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Abstract 

What level of central bank reserves satiates banks’ demand for liquidity? We estimate the slope of the 

reserve demand curve in the U.S. over 2010–2024 using a time-varying instrumental-variable approach at 

the daily frequency. When reserves exceed 12-13 percent of banks’ assets, demand for reserves is satiated 

and reserves are abundant; below this threshold, the curve’s slope becomes increasingly negative as 

reserves decline from ample to scarce. We also find that reserve demand has shifted over time, both 

vertically and horizontally, and identify important drivers of vertical shifts. Our methodology works well 

out-of-sample and can assess reserve ampleness in real time. 
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1 Introduction

What level of central bank reserves satiates banks’ demand for liquidity? We answer this
question by studying the demand curve for reserves in the U.S. banking system. This curve
describes the price at which banks are willing to trade their reserve balances—the federal
funds rate—as a function of aggregate reserves in the system. Economic theory predicts that
banks’ demand for reserves is “satiated” above a given reserve level. Above this satiation
point, reserves are abundant: the demand curve is flat, and the federal funds rate does
not respond to changes in the aggregate supply of reserves. Below the satiation point, the
relationship between price and quantity becomes increasingly negative, as reserves decline
from ample—where the demand curve is gently sloped—to scarce—where the curve is steeply
sloped. The large swings in the supply of reserves caused by the expansions and contractions
of the Federal Reserve’s balance sheet over the last 15 years provide a rich data set to test
this theory and estimate, for the first time, the satiation point in the demand for reserves.

Knowing the slope of the reserve demand curve at different reserve levels and its sa-
tiation point is important to implement monetary policy successfully and prevent money
market instabilities. Since 2008, the Federal Open Market Committee (FOMC), as many
other central banks, has operated a floor system. In such a system, the supply of reserves
is sufficiently large that control over short-term rates is exercised primarily through changes
in administered rates such as the interest rate on reserve balances (IORB), and active man-
agement of the reserve supply is not required (FOMC, 2019). Implementing a floor system
thus requires knowing the level of reserves at which rates stop responding to reserve shocks;
i.e., the minimum level of reserves that satiates banks’ demand for them. This knowledge
helps avoid operating near or inside the steeply-sloped region of the demand curve, where
modest reserve shocks cause material price changes. Although reserves have fluctuated be-
tween one and four trillion dollars since 2008, recent episodes of money market dislocations,
as September 2019 and March 2020, suggest that, at times, reserves were scarce relative to
the needs of the banking system (Afonso et al., 2021; d’Avernas et al., 2024).

In this paper, we develop a method to estimate the elasticity of the federal funds rate to
reserve shocks (the slope of the reserve demand curve) at a daily frequency and identify the
point of demand satiation, where the curve transitions between the flat and gently-sloped
regions. We provide the first structural estimates of the different slopes of the demand curve
for reserve levels ranging from scarce to abundant, using 15 years of data, from 2010 to 2024.

Estimation of the slope of the reserve demand curve is challenging for three reasons.
First, economic theory predicts that the reserve demand curve is highly nonlinear, transi-
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tioning from steeply downward-sloping to flat as the supply of reserves increases. Second,
the demand for reserves moves over time due to structural changes in banking regulation and
supervision, banks’ internal risk management, and market functioning. Third, estimation
of the demand for reserves is subject to endogeneity issues due to confounding factors in
the demand equation. For example, the FOMC responds to unusual dislocations in money
markets by increasing reserves, as it did in September 2019 and March 2020. Moreover,
aggregate reserves also change due to factors that are outside the Federal Reserve’s control
and that are correlated with banks’ demand for liquidity, such as the U.S. Treasury’s account
with the Federal Reserve and the overnight reverse repurchase agreement facility.

Our estimation strategy addresses these three challenges. Instead of estimating a non-
linear function with possible slow-moving structural shifts, we estimate the slope of a linear
function with time-varying coefficients and stochastic volatility at the daily frequency. That
is, on each day, we estimate the slope of the tangent line to the reserve demand curve at the
level of reserves attained on that day. With this locally linear approach, we trace the nonlin-
ear shape of the curve over time by moving along the curve, while allowing for low-frequency
movements of the curve. Our specification is agnostic about the economic forces moving the
curve over time, which allows for very general types of structural changes; subject to the
assumption that the parameters of the time-varying linear model evolve more slowly than
the daily liquidity shocks affecting banks’ demand for reserves.

We address potential endogeneity issues by using a time-varying instrumental-variable
(IV) approach. We instrument reserves in our linear approximation with past forecast errors
from a daily time-varying vector autoregressive (VAR) model of the joint dynamics of reserves
and federal funds rates, based on Primiceri (2005) and Del Negro and Primiceri (2015). The
idea underlying our identification strategy is that in the current monetary policy framework,
the Federal Reserve responds to fluctuations in the federal funds rate quickly but not on
the same day; as a result, exogenous supply shocks can be extracted by a daily reduced-
form forecasting model of reserve supply that captures the bulk of reserve variation in our
sample (i.e., quantitative easing and tightening). Importantly, using daily data allows us
to control for the FOMC response to rate dislocations and for short-term disturbances to
demand related to factors outside the Federal Reserve control.

Our time-varying estimates of the rate elasticity to reserve shocks imply that the satiation
point in the reserve demand curve, where reserves transition from abundant to ample, occurs
for reserves around 12-13% of bank assets, depending on the period. The curve becomes
increasingly steep as reserves decline, with reserves approaching scarcity around 8-10% of
bank assets. Furthermore, we obtain qualitatively similar results if we normalize reserves
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by bank deposits or GDP, confirming that the choice of the normalization factor does not
materially alter the shape of the curve but simply removes a time trend in nominal reserves.

Our results are robust to controlling for changing conditions in repo and Treasury mar-
kets. In addition, we replicate our analysis using a structural time-varying VAR based on
sign restrictions (Uhlig, 2005; Rubio-Ramírez et al., 2010) to extract the supply shocks used
as instruments in our IV methodology and find similar results to our baseline specification.

To validate our results, we also compare our estimates of the reserve demand elasticity
over time with other measures of reserve ampleness, which are not based on fluctuations in
the federal funds rate: the share of overnight Treasury repo with rates above the IORB, the
share of late payments in the Fedwire Funds Service system, the share of domestic federal
funds borrowing, and the banking industry average intraday overdraft. All indicators co-
move with our elasticity estimates, supporting the validity of our methodology and findings.

In addition, we show that because our forecasting model of reserve supply has good
predictive accuracy out-of-sample, our methodology can be used in real time to monitor the
relative ampleness of the supply of reserves. For example, if used in real time during the
Federal Reserve’s balance-sheet normalization of 2015–2019, our methodology would have
indicated that we were entering the negatively sloped region of the reserve demand curve six
to nine months ahead of the events of September 2019. The real-time applicability of our
methodology is particularly useful for the implementation of quantitative tightening and the
assessment of its implications.

Finally, we provide evidence of both vertical and horizontal low-frequency shifts in the
demand for reserves during 2010–2024, with upward vertical shifts being particularly mate-
rial. Using our estimates of the slope of the reserve demand curve, we are able to identify two
drivers of structural vertical shifts: the spread between the Overnight Reverse Repo (ON-
RRP) rate and the IORB, and bank balance-sheet costs. An increase in the ONRRP rate
relative to the IORB increases the reservation price of Federal Home Loan Banks (FHLBs)
when lending in the federal funds market, pushing the federal funds rate up; an increase in
balance-sheet costs increases banks’ costs of borrowing, pushing the rate down.

The idea behind our identification of vertical shifts is that in the flat region of the reserve
demand curve, neither supply shocks nor horizontal demand shifts can move the federal
funds rate: persistent changes in the rate can only be due to structural vertical shifts in the
demand for reserves. We then study the response of the federal funds rate to changes in the
ONRRP-IORB spread and in bank balance-sheet costs that were implemented in periods
when our estimates of the reserve demand elasticity are insignificant (i.e., zero slope).
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We find that the ONRRP-IORB spread adjustments of 2014–2015 had a pass-through to
the federal funds-IORB spread of around 40% on the day of the adjustment and of 60–100%
after one month; this evidence is consistent with an upward shift in the reserve demand curve
in the second half of our sample due to the introduction of the ONRRP facility in late 2013
and to the overall increase in the ONRRP rate relative to the IORB since then. We also
find that the SLR relief of 2020–2021, by temporarily decreasing banks’ balance-sheet costs,
pushed the federal funds-IORB spread up by 3 basis points (bp) after one month from the
relief introduction and by 7 bp after two months; this evidence is consistent with a significant
upward shift in the reserve demand curve during 2020–2021 (see Figure 2).

