it seems to work very well for signing trades.

In terms of time there is a clear difference between the SSF methods and the MCMC

method. Hasbrouck’s MCMC method is more than 10 times slower than the SSF Regime

Switching method. As the MCMC method relies on simulation methods more loops over the

data are needed. For example, taking 10,000 swoops (as Hasbrouck recommends) requires

10, 000 ∗ n calculations. The Maximum Likelihood (ML) calculations based on the SSF

Regime Switching method require less. On average 10 iterations in the ML procedure are

needed, in which on average 6 times the likelihood has to be calculated. Due to its smoothing

nature the loop needs to be forward and backward, so must be multiplied by 2. Therefore

on average the ML method requires about 10 ∗ 6 ∗ 2 ∗ n = 120 ∗ n calculations and is indeed

a lot quicker. The SSF Approximation method provides the quickest results.20

Overall there is a case to be made for both of the SSF signing methods and the

MCMC method when the main interest is obtaining the trade signs. As our dataset contains

many trades we prefer to take one of the quicker methods that is also nested in economic

theory, and employ the SSF Regime Switching method. In addition we use the SSF Ap-

proximation method for robustness. This latter method is interesting in itself, as it is not

only quick but also allows to deal with the noisily observed trade times and the occurrence

of multiple trades at the same time.

3.3 Results

[insert Figure 2]

Figure 2 illustrates how we apply the SSF Regime Switching signing methodology to the

data. In the top figure we plot the raw data: the observed transaction prices. Using these

observations we obtain an efficient price series that is estimated based on all data (i.e. the

smoothed estimate), which is also plotted in the top figure, and a smoothed probability of

the trade begin initiated by the buying party. In general we see that our signing methodology

20The difference in calculation time between the state space form regime switching and approximating
algorithm is however partially due to the underlying code. The regime switching method is implemented in
Ox (see Doornik (1998)), while the SSF Approximation method uses the functions from the SsfPack (see
Koopman, Shephard, and Doornik (1999)) which are programmed in (the quicker) programming language
C. Note that this does not explain the difference between the regime switching and the Hasbrouck (2004)
MCMC method as both of these are implemented in Ox. That difference is caused by the former being based
on maximum likelihood methods and the latter on simulation methods.
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acts in the same way as the Lee and Ready (1991) methodology for signing trades when a

bid-ask quote is available. In the latter case a trade is considered to be buyer-initiated if it is

above the midquote, whereas we label a trade to be initiated by the buying party if it takes

place above the smoothed efficient price. Thus in both cases an estimate of the underlying

true price is obtained, in the former the midquote and in the latter the smoothed efficient

price, around which transactions take place.

[insert Table 3]

In Table 3 we provide some statistics of the results of the signing algorithm on a

subset of our dataset. The sign we obtain with our SSF Regime Switching methodology

agrees with Hasbrouck’s method about 87% of all observations, and between 82% and 89%

with the SSF Approximating method. Moreover, our concerns with calculation time seem

to be justified: for an average day Hasbrouck’s methodology requires more than 2 minutes,

while our alternative SSF methods require less than 7 seconds.

We obtain a half-spread estimate of about 0.15. Following the calculations in Has-

brouck (2004) we transform this into a dollar figure by multiplying this estimate with the

average transaction price. As the transaction price is roughly $110 in 1994-1997, we get a

spread estimate of 0.15*2*$110=$33. This is very close to the tick size on the market, which

is $31.25 (see www.cbot.com). This adds further support to the reliability of the signing

algorithm.

4 Empirical Results

Here we discuss our empirical results that we obtain after we apply our signing methodology

to the data described in Section 2. We first look at how much of the market maker trades are

initiated by themselves. Then we look into the cross-section of market makers, and relate

the percentage of their trades that they initiate to their profits from trading.

4.1 Initiated Trades of the Market Makers

To study the liquidity supply role of market makers we first examine what portion of their

trades they initiate. As described in Section 2, there are three groups of floor traders active
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on the 30Y treasury futures market. These are the local traders, who only trade for their

own account, the dual traders, who trade for own account and on behalf of customers, and

brokers, who only trade on behalf of customers. Of these the first two provide market making

services, and these are the groups that we focus on in this study. The difference between

these two is, besides possible trader fixed effects, the information set: in addition to the

publicly available information the dual traders observe the customer trades they bring to

the market, from which they can also make inferences. Due to this, we split the groups

of market makers into locals (no customer trades) and duals (also customer trades) and

show results separately for these groups. In addition, we compare the results for days with

macroeconomic announcements with those for days without macroeconomic announcements.

Following the discussion in Section 2, the market is aware that information will arrive on

announcement days and so it is interesting to see whether that additional information leads

to changes in trader behavior.