An implication of vertical shifts is that the level of the spread between the federal funds
rate and the rate paid on reserves does not provide a sufficient statistic for the degree
of ampleness of reserves, as is often assumed. In contrast to other approaches that rely
exclusively on the level of this spread, our methodology focuses on the elasticity of rates to
reserve shocks, which is more closely related to the policy goal of interest rate control.

This paper contributes to the extensive literature on the demand for reserves and its
implications for monetary policy implementation and transmission to the economy. Among
the early literature, Hamilton (1996, 1997) was the first to emphasize the importance of
using daily data to identify the slope of the reserve demand curve. This early literature,
however, studied periods of reserve scarcity and is not informative on the regions of ample
and abundant reserves (Bernanke and Blinder, 1992; Christiano and Eichenbaum, 1992;
Bernanke and Mihov, 1998a,b). We provide the first empirical counterpart to the new
theoretical literature that focuses on the period after 2008 (Afonso et al., 2019; Bigio and
Sannikov, 2021; Bianchi and Bigio, 2022; Afonso et al., 2023; Lagos and Navarro, 2023).

Recent empirical studies on the demand for reserves include Smith (2019), Smith and
Valcarcel (2023), and Lopez-Salido and Vissing-Jorgensen (2023). Relative to these papers,
we make four contributions: (1) we identify the satiation point in banks’ demand for reserves,
(2) we provide structural time-varying estimates of the slope of the reserve demand curve
using a novel identification scheme based on daily data, which allows us to control for both
the endogeneity due to the FOMC’s actions and the endogeneity due to confounding factors
that are outside the Federal Reserve’s control, (3) we document low-frequency shifts in
the demand curve, and (4) we show that our methodology can be used in real time as a
monitoring tool to detect tightness in the market for reserves.

Finally, our paper provides independent empirical evidence related to the growing liter-
ature on central bank reserves and money-market dislocations (Correa et al., 2020; Afonso
et al., 2021; Copeland et al., 2025; d’Avernas et al., 2024; d’Avernas and Vandeweyer, 2024)
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and the implications of central bank balance-sheet expansions and contractions (Stein, 2012;
Kashyap and Stein, 2012; Greenwood et al., 2016; Diamond et al., 2024; Acharya and Rajan,
2024; Benigno and Benigno, 2022; Acharya et al., 2023).

The remainder of the paper is organized as follows. Section 2 presents a model of the
demand for reserves and discusses the institutional setting and endogeneity issues. Section 3
describes the data used in the estimation. Section 4 discusses the econometric model and
the identification strategy. Section 5 reports the results of our time-varying IV estimation
of the reserve demand elasticity. Section 6 identifies two drivers of vertical shifts in the
reserve demand curve. Section 7 concludes. The appendix includes an extension of the
model with bank balance-sheet costs and a detailed description of the forecasting model.
The internet appendix reports a formal out-of-sample validation of the forecasting model,
robustness checks of the elasticity estimates, additional evidence on the drivers of vertical
shifts, and results of a nonlinear fit of the reserve demand curve.

2 The Demand for Reserves

2.1 Theory

We present a simple model of the demand for reserves that builds on the seminal paper by
Poole (1968).1 There are N risk-neutral banks, and two periods: intraday and end-of-day.
Banks hold initial reserves r̃i in their accounts at the central bank and target an end-of-day
reserve level r̄i to process payments and meet regulatory and internal liquidity requirements.
End-of-day reserve balances pay an overnight interest rate iIORB set by the central bank. At
the end of the day, banks can also borrow reserves from the central bank’s discount window
(DW) at a rate iDW > iIORB.2

During the day, banks monitor their balances and borrow (fi > 0) or lend (fi < 0)
reserves in a competitive (federal funds) market at a rate if to meet their end-of-day target
levels.3 After the federal funds market closes, however, banks are subject to a late-day
liquidity shock zi that changes their reserve balances—e.g., an unexpected late payment or
delayed accounting information. As a result, bank i enters the end-of-day period with a
stochastic balance equal to r′i ≡ r̃i+fi+zi, where zi is distributed according to a cumulative

1More recent papers include Ennis and Keister (2008), Afonso and Lagos (2015), Armenter and Lester
(2017), Afonso et al. (2019), Bigio and Sannikov (2021), Bianchi and Bigio (2022), Lagos and Navarro (2023).

2We can also think of iDW as the minimum bid rate at the Standing Repo Facility (SRF), another standing
facility offered by the Federal Reserve; the DW and SRF rates are currently set at the same level.

3A federal funds transaction is an unsecured loan in U.S. dollars, typically of overnight maturity.
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distribution function G with support (−z, z). For simplicity, we assume that G is absolutely
continuous, with density g, and the same for every bank.

At the end of the day, banks compare their end-of-day balances with their targets. If a
bank ends the day with a deficit (r′i < r̄i), it borrows r̄i − r′i from the central bank at iDW .

When a bank decides how much to borrow or lend in the federal funds market, it takes
into account the uncertainty introduced by the late-day shock zi. Namely, the bank chooses
the optimal federal funds borrowing fi that minimizes the expected opportunity cost of
holding end-of-day reserve balances, taking all rates as given. That is,

min
fi

[
(if − iIORB)

∫ z

ẑi

(r′i − r̄i)g(z)dz + (iDW − if )
∫ ẑi

z

(r̄i − r′i)g(z)dz

]
, (1)

where ẑi ≡ r̄i− r̃i− fi. The first term in (1) captures the cost of ending the day with excess
balances (r′i − r̄i > 0), earning interest on those reserves, but forgoing the opportunity to
lend (or to have borrowed less) at a rate if in the market. The second term captures the cost
of ending the day with reserves below the target, borrowing r̄i− r′i from the central bank at
the rate iDW instead of borrowing in the market during the day at a rate if .

The first order condition yields bank i’s optimal federal funds borrowing f ∗i :

if = iIORB + (iDW − iIORB)G(r̄i − (r̃i + f ∗i )), (2)

where f ∗i is the unique solution that minimizes equation (1).4

Equation (2) characterizes bank i’s inverse demand for reserves if (ri), where ri = r̃i + f ∗i

is the bank’s total reserves after the market closes and before the liquidity shock is realized.
Since G is a cumulative distribution function, the demand curve is decreasing and bounded
between iDW and iIORB. If the distribution of liquidity shocks G has unbounded support,
the demand is strictly decreasing, converging to iDW as reserves decrease and to iIORB as
reserves increase. If G has bounded support, the curve is strictly decreasing on [r̄i−z, r̄i+z]

and flat outside this interval, with if (ri) = iDW for ri ≤ r̄i − z and if (ri) = iIORB for
ri ≥ r̄i + z.

We can derive the aggregate demand for reserves by inverting equation (2) to obtain
bank i’s demand for reserves as a function of the federal funds rate, f ∗i (if ), and then
summing reserves across banks to obtain the aggregate demand r ≡

∑N
i=1 ri =

∑N
i=1 r̄i −

4It is straightforward to show that optimization problem (1) has a unique minimum by taking the second
derivative of the objective function, which is non-negative everywhere and strictly positive on G’s support.
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NG−1
(

if − iIORB

iDW − iIORB

)
≡ r̄ − NG−1

(
if − iIORB

iDW − iIORB

)
.5 Inverting this expression back, we

obtain the aggregate (inverse) demand curve for reserves:

if = iIORB + (iDW − iIORB)G

(
r̄ − r
N

)
. (3)

The demand for reserves in equation (3) is a nonlinear, decreasing function with an
upper asymptote equal to iDW (as reserves decrease) and a lower asymptote equal to iIORB

(as reserves increase). If the distribution of liquidity shocks has bounded support, the curve
becomes perfectly flat at if = iIORB (if = iDW ) if reserves are sufficiently large (small).6

An intuitive way to interpret the demand curve (3) is in terms of arbitrage conditions. If
the federal funds rate if were higher than the discount rate iDW , no bank would be willing
to borrow in the federal funds market: banks would borrow arbitrarily large amounts from
the central bank and lend their reserves in the federal funds market, driving their demand
to zero and earning the spread between the federal funds and discount-window rates (DW
arbitrage). Similarly, if if were lower than the interest paid on reserves iIORB, banks would
borrow arbitrarily large amounts in the federal funds market and hold these reserve balances
at the central bank, pushing their demand for reserves to infinity and earning the spread
between the IORB and federal funds rates (IORB arbitrage). Between the two asymptotes,
the relationship between prices and quantities is negative: as the federal funds rate decreases,
the opportunity cost of holding reserves declines, and the relative cost of borrowing from the
central bank raises, increasing banks’ demand for reserves (Swanson, 2023).