[insert Figure 3]

Figure 3 shows the intraday pattern of the percentage of the market makers’ trades

that they initiate. On each day and in each 15 minute interval we calculate the total number

of proprietary trades in which market makers are involved. Then we use the buyer- or

seller-initiated indicator that we obtain from our state space form regime switching signing

methodology from Section 3 and match it to the buy/sell indicator in our dataset. If these

agree (thus, e.g., if the trade is buyer-initiated and the data indicates the floor trader bought)

we label the trade as being initiated by a market maker. We then calculate the number of

initiated market maker trades as a percentage of the total number of market maker trades.

In Panel (A) we look at this variable for locals, in Panel (B) for duals.

For both locals and duals the percentage of initiated trades is high. On average

market makers initiate more than 45% of their trades. As the trades are two-sided the

maximum percentage for all market makers we could have here is 50%. That the percentage

of initiated trades is close to this number indicates that market makers also demand liquidity

for a significant part of the day.

That this percentage is high contradicts the assumption in classic market making

models that the market maker is a passive liquidity supplier. However, it is not inconsistent

with other economic theories. For example, in the ‘hot-potato’ trading model of Lyons (1997)

in the first stage market makers trade with the general public and absorb their order flow.

In the second stage in multiple rounds the market makers offset their inventory position

by engaging in interdealer trading. Thus, one outside order brought to the market results
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in multiple trades on the interdealer market, consistent with a high percentage of initiated

market maker trades. The percentage of initiated trades is higher for local traders than

for dual traders, 48% and 45% respectively. Interestingly, the difference in this percentage

between days when information is coming to the market compared to nonannouncement days

is most significant for the dual traders in the post-announcement interval. These results are

consistent either with the market makers being active in managing their inventory positions,

or with them being active in building up speculative positions. In addition, the significant

difference for dual traders in the half hour after macroeconomic announcements indicates

they change their behavior shortly after there is information coming to the market. To study

these issues further we look at the inventory positions of the market makers.

4.2 Market Maker Inventory and Macro News

[insert Figure 4]

In Figure 4 we show the inventory position, calculated as described in Section 2, of the

market makers at four occasions in the day. We focus on differences in inventory positions

between announcement and nonannouncement days. As we only consider macroeconomic

announcements that occur at 8:30 we show the inventory positions around this time. Specif-

ically, we show the empirical distribution of trader inventories at 8:30 (shortly before the

news is released), the inventory position at 8:45, at 9:00 and finally at the end of the trading

day.

From Figure 4 it is clear that the market makers prefer to have zero inventory posi-

tions just prior to announcements (i.e. they like to ‘go in flat’). In particular, the inventory

distribution on nonannouncement days at 8:30 (the bold line) is much more dispersed than

the distribution on announcement days. Immediately after the announcement the market

makers quickly build up inventory positions: compared to nonannouncement days the em-

pirical inventory distribution is more dispersed.

For robustness, we also report results for the set of the three most influential

announcement days (the nonfarm, CPI and PPI announcement, see, e.g., Green (2004),

Pasquariello and Vega (2007) and Menkveld, Sarkar, and Van der Wel (2007)) as well as the

most influential announcement (the nonfarm payroll employment figure). We find that on

days with the strongest reactions to the news the distribution of inventory is widest. In ad-

dition we estimate the inventory distribution of locals and duals separately (figures available
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from the authors upon request). The results for these different market maker types show

similar patterns, attesting to the robustness of our results.

It remains to be seen however whether these positions are consistent with market

maker liquidity supply behavior or speculative position taking. In the first situation the

market makers accommodate the desire of the outside customers to trade after announce-

ments by absorbing their trades and in the process thus accumulate an inventory position.

In the second situation the inventory position is build up because the market maker exploits

a private signal on the movement of the price, and wants to speculate on this.

4.3 Initiated Traders that Increase Inventory

To disentangle whether the results so far are consistent with liquidity supply or speculative

position taking by market makers we examine the share of the initiated trades from Figure

3 that increases their inventory position. If the large percentage of initiated trades and the

increased inventory position after macroeconomic announcements is consistent purely with

their market maker liquidity supply role we expect them to only initiate trades that reduce

their absolute inventory position. In other words, the market makers will only initiate trades

that bring them closer to their long-term average inventory position. On the other hand,

if we find a high percentage of initiated trades that increase the market makers’ absolute

inventory position this is consistent with the market makers being informed and speculating

on future price movements.

[insert Figure 5]

In Figure 5 we split the percentage of initiated trades from Figure 3 to trades that

are inventory increasing and those that are inventory decreasing. On each day and in each 15

minute interval we calculate the total number of proprietary trades in which market makers

are involved. Then we use the buyer- or seller-initiated indicator that we obtain from our

state space form regime switching signing methodology from Section 3 and match it to the

buy/sell indicator in our dataset. If these correspond we label the trade as being initiated

by a market maker. Then, for each market maker we sum all their signed initiated trades in

the interval and see whether they increase their inventory position. We then calculate the

number of initiated inventory increasing market maker trades as a percentage of the total
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number of market maker trades.21 In Panel (A) we look at this variable for locals, in Panel

(B) for duals.

We find a very high percentage of market maker trades that are initiated and increase

individual inventory positions, over 25%. Unlike the total percentage of initiated trades,

which is higher for local traders, the percentage of initiated inventory increasing trades is

almost identical for local and dual traders. Interestingly, for both traders there is a significant

different percentage of initiated inventory increasing trades in the 8:30-8:45 interval after

announcements compared to nonannouncement days. This effect is strongest for the dual

traders.

The results in Figure 5 are consistent with the market makers taking on a position

after macroeconomic announcements. Both local traders and dual traders do so, but in

particular the traders with the additional information from bringing customer orders to

the market build up a position after the announcement. The high percentage of initiated

inventory increasing trades provides evidence against the market makers being uninformed

liquidity suppliers, as pure market makers would only initiate trades that mean revert their

inventory.

4.4 Initiated Inventory Increasing Trades and Trading Profits

If the market makers indeed take on speculative positions through initiated inventory in-

creasing trades then it is interesting to see if the traders that do so most derive positive

profits from this. We examine this by looking in the cross-section of market makers, and re-

late the percentage of inventory increasing trades to profits from trading. We follow Fishman

and Longstaff (1992) and define profitability as:

πkt =

(

∑Ns

kt

j=1 qs
jktP

s
jkt −

∑Nb

kt

j=1 qb
jktP

b
jkt + (

∑Nb

kt

j=1 qb
jkt −

∑Ns

kt

j=1 qs
jkt)REFPt

)

max(
∑Nb

kt

j=1 qb
jkt,

∑Ns

kt

j=1 qs
jkt)

, (5)

21The frequency with which we perform this analysis is low. It is very well possibly that within the 15
minute interval the initiated trades do not only respond to the inventory position at the begin of the interval,
but also to uninitiated trades in the interval. We look at 15 minute intervals to ensure that possible errors
due to the timing algorithm do not cause our results. In addition we also perform the analysis of this section
in 1 minute intervals. This frequency is consistent with Manaster and Mann (1996), who look at inventory
management for a similar futures market dataset. Though the percentages of inventory increasing trades are
slightly lower we get qualitatively similar results (the corresponding figures are available from the authors
upon request).

20



where πkt is the profit per round-trip contract22 for intermediary k on day t, N b
kt (N s

kt) is

the total number of buys (sells), qb
jkt (qs

jkt) is the quantity of the jth transaction in terms

of number of contracts, P b
jkt (P s

jkt) is the associated price, and REFPt is the reference price

in day t. Similar to the calculation of inventory, the profit calculation assumes that the

intermediary starts with zero inventory. The end of day position (if any) is liquidated at a

reference price REFPt, which we take to be the daily settlement price.

[insert Table 4]

In Table 4 we split these profits from trading according to the percentage of initiated

inventory increasing trades. For each day we calculate the 25% quantile, median and the

75% quantile of the percentage of inventory increasing trades and based on this classify the

traders and corresponding profits on a daily basis in four groups. Looking at the median, we

generally find for both the locals and duals on both announcement and nonannouncement

days a positive relation between the percentage of initiated inventory increasing trades and

trading profits.23 Moreover, the results do not only seem to be in the median, also in the

lower quantiles similar patterns can be found. Thus not only do market makers who have a

large percentage of initiated inventory increasing trades earn higher profits from trading on

average, they reduce the downside of their profits.

We therefore conclude that for locals and duals on announcements days there indeed

is a positive and significant relation between inventory increasing trades and profits from

trading, with the strongest relation for the dual traders. These results are consistent with

the market makers building up a position after the announcement, and earning a profit from

this. The market makers that have the highest percentage of inventory increasing trades

earn the highest profits. This relation is strongest for dual traders, the group of market

makers with the additional information set of observing what orders customers bring to the

market.

22We use a per-contract profit measure to control for trade activity, as locals are more active than duals.
23For the dual traders the pattern is not always monotonous, which is in part caused by traders that are

very inactive. For example, traders that only trade once on a day are automatically put in either the smallest
or largest group, as either 0% or 100% of their trades are initiated inventory increasing.
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5 Conclusion

We propose a new method to determine the initiating party of a trade. Hasbrouck (2004)

suggests a Bayesian method to do this in a market setting in which quotes are not available.

As this method is numerically expensive it may not be feasible for datasets of highly active

markets. We develop an alternative likelihood-based approach to sign trades in the absence

of quotes. Simulation results show similar desirable properties in terms of efficiency, but

increased speed. We also propose a modified version that allows for two other features

common to financial market datasets: multiple trades occurring at the same time and a

trade time that is observed with noise.

We apply the method to the 30Y U.S. treasury futures market and study liquidity

supply by market makers. Classic models assume he is an uninformed passive liquidity

supplier who actively manages his inventory. So far, the empirical support is weak. We

find that market makers initiate a significant amount of trades that increase their inventory

positions. When we look at the cross-section of market makers and relate the extent to

which their initiated trades are inventory increasing to their profits from trading, we find

a significant and positive relation. Our results provide evidence against the market maker

being just an uninformed liquidity supplier. On the contrary, he seems to actively speculate

on private information signals. Our results stress the need for the development of theoretical

models in which the market maker is informed, such as the recent Boulatov and George

(2008) model.