Equation (3) is derived from a model without frictions. In practice, however, there are
frictions that limit banks’ ability to arbitrage and therefore affect banks’ demand for reserves.
Banks’ costs based on balance-sheet size are among the most important ones. These costs
penalize borrowing, especially to finance safe assets such as reserves, limiting banks’ ability
to take arbitrage positions (Duffie, 2018; Anderson et al., 2020). Notable examples are the
Federal Deposit Insurance Corporation (FDIC) assessment fee and the Basel III leverage-
ratio regulation. As a result of these costs, when borrowing to run the IORB arbitrage,
banks demand a rate lower than the IORB rate, pushing the lower asymptote of the reserve
demand curve below iIORB. Similarly, the upper asymptote will be above iDW : when lending
to run the DW arbitrage, banks demand a higher rate than the rate at which they borrow

5If G has bounded support, aggregate demand is r ≤
∑N

i=1 (r̄i − z) = r̄ − Nz for if = iDW , r =

r̄ −NG−1

(
if − iIORB

iDW − iIORB

)
for iDW > if > iIORB , and r ≥

∑N
i=1 r̄i + z = r̄ + Nz for if = iIORB .

6Namely, if = iIORB for r ≥ r̄ + z, and if = iDW for r ≤ r̄ − z.
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from the central bank.7 In Appendix A, we present a model extension that incorporates
bank balance-sheet costs; see also Afonso et al. (2019) and Kim et al. (2020).

Another important friction in the federal funds market is segmentation. Federal Home
Loan Banks (FHLBs)—a type of government-sponsored enterprise and the main lenders in
this market—do not earn the IORB rate on their balances with the Federal Reserve; they
can, however, invest at the Federal Reserve through the Overnight Reverse Repo facility
(ONRRP), earning a fixed rate below the IORB rate.8 FHLBs are therefore willing to lend
at rates below the IORB rate but above the ONRRP rate. As a result, the lower bound of
the reserve demand curve lies between the IORB and ONRRP rates, with the distance from
these bounds depending on the bargaining power of FHLBs relative to borrowing banks.
Since our goal is to estimate the slope of the demand curve, and this friction does not affect
the shape of the curve but only the vertical location of its lower bound, our stylized model
provides a valid theoretical framework to guide our empirical analysis. See Afonso et al.
(2019) and Lagos and Navarro (2023) for models that incorporate this market segmentation.

Figure 1 provides an illustrative example of the reserve demand curve in the presence of
market frictions. Over the past decade, the federal funds rate has mostly remained close to
the IORB rate and consistently below the DW rate, suggesting that the banking system has
operated away from the curve’s upper asymptote. For this reason, from now on, we focus on
the right part of the curve, which can be divided into three regions (see Figure 1): a region
of scarce reserves, where the curve is steep, a region of abundant reserves, where the curve
is flat, and an intermediate region of ample reserves, where the curve is gently sloped.9

This section yields five important takeaways about the reserve demand curve. (1) It
is convenient to express the price of reserves as the federal funds rate minus the IORB
rate to control for changes in the opportunity cost of lending reserves determined by the
FOMC monetary policy stance. (2) Aggregate reserves should be normalized by a measure
of the size of the banking system (N in the simple model above). (3) The curve is highly
nonlinear and flattens as reserves increase. (4) Changes in banks’ balance-sheet costs or
in FHLBs’ relative outside option (ONRRP rate relative to IORB rate) vertically shift the

7Another friction affecting the curve’s upper asymptote and pushing if above iDW is the stigma associated
with borrowing from the discount window (Armantier et al., 2015).

8The Federal Reserve adjusts the ONRRP and IORB rates in the implementation of monetary policy.
See Cipriani and La Spada (2022) for details.

9The model in d’Avernas et al. (2024) shows that, in addition to shifting the curve to the right, the
presence of intraday liquidity requirements introduces a vertical asymptote. While our model does not
capture this feature, it allows for the slope to approach minus infinity (e.g., if the distribution of liquidity
shocks is highly concentrated). Importantly, as we explain in Section 4, our empirical strategy is robust to
the presence of a vertical asymptote as long as the asymptote is not in the flat region of the demand curve
(i.e., the curve is not a step function) and the supply shocks in our IV estimation are sufficiently small.
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Figure 1: Bank demand for reserves in the presence of market frictions. Example of
reserve demand curve with banks’ balance-sheet costs, market segmentation, and discount-
window stigma. iDW , iIORB, and iONRRP represent the DW, IORB, and ONRRP rates. Λ
captures the effects of balance-sheet costs and market segmentation on the lower asymptote;
Λ′ captures the effects of balance-sheet costs and stigma on the upper asymptote.

lower asymptote of the curve. (5) The horizontal location of the curve is affected by banks’
aggregate reserve target (r̄), which itself can move over time due to changes in liquidity
regulation, risk management, and market structure.

2.2 Monetary policy implementation

Knowing the slope of the reserve demand curve at different reserve levels is key to monetary
policy because the FOMC uses the federal funds rate to communicate the policy stance. If
reserves are scarce, for instance, supply shocks move this rate significantly, whereas they
have no effect if reserves are abundant. As many other central banks after 2008, the Federal
Reserve operates a system in which the supply of reserves is sufficiently large that typical
reserve fluctuations do not move prices significantly, and rate control is implemented through
changes in the IORB and other administered rates (FOMC, 2019).

Operating in the flat or almost-flat portion of the reserve demand curve (“floor system”)
has several advantages relative to implementing monetary policy in the steeply-sloped region
(“corridor system”). (1) It improves rate control because the response of rates to supply
shocks is minimal (or zero if reserves are abundant). (2) For the same reason, it has lower

9



operational costs, as it requires less active reserve management and less frequent operations
in response to shocks. (3) By divorcing the amount of liquidity from the level of rates, the
central bank can use reserves as a separate tool to address financial stability issues, while
using administered rates to implement the monetary policy stance (Keister et al., 2008).
(4) Higher reserve levels reduce the risk of disruptions in gross-settlement payment systems,
like Fedwire Funds Services in the U.S. or T2 in the Eurozone, because banks rely less on
intraday credit and incoming payments to process outgoing payments (Afonso et al., 2022b;
Copeland et al., 2025). (5) Finally, by providing an ample supply of safe short-term claims,
the central bank can weaken financial intermediaries’ incentives to issue runnable short-term
liabilities (Hanson et al., 2015; Greenwood et al., 2016).

Of course, floor frameworks also have drawbacks. (1) A large balance sheet exposes the
central bank to political economy costs, including concerns about fluctuations in its income
and about the weight of government debt in its balance sheet (Bindseil, 2016). (2) Abundant
reserves discourage unsecured interbank trading and active reserve redistribution, hindering
market discipline and price discovery (Borio, 2023). (3) By expanding banks’ balance sheets
with a low-return asset, reserve injections tighten bank balance-sheet costs, leading banks
to reduce low-margin intermediation and lending (Duffie, 2018; Diamond et al., 2024). (4)
Finally, reserve injections may be associated with an increase in banks’ uninsured demand
deposits and credit lines; if these claims on liquidity do not shrink during quantitative
tightening, banks may become more vulnerable to shocks (Acharya and Rajan, 2024; Acharya
et al., 2023).