Appendix

In this appendix we describe the recursions of the filtering algorithm used to make inferences on the state
space form regime switching representation of the Roll (1984) model as in equation (3). For illustrative
purposes we first detail these recursions for a case without regime switching, the univariate case of the
Gaussian approximation of the Roll (1984) model from equation (4).

Recursions for Linear State Space Model

The univariate version of the Gaussian approximation of the Roll (1984) model is given by:

pt = mt + vt, vt ∼ N(0, σ2
v),

mt = mt−1 + ut, ut ∼ N(0, σ2
u),

for t = 1, . . . , n and with pt the observed log price series and mt the unobserved log efficient price of the
asset. In here σ2

v and σ2
u are parameters, with the former representing the spread (in effect approximating

the binary cqt from the Roll (1984) model with a Gaussian distribution) and the latter the log efficient price
innovation. We are interested in obtaining estimates of these parameters and the log efficient price series,
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conditional on all data. To do this we rely on standard linear Gaussian state space techniques, such as
detailed in Durbin and Koopman (2001) and Kim and Nelson (1999). In particular, we use the Kalman filter
for this. Following the terminology in these references, the latent mt is often referred to as the unobserved
‘state’ of the observed price process.

To initiate the Kalman filter we need to take a distribution for the first efficient price: m1 ∼
N(a1, P1). In case little is known about this we can make this a very uninformative distribution, by setting
P1 to be large.24 Then for every time t we first calculate the estimated unobserved efficient price based on
all data up to and including the previous period (which is referred to as the ‘predicted state’). In the second
step, we obtain the estimated unobserved efficient price based on all data up to and including this period
(referred to as the ‘filtered state’). We have:

mt|t−1 =

{

a1 t = 1,
mt−1|t−1 t > 1,

Pt|t−1 =

{

P1 t = 1,
Pt−1|t−1 + σ2

u t > 1,

ft = pt − mt|t−1,

Ft = Pt|t−1 + σ2
v ,

mt|t = mt|t−1 + Pt|t−1F
−1
t ft

Pt|t = Pt|t−1 − Pt|t−1F
−1
t Pt|t−1,

with mt|t−1 (Pt|t−1) the predicted state (and its variance), mt|t (Pt|t) the filtered state (and its variance) and
ft (Ft) the Kalman filter residual (and its variance). To obtain estimates of the log efficient price conditional
on all data (referred to as the ‘smoothed state’) we need to do a backward loop, known as the Kalman
Smoother:

mt|n =

{

mt|n t = n,
mt|t + Pt|tP

−1
t+1|t

(

mt+1|n − mt+1|t

)

t ≤ n − 1,

Pt|n =

{

Pt|n t = n,
Pt|t + Pt|tP

−1
t+1|t

(

Pt+1|n − Pt+1|t

)

P−1
t+1|tPt|t t ≤ n − 1,

with mt|n (Pt|n) the smoothed state (and its variance).

As pointed out above, the goal of the analysis is to make inferences about the parameters and the
unobserved states. To this end we need to derive the likelihood

L(σ2
v , σ2

u|p1, . . . , pn) = f(p1, . . . , pn|σ
2
v , σ2

u).

We use

f(p1, . . . , pn|σ
2
v , σ2

u) =

n
∏

t=2

f(pt|p1, . . . , pt−1, σ
2
v , σ2

u)f(p1|σ
2
v, σ2

u).

We follow the standard approach in econometrics to maximize the log of the likelihood rather than the
likelihood, such that we obtain:

ln(f(p1, . . . , pn|σ
2
v , σ2

u)) = ln(f(p1|σ
2
v , σ2

u)) +

n
∑

t=2

ln(f(pt|p1, . . . , pt−1, σ
2
v , σ2

u)).

We evaluate ln(f(pt|p1, . . . , pt−1, σ
2
v, σ2

u)) using the output from the Kalman filter. Following Durbin and

24In the extreme case, P1 → ∞, the Kalman filter is said to have a diffuse initial distribution.
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Koopman (2001) we obtain:

ln(f(pt|p1, . . . , pt−1, σ
2
v , σ2

u)) = − ln(2π)/2 − ln(Ft)/2 + f2
t F−1

t /2.

From this it is clear that evaluating the loglikelihood through the Kalman filter is straightforward. After
initializing the likelihood for the first observation we simply add the above term at every time t.

The derivation of the Kalman filter and likelihood strongly relies on linearity and normality. In
calculating the filtered state mt|t and its variance Pt|t we use the convenient properties of the bivariate normal
distribution. If vt and ut are not normal the derivation no longer holds and we face a problem.25 Typically
researchers use computationally expensive simulation based techniques, such as Importance Sampling (see
Durbin and Koopman (2001, Part II)), to deal with this. However, in the next subsection we discuss an
algorithm that can be used when some of the distributions are binary instead of Gaussian. This technique
for this special situation has the advantage that it does not rely on simulation based methods.

Recursions for State Space Model with Regime Switching

The state space form regime switching representation of the Roll (1984) model is:

pt = mt + cqt, qt ∈ {−1, +1},
mt = mt−1 + ut, ut ∼ N(0, σ2

u).

with pt the observed log price series, mt the unobserved log efficient price of the asset and qt the unobserved
time series of trade signs. In here c and σ2

u are parameters, with the former representing the half-spread and
the latter the log efficient price innovation. We are interested in obtaining estimates of these parameters,
the log efficient price series and the sign time series, conditional on all data.

As we point out in the previous subsection, to do this we can no longer rely on standard linear
Gaussian state space techniques. Fortunately, for the special set-up of the Roll (1984) model we have a
likelihood based alternative to the simulation techniques that typically need to be used for non-Gaussian
state space models. As discussed in Section 3, we work from regime switching models in state space form, such
as detailed in Kim and Nelson (1999). The associated techniques are frequently used by macroeconomists to
model time series which process depends on whether the economy is in the state of recession or expansion.
The idea is to integrate over the unobserved binary distributed variables. Conditional on a time series of
trade initiating signs qt, t = 1, . . . , n, the Roll (1984) model is again a linear Gaussian model. There is one
complication with this approach, which we elaborate on when we encounter it in the description below. The
recursions in this section describing the technique closely follow Kim and Nelson (1999, Chapter 5).

At each point in time we analyze the model in three stages, with an initialization for the first
observation. Similar to the linear Gaussian model from the previous section, in the initialization of the
system we get f(p1|c, σ

2
u). However, as there are two possibilities for the first trade (buyer- or seller-initiated,

q1 = +1 or q1 = −1 respectively) we need two initial conditions. For both cases we use the same initialization
as in the previous section. In addition we need an initial probability that the first trade is buyer-initiated,
which we set to be 0.5 following the Roll (1984) model: P(q1 = +1) = 0.5.

In the first stage we evaluate the Kalman filter, with recursions similar to the previous section.

25In the non-Gaussian case the filtered estimate obtained from the Kalman filter is no longer the minimum
mean square estimator. It is however the minimum mean square linear estimator, as Duncan and Horn (1972)
point out.
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3|2 = mi,j

2|2, P i,j,k
3|2 = P i,j

2|2 + σ2
u,

f i,j,k
3 = p3 − mi,j,k

3|2 − q3c, F i,j,k
3 = P i,j,k

3|2 ,

mi,j,k
3|3 = mi,j,k

3|2 + P i,j,k
3|2 (F i,j,k

3 )−1f i,j,k
3 , P i,j,k

3|3 = P i,j,k
3|2 − P i,j,k

3|2 (F i,j,k
3 )−1P i,j,k

3|2 ,

where i ∈ {q1 = +1, q1 = −1}, j ∈ {q2 = +1, q2 = −1} and k ∈ {q3 = +1, q3 = −1}. In the Kalman
filter we need the previous filtered state to obtain the current predicted state. As we integrate out over the
discrete qt this will however make the number of possible paths too large. At time t we do not only need
to know qt and qt−1, but also qt−2, qt−3, etc. This means that at time t there are 2t possible paths. To
overcome this we collapse the filtered state in the state space form regime switching filter. If we do so we
do not need to consider the whole past of the trade sign time series qt, qt−1, qt−2, . . . , q1, but only qt and
qt−1. With this approximation we follow the recommendation of Kim (1994, p.9), to “. . . carry at least M r+1

states at each iteration”, with M the number of states and r the number of lags appearing in the state-space
representation.26

Based on this approximation we thus focus on four possible cases in the first stage of the filter:
(1) the current and previous trade being buyer-initiated (qt = +1; qt−1 = +1); (2) the current trade being
buyer-initiated and the previous seller-initiated (qt = +1; qt−1 = −1); (3) the current trade being seller-
initiated and the previous buyer-initiated (qt = −1; qt−1 = +1); and (4) the current and previous trade
being seller-initiated (qt = −1; qt−1 = −1). Thus, in this first stage we obtain mi,j

t|t−1, P i,j
t|t−1, f i,j

t , F i,j
t , Ki,j

t ,

mi,j
t|t and P i,j

t|t for i ∈ {qt−1 = +1, qt−1 = −1} and j ∈ {qt = +1, qt = −1}.