Based on these benefits and costs, we define two main types of inadequate estimation
of the slope of the reserve demand curve in a floor system depending on whether the point
of demand satiation is underestimated (i.e., the curve is steep at higher reserve levels than
expected) or overestimated (i.e., the curve is steep at lower levels than expected). In the
first case, the central bank may operate too far to the left of the satiation level; in the second
one, it may operate too far to the right.10

Quantifying the costs associated with these estimation errors is challenging because they
include reputational and political economy considerations and are often defined relative
to socially efficient outcomes that are not readily measurable. One quantifiable cost of
underestimating the point of demand satiation is the cost of money-market volatility. A
notable example is the turmoil of September 2019, which was likely due to reserve scarcity
(Afonso et al., 2021; d’Avernas et al., 2024; Copeland et al., 2025). According to our time-

10See Afonso et al. (2023) for a formal treatment of the central bank choice of optimal reserve supply with
a nonlinear reserve demand curve as in equation (3) and uncertainty about its location and steepness.
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varying estimates of the slope of the reserve demand curve, in mid-September 2019, reserves
were below the most recent estimate of the satiation point (early 2018) by 5 percentage points
(pp) of commercial bank assets (Section 5). Consistent with this result, around a moderate
reduction in reserve supply, the annualized (volume-weighted) average federal funds rate
jumped to 2.39 pp on September 17, from 2.14 pp on September 13, an unprecedented
increase of 12% that led the policy rate to breach the top of its target range.

A quantifiable cost of overestimating the point of demand satiation is the cost of crowding
out bank lending. Diamond et al. (2024) find that for each dollar of reserves injected in
2008–2017, bank lending decreased by 7 cents. Based on these estimates, overestimating the
satiation level by 5 pp of bank assets in September 2019—an error of similar magnitude as
in the scenario described above—would have reduced bank lending by $70 billion.

Importantly, the costs associated with an excessive supply of reserves indicate that the
issue of adequately estimating the satiation level in the reserve demand curve cannot be
bypassed by simply providing a surplus of reserves above a rough estimate.

2.3 Reserve supply and endogeneity

To understand the sources of endogeneity in the demand for reserves, it is important to
understand how reserves change. Reserves are balances that banks hold in their accounts at
the Federal Reserve and change for two reasons: either because the Federal Reserve buys or
sells securities, which happens through the banking system, or because funds are transferred
between reserves and non-reserve accounts at the Federal Reserve. Some institutions, such
as money market funds or the Department of the Treasury, have Federal Reserve accounts
and transact with banks; when these transfers occur, reserves change outside the Federal
Reserve’s control.11 Both types of reserve fluctuation can be endogenous to bank demand.

The first type of endogeneity is due to the Federal Reserve’s actions. On occasion, the
Federal Reserve responds to unusual volatility in the federal funds rate by adjusting the
supply of reserves to keep the rate within its target range (e.g., September 2019, March
2020).12 These responses are quick and put in place within a matter of days; in September
2019, for instance, the Federal Reserve started to expand the supply of reserves on the 18th,
and rates returned to their prior levels shortly afterwards (Afonso et al., 2021). If demand
shocks are serially correlated, the Federal Reserve’s response today—a function of yesterday’s

11In contrast, interbank transactions redistribute reserves across banks, without affecting the aggregate.
12Before 2008, when reserves were very scarce, this type of endogeneity was more severe because the Federal

Reserve regularly adjusted the supply of reserves through daily open market operations to control the federal
funds rate. This endogeneity has disappeared since the Federal Reserve has adopted a floor system.
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demand shock—will be correlated with today’s demand shock.

The second type of endogeneity is due to the Federal Reserve’s non-reserve liabilities that
are correlated with banks’ demand for funding. An example is the Treasury General Account
(TGA) with the Federal Reserve. When banks buy Treasuries at auction, they transfer funds
from their Federal Reserve accounts to the TGA, which results in an increase in the TGA
and a decrease in reserves. Around the same time, banks’ demand for short-term funding
increases because they finance these purchases with overnight repos. The temporary increase
in repo rates can put upward pressure on the federal funds rate because federal funds and
repos are close substitutes (Schulhofer-Wohl and Clouse, 2018).

Martin et al. (2019) argue that the issuance of Treasuries also affects the federal funds
rate by placing upward pressure on Treasury yields. When Treasury yields go up, money
market funds (MMFs), which hold a large share of Treasuries in their portfolios, become a
more attractive investment than bank deposits. This competitive pressure induces banks to
increase their overnight wholesale deposit rates, such as the Eurodollar rate. Since overnight
wholesale deposits and federal funds are substitute forms of funding, the surge in deposit
rates can push the federal funds rate up.13

Another example of non-reserve liability correlated with the federal funds rate is the ON-
RRP. Through this facility, both FHLBs and MMFs—the main lenders in the federal funds
and repo markets, respectively—can invest at the Federal Reserve via fixed-rate overnight
repos. Variations in the ONRRP balance correlate with the demand for reserves through the
“window dressing” of European banks around reporting dates. While U.S. banks report daily
averages of their leverage ratio on a quarterly basis, the Basel III leverage ratio for European
banks is calculated using only quarter-end or month-end data, depending on the reporting
period. This reporting requirement gives European banks an incentive to temporarily reduce
their overnight borrowing around those dates (Banegas and Tase, 2020, Bassi et al., 2024).
This window dressing has two effects on the market for reserves. First, it lowers rates as the
demand for federal funds declines. Second, it lowers reserves because MMFs invest more in
the ONRRP to offset the reduction in funding demand; since ONRRP trades settle on the
books of a clearing bank, the result is an equal decrease in bank reserves.

More generally, conditions in the repo and Treasury markets not only affect bank demand
for reserves by influencing the price of substitute forms of overnight funding, but are also

13Another confounding factor related to the TGA are tax payments. When MMF investors use their fund
shares to pay taxes, the fund instructs its custodian bank to submit the payment to the Treasury, resulting
in a decline in reserves and an increase in the TGA. Around the same time, MMFs reduce their overnight
lending to meet redemptions, pushing money-market rates up. Both Treasury settlements and tax payments
played important roles in the turmoil of September 2019 (Afonso et al., 2021).
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correlated with reserve supply via changes in the TGA and ONRRP due to Treasury issuance
and MMF investment. This type of endogeneity has become more important over time. First,
Treasury repos have become more relevant for both bank funding and MMF lending due to
the 2014 MMF reform (Anderson et al., 2020); (Cipriani and La Spada, 2021). Second, the
variability of the TGA and ONRRP has increased (Afonso et al., 2020): excluding currency
in circulation, they amounted to 5% of reserves in 2010 and 35% in 2024, with a peak of
79% in 2022 (Figure IA.1 in Internet Appendix A).

In Section 4, we propose a general instrumental-variable methodology to control for both
the endogeneity due to the Federal Reserve’s actions and that due to non-reserve liabilities.

3 Data

3.1 Data description

We use daily data from January 1, 2009 to December 13, 2024. Since the federal funds
market is only open on business days, we drop weekends and federal holidays, including
Mondays following holidays that fall on a Sunday.14

Using daily data is key for our identification strategy because it allows us to directly
address the endogeneity issues due to the “window dressing” of European banks around
reporting dates. The regulation-induced reduction in European banks’ short-term borrowing
reverts within a day or two. To control for this high-frequency and transitory omitted variable
in the reserve demand, we exclude one-day windows around month-ends.

Our variables of interest are aggregate reserves and the federal funds rate. To calcu-
late reserves, we use confidential daily data on the aggregate balances of depository in-
stitutions from internal Federal Reserve accounting records.15 To take into account the
growth of the banking system over time, we normalize reserves by commercial banks’ assets.
Weekly data on bank assets are available from the Federal Reserve Economic Data, FRED
(“TLAACBW027SBOG”). In robustness checks, we normalize reserves by bank deposits or
GDP. Weekly data on deposits and quarterly data on GDP are available from FRED (“DP-
SACBW027SBOG” and “GDP”). We linearly interpolate these series to obtain a daily series.

For the federal funds rate, we use the daily volume-weighted average, based on transaction
14We use the holiday schedule for the Federal Reserve System and keep business days according to the

isBusinessDay function in the TIS package https://cran.r-project.org/web/packages/tis/tis.pdf.
15A weekly version is available in the H.4.1 report (“Reserve balances with Federal Reserve Banks”).
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data collected by the Federal Reserve Bank of New York.16 The underlying transactions
data are those used for the official calculation of the effective federal funds rate (EFFR). As
explained in Section 2.1, we subtract the IORB rate from the federal funds rate. Daily data
on the IORB are available from FRED (“IOER” and “IORB”).