In the second stage we look at the probability of each of the states, given our output of the Kalman
filter from these four possible cases. This methodology follows the Hamilton (1989) filter. In particular, for
the Roll (1984) model we have:

P(qt, qt−1|p1, . . . , pt−1) = P(qt|qt−1)P(qt−1|p1, . . . , pt−1) = 0.5P(qt−1|p1, . . . , pt−1),

f(pt|p1, . . . , pt−1) =
∑

qt

∑

qt−1

f(pt, qt, qt−1|p1, . . . , pt−1),

=
∑

qt

∑

qt−1

f(pt|qt, qt−1, p1, . . . , pt−1)P(qt, qt−1|p1, . . . , pt−1),

lik + = ln(f(pt|p1, . . . , pt−1)),

P(qt, qt−1|p1, . . . , pt) =
f(pt, qt, qt−1|p1, . . . , pt−1)

f(pt|p1, . . . , pt−1)
,

=
f(pt|qt, qt−1, p1, . . . , pt−1)P(qt, qt−1|p1, . . . , pt−1)

f(pt|p1, . . . , pt−1)
,

P(qt|p1, . . . , pt) =
∑

qt−1

P(qt, qt−1|p1, . . . , pt),

26Other approximations are possible. For example, it is possible to collapse the filtered state into one value
and thus only record qt. Or, instead of only using qt and qt−1 we can in addition also consider qt−2. However,
according to Kim’s recommendation we are already rather conservative: if we follow his recommendation we
should consider only 2 states whereas we look at 4 states.
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where f(pt|qt, qt−1, p1, . . . , pt−1) can be evaluated from the prediction error decomposition using the output
of the Kalman filter at time t:

f(pt|qt, qt−1, p1, . . . , pt−1) = (2π)−n/2|F i,j
t |−1/2e−(fi,j

t )
′

(F i,j
t )−1fi,j

t /2,

which is evaluated for i ∈ {qt−1 = +1, qt−1 = −1} and j ∈ {qt = +1, qt = −1}.

Then, in the third stage for each time point, we follow Kim (1994) and do the aforementioned
collapsing of the filtered state. As pointed out above, this is done to overcome the problem that at each
point in time we have two possible states due to which the total number of paths will rapidly increase:
at time t there are 2t possibilities. This is the one approximation we need to keep the filtering analysis
tractable. We collapse the filter as follows:

mj
t|t =

∑

i P(qt = j, qt−1 = i|p1, . . . , pt)m
i,j
t|t

P(qt = j|p1, . . . , pt)
,

P j
t|t =

∑

i P(qt = j, qt−1 = i|p1, . . . , pt)(P
i,j
t|t + (mj

t|t − mi,j
t|t)

2)

P(qt = j|p1, . . . , pt)
.

Note that we indeed reduce the dimensionality, as from the Kalman filter we obtain mi,j
t|t and P i,j

t|t for

i ∈ {qt−1 = +1, qt−1 = −1} and j ∈ {qt = +1, qt = −1}, whereas we now have mj
t|t and P j

t|t for j ∈ {qt =

+1, qt = −1}. In effect the variable mj
t|t is a mixture of normals. As a result of the approximation mi,j

t|t can

be interpreted as the linear projection of mt on pt and mi
t−1|t−1.

The procedure above details the calculations in each of the three stages for each time point in the
forward loop of the filter. To obtain estimates of the unobserved log efficient price and trade sign time series
conditional on all observations we need to follow these with the backward recursions for the smoother. This
also consists of three stages, which differ slightly from those of the filtering algorithm. First, we calculate
the smoothed probability for being in a certain state:

P(qt = j, qt+1 = k|p1, . . . , pn) =
P(qt+1 = k|p1, . . . , pn) · P(qt = j|p1, . . . , pt) · 0.5

P(qt+1 = k|p1, . . . , pt)
,

P(qt = j|p1, . . . , pn) =
∑

k

P(qt = j, qt+1 = k|p1, . . . , pn).

Next, we use the smoothing recursion similar to that of the linear Gaussian model to obtain smoothed values
for the efficient price (and the variance thereof). There are again four cases, now depending on the current

state (at time t) and the next state (time t + 1). When we obtain mj,k
t|n and P j,k

t|n for j ∈ {qt = +1, qt = −1}

and k ∈ {qt+1 = +1, qt+1 = −1} we use the state probabilities to obtain smoothed values for the unobserved
log efficient price conditional on it being in a certain state:

mj
t|n =

∑

k P(qt = j, qt+1 = k|p1, . . . , pn)mj,k
t|n

P(qt = j|p1, . . . , pn)
,

P j
t|n =

∑

k P(qt = j, qt+1 = k|p1, . . . , pt)(P
j,k
t|n + (mj

t|n − mj,k
t|n)2)

P(qt = j|p1, . . . , pn)
.

Finally, we obtain an estimate of the unobserved log efficient price that is not conditional on being in a
certain state:

mt|n =
∑

j

P(qt = j|p1, . . . , pn)mj
t|n.
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Table 1: Summary Statistics
This table shows the trading activity for locals, duals and brokers on the market for the 30Y treasury futures
in 1994-1997. We classify traders at the daily basis, and label a trader to be a local (broker) if more than
98% (less than 2%) of his trades are for own account, otherwise he is a dual. For these three groups we
show the average number of days a trader is active, the average number of traders active on a day, the total
number of trading days and the average daily volume per trader. In addition we show these for the three
groups of traders combined (All Traders). The column Sample shows the total number of days and number
of traders observed in our sample.