In robustness checks, we control for repo rates. We use the volume-weighted average rate
of overnight repos collateralized by Treasuries (with maturity up to 30 years) cleared through
the Fixed Income Clearing Corporation (FICC) GCF Repo service, which is available on the
Depository Trust & Clearing Corporation (DTCC) website.17 We choose these data because
overnight Treasury repos are the largest segment of the repo market and the most closely
related to overnight federal funds transactions. In additional robustness checks, we control
for the daily market yields on Treasuries at one-year constant maturity (FRED “DGS1”).

To validate our results, we compare our time-varying estimates of the reserve demand
elasticity with other indicators of reserve ampleness based on data other than the federal
funds rate. Daily data on the timing and volume of interbank payments are from the Fedwire
Funds Service. Daily data on banks’ intraday overdrafts are from the Federal Reserve internal
records.18 Daily data on federal funds borrowing by U.S. banks are from the Federal Reserve
Bank of New York website.19 Daily transaction data on the volume and rate of overnight
Treasury repos in FICC’s GCF Repo service are from the Office of Financial Research.

To identify drivers of vertical shifts in the demand curve, we study the effect of the changes
that the Federal Reserve implemented to the spread between the rate at the ONRRP facility
and the interest paid on reserves. Daily data in the ONRRP are available from FRED
(“RRPONTSYAWARD”). In our analysis, we control for high-frequency variations in risk
aversion, credit risk, and interest risk rate using the daily VIX and TED spread from FRED
(“VIXCLS”, “TEDRATE”) and the daily MOVE index from Bloomberg.

3.2 Preliminary evidence

Panel (a) of Figure 2 shows the time evolution of reserves normalized by bank assets. Reserves
went through a full expansion-contraction cycle from 2010 to late 2019 and expanded again
from early 2020 to late 2021, ranging between 8% (2010 and 2019) and 19% (2014 and 2021) of

16The average from March 2016 onward is available at https://www.newyorkfed.org/markets/
reference-rates/.

17https://www.dtcc.com/charts/dtcc-gcf-repo-index.
18A version of these data at the maintenance-period frequency is available at https://www.

federalreserve.gov/paymentsystems/psr_dlod.htm.
19https://www.newyorkfed.org/markets/reference-rates/.

14



bank assets; they started to decline again in 2022, fluctuating around 14–15% of bank assets
until the end of 2024. These movements reflect the Federal Reserve balance-sheet expansions
in response to the 2008 and 2020 crises, as well as the balance-sheet normalizations of 2015–
2019 and of 2022–2024. Panel (b) plots the daily average federal funds rate minus the IORB
rate. By comparing panels (a) and (b), we can see a negative correlation between quantities
(reserves) and prices (federal funds rates), which suggests that after removing month-end
data from our daily sample, supply shocks tend to dominate demand shocks.

This intuition is confirmed by panel (c), which plots realized rates against realized reserves
and can be seen as an approximate visualization of the reserve demand curve. It shows a
nonlinear, downward-sloping relationship between prices and quantities that flattens when
reserves are sufficiently large (above the demand satiation point). Moreover, panel (c) shows
that this relationship has moved outward over time: the curve moved up and to the right
after 2014 and further up after March 2020.

Figure 2 shows equilibrium realizations over time and cannot be interpreted causally. To
identify the slope of the reserve demand curve, we use a structural time-varying methodology.

4 Estimation Strategy

4.1 Time-varying linear approximation of the reserve demand curve

We can write the reserve demand curve in equation (3) of Section 2.1 as

pt = p∗t + f (qt − q∗t ; θ) , (4)

where p and q are the price and quantity of reserves, p∗ is the curve’s lower asymptote,
f(x; θ) is a decreasing non-linear function parameterized by θ that goes to zero as x goes to
infinity, and q∗ is the horizontal location of the curve relative to a normalization point.

As discussed in Section 2.1, we express p as the spread between the federal funds and
IORB rates to control for changes in banks’ opportunity cost of lending reserves caused by
the monetary policy stance. This formulation is consistent with recent theoretical deriva-
tions of the demand curve (Bigio and Sannikov, 2021; Bianchi and Bigio, 2022; Lagos and
Navarro, 2023) and has been recently adopted by empirical papers (Lopez-Salido and Vissing-
Jorgensen, 2023; Acharya et al., 2023). To account for the growth of the banking sector over
time, as explained in Section 2.1, we measure q as reserves normalized by banks’ total assets.
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Figure 2: Reserves, the federal funds rate, and the reserve demand curve. Panel
(a) plots reserves relative to bank assets from January 1, 2010 to December 13, 2024. Panel
(b) shows the spread between the volume-weighted average federal funds rate and the IORB
rate. Panel (c) plots the relationship between the spread and normalized reserves.

Variation in the curve’s lower asymptote p∗t < 0 arises from structural changes in banks’
balance-sheet costs or in the outside option of FHLBs (see Section 2.1). Variation in the
horizontal location of the curve q∗t comes from structural changes in liquidity regulation,
supervision, or market functioning that affect banks’ demand for reserves.

Estimating the elasticity of the federal funds rate to reserve shocks is challenging for
three reasons: (i) the demand curve (4) is a nonlinear function of reserves, which means that
the slope is itself a function of aggregate reserves; (ii) persistent structural changes since the
2008 financial crisis may have moved the curve over time; and (iii) there are endogeneity
issues due to the FOMC’s actions and to some Federal Reserve’s non-reserve liabilities.

To tackle the first two challenges, instead of estimating a nonlinear function with low-
frequency shifts, we estimate the following linear model with time-varying coefficients at
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daily frequency:
pt = αt + βtqt + σtvt, (5)

where p and q are the price and quantity of reserves as defined above, and v is a daily demand
shock that can be serially correlated. All parameters, including the shock variance σ, can
vary at daily frequency. βt measures the elasticity of rates to reserves on each day. Model
(5) is a locally linear approximation of the reserve demand curve (4) implied by the theory.
Every day, we estimate the straight line that is tangent to the reserve demand curve at the
level of reserves attained on that day; as reserve supply changes over time, these lines move
and trace the curve. This approach enables us to capture the nonlinear nature of the curve,
without specifying a functional form and allowing for low-frequency structural shifts.

Changes in the parameters of model (5) are due to either exogenous changes in the
supply of reserves (i.e., movements along the curve) or structural changes in banks’ demand
for reserves (i.e., persistent movements of the curve). The assumption behind model (5) is
that its parameters evolve more slowly than the liquidity demand shocks that hit banks on a
daily basis; this allows us to disentangle (low-frequency) variation in β from (high-frequency)
variation in v. In our context, this assumption is plausible for two reasons. First, as we
explain below, our estimation strategy uses small daily movements along the curve (so that
the locally linear approximation works well) that reflect exogenous variation in expansions
and contractions of the Federal Reserve balance sheet that took place over years.20 Second,
the changes in regulation, supervision, and market structure that may have moved banks’
demand for reserves after 2008 were low-frequency events implemented over months.

4.2 Reserve supply and instrumental variable approach

To control for endogeneity, we use an instrumental variable (IV) approach. We propose a
forecasting model of the joint dynamics of the quantity and price of reserves and use past
forecast errors of reserves as an instrument in equation (5). This identification strategy
is inspired by Hamilton (1997), who estimates the slope of the reserve demand curve in
1989–1991 using reserve forecast errors from a time-invariant model as instrument.

The idea is to use variation in reserves that is residual to the Federal Reserve response
to dislocations in the federal funds rate and uncorrelated with the transient confounding
factors due to the Federal Reserve non-reserve liabilities. Focusing on the main liabilities,

20Strictly speaking, for the linear approximation, we also require the function f to be smooth, which is
likely to hold because f represents the reverse cumulative distribution function of banks’ daily liquidity
shocks (see Section 2.1).
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the balance-sheet identity for the Federal Reserve implies that

AssetsFedt = Reservest + TGAt + ONRRPt + Othert,

where AssetsFedt represents the Federal Reserve assets on day t, and Othert includes non-
reserve liabilities other than the TGA and ONRRP (e.g., currency in circulation).21 As a
result, reserves change either because the Federal Reserve expands or contracts its balance
sheet by trading with or lending to banks, or because the non-reserve liabilities change
through transactions with the banking system (see Section 2.3). The total supply of reserves
on day t is therefore the sum of the following four components:

qt = qFedt + qTGAt + qONRRPt + qOthert ,

where changes in non-reserve liabilities cause opposite changes in reserves.