Summary Statistics - Trader Activity
All

Sample Traders Locals Duals Brokers
Avg #days a trader is active

all days 1,005 155 173 130 27
announcement days 377 60 67 50 11
nonannouncement days 350 52 58 44 9

Avg #traders active per day
all days 3,384 521 288 155 78
announcement days 535 296 157 82
nonannouncement days 501 276 150 74

Total number of trading days
all days 523,540 289,354 155,381 78,805
announcement days 201,571 111,645 59,199 30,727
nonannouncement days 175,349 96,674 52,664 26,011

Average daily volume per trader
For own account

all days 807 1,070 318
announcement days 903 1,198 345
nonannouncement days 682 897 288

For customers
all days 793 921 541
announcement days 894 1,048 596
nonannouncement days 667 766 467
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Table 2: Signing Futures Market Trades – Simulation Study
This table shows the simulation results for signing trades in the absence of quotes. We compare the output
from the State Space Form (SSF) Regime Switching signing algorithm we propose to the State Space Form
Approximation method, Hasbrouck’s (2004) MCMC method, the method of moments and a tick test (in
which a trade is labeled as being initiated by the buying party if it is an uptick). The parameters we use
for our data generation process (True Parameters) are chosen such that they are close to values actually
observed in the data. For the five signing methods we report the mean and standard deviation (St.Dev.) of
the half-spread c and the efficient price variance (Eff Price Var), the percentage of trades that are signed
correctly, the root mean squared error (RMSE, x1,000,000) of the smoothed efficient price versus the true
value and the time needed to run the algorithm (in seconds). For the simulation 50 observations and 100
replications are used.

Signing Futures Market Trades - Simulation Study
Half-Spread Eff Price Var
(c; x1,000) (σ2

u; x1,000,000) % Sign RMSE Calc
Mean St.Dev. Mean St.Dev. Correct of mt Time

True Parameters 0.200 0.010
Method of Moments 0.199 0.034 0.009 0.019 0.0
SSF Regime Switching 0.199 0.011 0.010 0.002 95.7 0.290 0.4
SSF Approximation 0.089 0.036 0.041 0.007 95.1 0.550 0.0
Hasbrouck MCMC 0.153 0.046 0.036 0.019 95.6 0.422 3.9
Tick Test 73.6 0.0
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Table 3: Signing Futures Market Trades – Results
This table shows the results for signing the futures market trades on the market for the 30Y treasury
futures in 1994-1997 for 10 days in our dataset. We compare the output from the State Space Form (SSF)
Regime Switching (SSF-RS) signing algorithm we propose to the State Space Form Approximation method
with aggregation of both 10 and 60 seconds and Hasbrouck’s (2004) MCMC method. We show the mean
and standard deviation (St.Dev.) of the half-spread c and the efficient price variance (Eff Price Var), the
percentage of trades that are labeled the same as the SSF-RS method and the average time needed to obtain
these results for one day (in seconds).

Signing Futures Market Trades - Results for 10 Days
Half-Spread Eff Price Var % Sign
(c; x1,000) (σ2

u; x1,000,000) Same as Calc
Mean St.Dev. Mean St.Dev. SSF-RS Time

SSF Regime Switching 0.158 0.002 0.017 0.004 6.7
SSF Approx (10s) 0.091 0.030 0.042 0.005 89.1 1.4
SSF Approx (60s) 0.192 0.071 0.089 0.035 81.9 0.3
Hasbrouck MCMC 0.157 0.003 0.019 0.005 86.7 143.3

32



Table 4: Own-Account Trading Profits and Inventory Increasing Trades
This table reports summary statistics on the cross-sectional distribution of proprietary trading profits split
to percentage of trades that increase trader inventory for both locals and duals. We classify traders at the
daily basis, and label a trader to be a local (broker) if more than 98% (less than 2%) of his trades are for
own account, otherwise he is a dual. To obtain the profits per contract traded round trip for each trader
we subtract the value of purchases from the value of sales and add the value of end-of-period inventory
(assuming zero inventory at the start). We divide this by the total number of contracts traded to arrive at
a profit per contract traded round trip. We split these profits according to percentage of initiated inventory
increasing trades (%iiit). That is, for each day we calculate the 25% quantile (Q(25%)), the median and the
75% quantile (Q(75%)) of the percentage of initiated inventory increasing trades and based on this classify
daily the traders and corresponding profits in four groups. We show the mean, standard deviation (St Dev)
and the three quartiles (25% Quant, Median and 75% Quant) of the cross-sectional distribution (across
intermediaries) of own-account trading profits (with the number of trader days in each group in the column
#Trader Days).

Trading Profits split to %Initiated Inventory Increasing Trades (%iiit)
#Trader 25% 75%

Days Mean St Dev Quant Median Quant
Local Traders

announcement days
%iiit < Q(25%) 27,868 5.9 158.1 -9.9 5.1 21.5
Q(25%) ≤ %iiit < Median 27,748 5.4 67.3 -3.4 5.7 15.4
Median ≤ %iiit < Q(75%) 27,842 6.7 78.3 -1.3 6.5 15.4
%iiit ≥ Q(75%) 28,187 5.1 165.7 -2.7 6.7 19.2

nonannouncement days
%iiit < Q(25%) 24,028 3.7 133.7 -11.1 4.4 20.2
Q(25%) ≤ %iiit < Median 24,081 4.9 63.1 -4.2 4.9 14.5
Median ≤ %iiit < Q(75%) 24,096 6.5 63.4 -2.1 5.7 14.3
%iiit ≥ Q(75%) 24,469 6.0 146.6 -4.6 5.5 17.4

Dual Traders
announcement days

%iiit < Q(25%) 14,658 5.9 89.7 -9.6 8.1 25.3
Q(25%) ≤ %iiit < Median 14,624 8.4 59.0 -3.6 9.1 21.4
Median ≤ %iiit < Q(75%) 14,729 9.3 57.2 -0.7 9.2 19.9
%iiit ≥ Q(75%) 15,188 10.3 84.0 -0.0 8.2 19.4

nonannouncement days
%iiit < Q(25%) 13,025 5.1 79.0 -9.6 7.8 24.0
Q(25%) ≤ %iiit < Median 12,978 6.7 50.0 -4.1 8.2 19.6
Median ≤ %iiit < Q(75%) 13,060 8.0 50.2 -1.8 8.3 18.5
%iiit ≥ Q(75%) 13,601 5.8 70.5 -1.4 6.8 17.0
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Figure 1: End of Day Inventory
We show the end of day inventory for floor traders active in the 30Y treasury futures in 1994-1997. For each
day the end of day inventory position is calculated only for traders that were active on that day, assuming
a zero inventory position at the beginning of the day. The figure shows the histogram of the end of day
inventories, with an estimated empirical distribution.

End of Day Inventory, Empirical Distribution
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Figure 2: Signing Futures Market Trades - Example for 1995/01/03
This figure illustrates how the State Space Form Regime Switching (SSF-RS) signing algorithm is applied
to the data. The observations consist of the sequence of the prices reported on January 3, 1995. If multiple
trades are observed in the same second at the same price we consider this to be one observation. In the top
plot the first 100 reported prices are indicated with crosses. The smoothed efficient price series obtained using
the SSF-RS methodology is given by the solid line. The bottom plot gives the smoothed probability that
the trade is initiated by the buying party for the first 100 observations. We label a trade as ‘buyer-initiated’
if this probability is greater than 0.5.
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Figure 3: Percentage of Trades Initiated by Market Makers
These figures show the intraday pattern of the percentage of proprietary trades of locals (A) and duals
(B) that they initiate. We classify traders at the daily basis, and label a trader to be a local (broker) if
more than 98% (less than 2%) of his trades are for own account, otherwise he is a dual. We sign data
according to our State Space Form Regime Switching methodology and match the obtained buyer- and
seller-initiated indicator with the buy and sell indicator from our dataset. If they agree we classify the trade
as being initiated by the market maker. For each day and trader group we calculate the percentage of total
proprietary trades that they initiate, we label this as %initiated trades. The solid (dashed) lines show the
intraday pattern for announcement (nonannouncement) days, the solid vertical lines represent the 8:30-8:45
announcement interval. An open (closed) circle indicates a significant difference between announcement and
nonannouncement days at the 5% (1%) level.
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Figure 4: Inventory Positions over Day, Three Types of Announcements
The figure reports the distribution of inventory positions for different times in the day on three type of
announcement days and on nonannouncement days for floor traders active in the 30Y treasury futures in 1994-
1997. For each time point the inventory position is calculated only for traders that were active before that
time, assuming a zero inventory position at the beginning of the day. On announcement days, the distribution
of inventory is calculated separately for three groups of announcements: all announcements (indicated by All
Announcement Days), Nonfarm payroll employment, CPI and PPI announcements (indicated by Nonfarm,
CPI, PPI Ann Days) and Nonfarm payroll announcements only (indicated by Nonfarm Payroll Emp Ann
Days). The distribution is shown for four time points in the day: 8:30, 8:45, 9:00 and the end of the trading
day (EoD).
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Figure 5: Percentage of Inventory Increasing Trades by Market Makers
These figures show the intraday pattern of the percentage proprietary trades of locals (A) and duals (B) which
increase individual traders’ inventory positions. We classify traders at the daily basis, and label a trader to be
a local (broker) if more than 98% (less than 2%) of his trades are for own account, otherwise he is a dual. We
sign data according to our State Space Form Regime Switching methodology and match the obtained buyer-
and seller-initiated indicator with the buy and sell indicator from our dataset. If they agree we classify the
trade as being initiated by the market maker, if they do not agree we classify the trade as being an uninitiated
market maker trade. For each interval and trader we then calculate the percentage of total proprietary trades
that they initiate and which increase individual traders inventory (labelled as %initiated inventory increasing
trades). The solid (dashed) lines show the intraday pattern for announcement (nonannouncement) days,
the solid vertical lines represent the 8:30-8:45 announcement interval. An open (closed) circle indicates a
significant difference between announcement and nonannouncement days at the 5% (1%) level.
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