To identify the elasticity βt, we need variation in reserve supply that is exogenous to
bank demand at time t. To understand our strategy, it is useful to write the total supply as

qt = Ht + vst , (6)

where Ht is the systematic component, which depends on past qt and pt, and vst are daily
shocks, which are serially uncorrelated (being the residual of the systematic part) but can
have stochastic volatility. Both Ht and vst reflect both the actions of the Federal Reserve
and activity in non-reserve liabilities. Since some fluctuations in non-reserve liabilities are
temporarily correlated with bank demand for overnight funding, vst can be correlated with
the demand shocks vdt in equation (5) up to a finite number of days (see Section 2.3).

Our identification strategy is based on the observation that, at the daily frequency, the
systematic supply Ht depends on past reserves and federal funds-IORB spreads, but not on
the contemporaneous spread. This is because of the following reasons.

First, the Federal Reserve changes the supply of reserves to implement quantitative easing
and tightening (QE and QT) and to counteract dislocations in the federal funds rate. QE
and QT represent most of the variation in reserves in our sample; they are slow, persistent
processes that depend on past levels of reserves and spreads but do not depend on today’s
spread. Moreover, in the current monetary policy framework, the Federal Reserve responds
to unusual federal funds volatility quickly (September 2019, March 2020), but always with

21Other non-reserve liabilities include deposits of foreign central banks, international organizations, Des-
ignated Financial Market Utilities (DFMUs), and government-sponsored enterprises (GSEs).
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a delay of at least one day; it does not respond on the same day.

Second, variation in the TGA reflects changes in the net proceeds from federal taxes
and Treasury debt issuance. These fluctuations mainly depend on government spending and
macroeconomic conditions. The proceeds from Treasury issuance also depend on investors’
demand for Treasuries, as reflected in the discount and coupon rates determined at auction.
These rates may depend on other money-market rates, such as the federal funds-IORB
spread, and on the supply of other safe assets, such as reserves.22 The settlement of Treasury
auctions, however, happens a few days after the auction, and coupon payments are issued
months after settlement. For this reason, today’s variation in the TGA can depend on past
reserves and federal funds-IORB spreads, but not on today’s spread.23

Third, MMFs are the main investors at the ONRRP, representing 90% of the facility
usage since its introduction in 2013. MMF ONRRP investment reflects both their portfolio
composition and their size. MMF portfolio composition depends on the rates of the assets
that these institutions can hold; since MMFs can neither invest in the federal funds market
nor earn the IORB, the share of their portfolio invested at the ONRRP is not a function of
the federal funds-IORB spread. MMF size depends on their past net yields relative to those
of similar products such as bank deposits because investors respond to past fund performance
(La Spada, 2018), but not on today’s federal fund-IORB spread.24 MMF size can also depend
on past reserves through banks’ balance-sheet costs: large reserve injections tighten banks’
balance-sheet constraints, leading them to push depositors into MMFs (Afonso et al., 2022a).

All other non-reserve liabilities, such as currency, are unlikely to depend on the federal
funds-IORB spread or reserves. Moreover, except for currency, they are significantly smaller
than reserves, the TGA, or the ONRRP (see Figure IA.1 in Internet Appendix A).

Most of the systematic variation in reserve supply in our sample is due to QE and QT,
which are slow-moving persistent processes that can depend on past market conditions in
a time-varying fashion. For this reason, we approximate Ht with a linear function of past
reserves and spreads with daily time-varying coefficients and m lags, so that total supply is

qt = [at + bq,1,tqt−1 + bp,1,tpt−1 + ...+ bq,m,tqt−m + bp,m,tpt−m] + vst . (7)
22Some Treasury securities have a floating rate based on money-market conditions; this rate, however,

depends on past Treasury bill rates, not on the federal funds-IORB spread.
23Although today’s TGA does not depend on today’s spread, banks’ demand for overnight funding, in-

cluding federal funds, does depend on some TGA fluctuations as we explain in Section 2.3.
24Moreover, most MMF shares settle either at the end of the day (after 4PM) or on the next day; therefore,

MMF size at the time of ONRRP investment (12:45PM) can only reflect yesterday’s market rates.
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Substituting this expression in our locally linear demand curve (5) and iterating back-
ward, we can write supply and demand as the following system of moving averages


qt = γa,t + vst +

t−1∑
j=1

γq,s,j,tv
s
t−j +

t−1∑
j=1

γq,d,j,tv
d
t−j + fq(q0, p0),

pt = αt + βt

[
γa,t + vst +

t−1∑
j=1

γq,s,j,tv
s
t−j +

t−1∑
j=1

γq,d,j,tv
d
t−j + fq(q0, p0)

]
+ vdt ,

(8)

where the γ’s are functions of lagged α’s and β’s from equation (5) and current and lagged
a’s and b’s from equation (7), and fq(q0, p0) is a function of the initial conditions that is
known as of time 0.

Our goal is to estimate βt, the slope of the reserve demand curve, for every t. Of course,
we cannot just regress pt on qt because demand shocks are likely to be serially correlated
and, on some dates, they are contemporaneously correlated with supply shocks.

The idea is to use the forecast error for reserves FEqt ≡ qt − Et−1(qt) = vst as instrument
in an IV estimation. It is easy to see that this instrument solves the issue caused by se-
rial correlation in demand shocks. If there are short-term correlations between supply and
demand shocks, however, using contemporaneous forecast errors leads to biased estimates.

To see this, suppose that cov(vdt′ , v
s
t′) = η 6= 0 for some t′, and cov(vdt , v

s
k) = 0 for all other

t and k. We can think of t′ as a Treasury settlement day.25 For notational simplicity, we also
suppose that var(vst ) = σ2

s for all t and drop the t subscript from all covariances. If we use
contemporaneous forecast errors as instruments for reserves, the IV estimate of βt will be

βIVt =
cov(pt,FEqt )
cov(qt,FEqt )

=
βtσ

2
s

σ2
s

= βt for all t 6= t′, and

βIVt′ =
cov(pt′ ,FEqt′)
cov(qt′ ,FEqt′)

=
βt′σ

2
s + η

σ2
s

= βt′ +
η

σ2
s

6= βt′ .

The IV estimate would be biased on day t′, with the sign of the bias depending on the specific
correlation between the non-reserve liability causing the endogeneity issue and the federal
funds-IORB spread on day t′. Note that the bias is negligible if the absolute value of the
covariance between supply and demand shocks |η| is significantly smaller than the variance
of supply shocks σ2

s ; i.e., these transient confounding factors are small relative to the the
typical variation in reserve supply.

25On settlement days, reserves decline because banks transfer reserves to the TGA to pay for securities,
while their demand for overnight borrowing increases to finance those purchases. As a result, the surprise
component of TGA change is correlated with banks’ demand shock.
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One way to solve this issue is to use lagged forecast errors. In the example above, for
instance, the IV estimates using lagged forecast errors as instruments would be

βIVt =
cov(pt,FEqt−h)
cov(qt,FEqt−h)

=
βtγq,s,h,tσ

2
s

γq,s,h,tσ2
s

= βt for all t 6= t′, t′ + h,

βIVt′ =
cov(pt′ ,FEqt′−h)
cov(qt′ ,FEqt′−h)

=
βt′ (γq,s,h,t′σ

2
s + γq,d,h,t′η)

γq,s,h,t′σ2
s + γq,d,h,t′η

= βt′ , and

βIVt′+h =
cov(pt′+h,FEqt′)
cov(qt′+h,FEqt′)

=
βt′+h (γq,s,h,t′+hσ

2
s + γq,d,h,t′+hη)

γq,s,h,t′+hσ2
s + γq,d,h,t′+hη

= βt′+h,

for any h > 0. More generally, if cov(vst , v
d
t+h) = 0 for all t and h > h̄, using reserve forecast

errors lagged by h > h̄ days gives unbiased estimates of βt for all t.

Our identification strategy is therefore to estimate

βIVt =
cov(pt,FEq,t−h)
cov(qt,FEq,t−h)

, (9)

where FEqt−h is the forecast error for reserves from model (7) lagged by h days.

4.3 Empirical implementation

To generate the reserve forecast errors from model (7), we estimate a time-varying VAR with
m = 10 lags and stochastic volatility that includes an equivalent equation for the federal
funds-IORB spread; see equations (A.3) in Appendix B. This model and its estimation are
based on Primiceri (2005) and Del Negro and Primiceri (2015).

The use of a VAR is not necessary because the identification strategy only relies on
forecasting the systematic part of reserve supply, which can be done with a scalar time series
model (e.g., Hamilton, 1997). Using the VAR, however, is convenient for three reasons. First,
it directly provides the joint estimates of the time-varying covariances in the IV estimate (9)
because these covariances are equal to the h-day-ahead impulse responses of spreads and
reserves to the reserve forecast error from the VAR (see Appendix B.1 for details); that
is, we do not need to run a two-stage procedure as in the standard two-stage least-squares
(2SLS) estimation.26 Second, since the covariance between the spread and the reserve forecast
error is estimated from a VAR with 10 lags and stochastic volatility, the confidence bands
around our IV estimates are robust to autocorrelation and heteroscedasticity of the demand

26The ratio of impulse response functions as an IV estimator is used by Christiano et al. (1999) to estimate
the interest elasticity of the money demand. More recently, Del Negro et al. (2020) and Barnichon and
Mesters (2021) use a similar approach for the estimation of the Phillips curve.
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shocks in equation (5). Third, adding an equation for the spread improves the predictive
accuracy of the model, ensuring that the reserve forecast errors are small and therefore that
our locally-linear estimation moves slowly along the demand curve.

We estimate the time-varying VAR at the daily frequency using Bayesian methods; each
parameter is modeled as a stochastic process. Consistent with our approximate reserve
demand curve (5), the basic assumption behind the estimation of the time-varying VAR is
that its parameters evolve more slowly than the daily errors. Following Primiceri (2005),
we assume that the parameters follow slow-moving random walks, whose innovations are
uncorrelated with the VAR forecast errors at all leads and lags. Given the data, we estimate
the joint posterior distribution of all the time-varying parameters on each day. For each day,
we then have the joint posterior distribution of the numerator and denominator in the IV
estimate (9) and therefore of their ratio.

Inference on the IV estimates (9) depends on the choice of the forecast horizon h. There
is a clear trade-off between instrument exogeneity and estimate precision. The longer the
horizon is, the more plausible the exogeneity assumption is (i.e., that the instrument is
not contaminated by transient correlations between demand and supply shocks). A longer
horizon, however, implies larger estimate uncertainty. In our empirical implementation, we
use h = 5 (i.e., one week) because the confounding factors that cause contemporaneous
correlations between non-reserve liabilities such as the TGA and the federal fund-IORB
spread are typically transient and only last 2–3 days (Section 2.3). Using 5-day lagged errors
should therefore give exogenous instruments, while keeping the estimates sufficiently precise.

Finally, equation (7) models the systematic reserve supply Ht only as a function of past
reserves and federal funds-IORB spreads. In reality, fluctuations in the Federal Reserve
supply, TGA, and ONRRP can also depend on past repo and T-bill rates, which, in turn,
can affect the federal funds-IORB spread as we explain in Section 2.3. To control for this
possible endogeneity issue that would lead to an omitted variable bias, our robustness checks
include lagged values of these money-market rates in model (7); that is, we add these variables
to the time-varying VAR that generates the forecast errors and the posterior distributions
of the covariances in the IV estimate (9). This procedure is akin to adding controls to both
the first and the second stages of a traditional 2SLS regression. The estimation of these
trivariate VARs is similar to that of the baseline bivariate model (see Appendix B.1).
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4.4 Model predictive accuracy and instrument relevance

The relevance of our instrument stems from the persistence of reserves in our sample and
the forecasting accuracy of our model of reserve supply. Over the last 15 years, the Federal
Reserve has expanded and contracted the supply of reserves in response to market conditions,
through several QE and QT programs. These trends, which last for months and around
which higher-frequency events can occur, are well captured by the autoregressive nature of
model (7) and its empirical VAR implementation (A.3). The top panel of Figure 3 shows a
scatterplot of the five-day-ahead joint forecasts of the federal funds-IORB spread and reserves
from the time-varying VAR, together with the realized data; blue dots are for 2010–2014,
gray for 2015–mid-March 2020, red for mid-March 2020–2021, and green for 2022–2024. The
forecasts are on top of the realized data across all periods. Since reserves are persistent over
time, their time-varying covariance with their forecast errors lagged by five days (i.e., the
denominator in the IV estimate (9)) is significant throughout our sample (see panel (b) of
Figure 5). This covariance measures the relevance of our instrument, akin to the coefficient
on the instrument from the first-stage regression in the traditional 2SLS estimation.

Figure 3: In-sample (a) and out-of-sample (b) joint forecasts of the federal funds
rate and reserves five days ahead. The forecasts are generated using the bivariate
time-varying VAR model (A.3), drawing 100 times every five business days from the joint
posterior distribution of reserves and rates for each day. The black squares represent the
realized data on the day for which forecasts are generated. Reserves are measured as a ratio
to bank assets. The federal funds rate is measured as a spread to the IORB rate.
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An important advantage of our approach relative to ordinary 2SLS is that our inference
is automatically robust to weak instruments. The reason is that the Bayesian posterior
distribution of the IV estimate (9) already reflects the uncertainty in both its numerator
(i.e., the reduced-form coefficient) and denominator (i.e., the first-stage coefficient). If lagged
forecast errors are a weak instrument, the distribution of their covariance with reserves
(i.e., the denominator) will be concentrated around zero. While this creates problems in
the frequentist approach because asymptotic theory relies on the central limit theorem and
Normal approximations, it does not in ours: the posterior distribution of the ratio will
automatically reflect that the denominator is close to zero with high probability. As a result,
we do not need to test for instrument strength or implement robust-inference modifications
because our coverage sets already take into account the possible non-normality of the IV
estimate caused by instrument weakness.

Importantly, our time-varying VAR displays good predictive accuracy out-of-sample. The
bottom panel of Figure 3 replicates the top panel using forecasts generated by estimating the
VAR on expanding windows (by 5 days). While the forecast on day t in the top panel uses the
in-sample estimates of the model (i.e., all the information in the sample), the forecast in the
bottom panel only uses information up to t. The out-of-sample predictions are similar to the
in-sample ones and close to the realized data. In Internet Appendix B, we formally evaluate
the out-of-sample predictive accuracy of the model, showing that it outperforms univariate
and static models. Predictive accuracy is a key advantage of our framework because it
enables us to monitor reserve ampleness in real time, as we discuss in Section 5.2.2.

5 Empirical Results

5.1 Demand satiation and the slope of the reserve demand curve

5.1.1 OLS estimation

We now turn to estimating the time-varying slope of the reserve demand curve, i.e., the
reserve demand elasticity βt in equation (5). Before showing the results of our IV estimation,
for illustrative purposes, we present the results of a simpler exercise: a rolling-window OLS
regression of the federal funds-IORB spread against normalized reserves using in-sample joint
forecasts from the time-varying VAR model (A.3) in Appendix B as pseudodata. Every five
days, we draw N = 2, 500 forecasts from the five-day-ahead joint distribution of spreads
and reserves and run a pooled regression over the past year (244 days). Figure 4 shows our
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findings. The slope of the curve changes considerably over time, following the evolution of
reserves: it is negative up to mid-2014 as reserves grew from $1 to $2.8 trillion, fluctuates
around zero between 2014 and 2018 as reserves stayed above $2 trillion, steadily decreases
during 2018-2019 as reserves declined to a minimum of $1.4 trillion, and moves back towards
zero after March 2020 as the Federal Reserve expanded the reserve supply above $3 trillion.

Figure 4: OLS estimate of the elasticity of the federal funds rate to reserves
from model forecast. The elasticity is estimated by running OLS regressions on rolling
windows (244 business days) of in-sample forecasts of the federal funds-IORB spread against
in-sample forecasts of reserves normalized by bank assets. The forecasts are generated using
the bivariate time-varying model (A.3), drawing 100 times every five business days from the
joint posterior distribution of the reserves and rates for each day.

5.1.2 IV estimation

The slopes in Figure 4 cannot be interpreted causally because those OLS estimates do not
control for endogeneity. To address identification issues, we use the IV approach described in
Section 4; Figure 5 presents the results. Panels (a) and (b) show the time-varying posterior
medians of the numerator and denominator of our IV estimate in equation (9), together
with their 95% and 68% confidence bands; panel (c) shows the same information for the IV
estimate itself.

The numerator in equation (9) is the time-varying covariance between the federal funds-
IORB spread and past reserve forecast errors, which can be interpreted as the coefficient
from the reduced-form regression of the dependent variable against the instrument in the
traditional IV estimation. Panels (a) and (c) of Figure 5 show that, over time, the reduced-
form coefficient and IV estimate closely move together, in terms of both sign and statistical
significance, supporting the validity of our inference.
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Figure 5: IV estimate of the elasticity of the federal funds rate to reserves. The IV
estimate of the elasticity (panel (c)) is obtained as the ratio between the impulse response
of the federal funds rate (panel (a)) and the impulse response of reserves (panel (b)) to a
forecast error in reserves at a five-day horizon; see equation (9). Forecast errors and impulse
responses are estimated in-sample from model (A.3) with ten lags (m = 10 days). The solid
blue line represents the posterior median. The dark and light blue shaded areas correspond to
the 68% and 95% confidence bands. The elasticity is calculated daily. Reserves are measured
as a ratio to bank assets, in percent. The federal funds rate is measured as a spread to the
IORB rate, in basis points.

The denominator in equation (9) is the time-varying covariance between reserves and
their past forecast errors, which can be interpreted as the strength of our instrument. Panel
(b) of Figure 5 shows that the 95% confidence bands around this quantity are always above
zero, suggesting that our instrument is strong throughout the sample. Moreover, when the
instrument is relatively weaker, such as in 2010–2013, this is directly reflected in larger
confidence bands around the IV estimate in panel (c). As mentioned in Section 4, the fact
that our inference is directly robust to instrument weakness is an important advantage of
our methodology relative to traditional IV approaches.

Panel (c) shows that, although different in magnitude, our structural estimates of the rate
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elasticity to reserve shocks are consistent with the evidence in Figure 4: the time path of the
IV estimate is similar to the time-varying slope from the rolling OLS regression on the model
forecasts.27 The rate elasticity was significantly negative but steadily increasing from 2010,
when reserves ranged between 8% and 10% of bank assets, to 2011, when reserves exceeded
12% of bank assets for the first time in their history. Starting in 2012, with normalized
reserves hovering around 12%, the elasticity became insignificantly different from zero and
remained so throughout 2013–2017, as normalized reserves ranged from 13% to 19%. In early
2018, a negative slope emerged again, as the Federal Reserve balance-sheet normalization led
reserves to drop below 13% of bank assets, reaching a minimum of 8% in September 2019.
The slope returned to be indistinguishable from zero in mid-2020, as the Federal Reserve
expanded its balance sheet in response to the Covid crisis and normalized reserves jumped
above 16%, staying above 13% through the end of the sample.

Panel (a) of Table 1 reports the quantitative effect of a shock in normalized reserves on
the federal funds-IORB spread by year, based on our daily-frequency estimates. For each
year, we draw from the joint posterior distribution of the daily IV estimates βIVt in that
year. In 2010, a one-percentage-point drop in the ratio of reserves to bank assets would lead
to a median increase in the federal funds-IORB spread of 1.3 basis points. The same drop
in normalized reserves would have no effect in 2014; in contrast, it would lead to an increase
of 1 basis point in 2019.

The effects in 2010 and 2019 are also economically important, as they explain a significant
share of the in-sample variation in the federal funds-IORB spread. In our sample, the
standard deviation of daily changes in the spread is 1 bp; that of daily changes in normalized
reserves is 0.2 percentage points (pp). Therefore, our locally linear estimates of the slope of
the demand curve imply that, in 2010 and 2019, a daily movement along the curve equal to
the standard deviation of reserves’ daily changes explains more than 20% of the standard
deviation of spreads’ daily changes.

Taken together, the results in panel (c) of Figure 5 and in panel (a) of Table 1 are
consistent with the nonlinear reserve demand curve with a satiation point predicted by
the theory in Section 2.1. Our time-varying estimates of the rate elasticity to reserve shocks
suggest that the slope of the reserve demand curve is itself a function of reserves: throughout
our sample, it is always significantly negative if the ratio of reserves to commercial banks’
assets is below 11%, whereas it is always insignificant if this ratio exceeds 14%.

27The OLS estimates based on rolling-window regressions are more volatile than the IV estimates. One
reason is that the time-varying IV estimates are estimated in a more efficient and general way by allowing
the model to weigh past data in an adaptive fashion, rather than fixing the length of the rolling window and
giving equal weights within the window.
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Importantly, our results are qualitatively similar if we divide reserves by bank deposits
or GDP instead of bank assets, confirming that the choice of the normalization factor does
not drive our results but simply removes a time trend in reserves; see Internet Appendix C.

Note that the demand satiation implied by our estimates is not driven by the zero lower
bound (ZLB). First, the ZLB periods do not coincide with the flat part of the demand curve:
rates are at the ZLB in 2010–2011, when the elasticity is significantly negative, while they
are above the ZLB in 2016–2017, when the elasticity is zero. Second, the correct dependent
variable in our estimation is the federal funds-IORB spread—not the rate itself—because we
need to control for changes in the opportunity cost of lending reserves.

Still, for the interpretation of our findings, an important question remains: where does
the low-frequency variation in our estimate of the curve’s slope come from? The slope of our
locally linear approximation can change either because of small exogenous movements along
the curve or because of structural horizontal movements of the curve (vertical ones would
not change the estimated slope). Since our time-varying estimate closely follows the path of
reserves over time, most of the variation in βIVt seems to come from small exogenous supply
shocks captured by our instrument.

Our results, however, also suggest the presence of modest low-frequency horizontal shifts.
In fact, the level of reserves at which the demand curve transitions from being flat to being
negatively sloped—the satiation level—seems to have changed over time. The transitions
between the flat and sloped regions occur when reserves are around 12% of commercial
banks’ assets in the first half of our sample and around 13% in the second one. These
transitions correspond to reserve levels of $1.5 trillion at the end of 2011 and $2.2 trillion
at the beginning 2018. This modest shift to the right of the demand curve, representing
an increase in its satiation point, suggests a modest increase in the demand for reserves.
This result is consistent with an increase in bank liquidity regulation and supervision and
with Acharya and Rajan (2024), who argue that persistent outward shifts in reserve supply,
such as the QE programs of 2010–2014, create outward shifts in reserve demand.28

The results of this section are important for monetary policy implementation because
they inform policymakers on the transition between the region of abundant reserves, where
the slope of the reserve demand curve is statistically insignificant, and the region of ample
reserves, where the slope is significantly negative but only moderately steep. In Section 5.2.2,
we also show that, thanks to the predictive accuracy of our forecasting model, our time-

28In Internet Appendix G, to gauge the possible presence of horizontal and vertical shifts, we run a
nonlinear least-squares fit of the time-varying VAR (A.3) forecasts for the federal funds-IORB spread against
its forecasts for normalized reserves, allowing for low-frequency horizontal and vertical shifts; this exercise
also shows a horizontal outward shift of 2-3 pp from 2010–2014 to 2015–2019.
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varying IV estimates can be used in real time as an early-warning signal of market tightness.

5.1.3 Robustness I: controlling for repo rates and Treasury yields

Model (7) and its empirical time-varying VAR implementation (A.3) assume that the system-
atic reserve supply only depends on past reserves and federal funds-IORB spreads. Reserves,
however, can also depend on other factors, which in turn affect the federal funds-IORB
spread, such as repo and T-bill rates (Section 2.3).

To explicitly control for the effect of repo-market conditions, we augment our forecasting
model by adding the spread between the daily overnight Treasury repo rate and the IORB
rate to the VAR. We then use the reserve forecast errors from this trivariate VAR as instru-
ment for reserves in our IV estimation; as in our baseline specification, we use forecast errors
lagged by five days. Adding this possible confounding factor to the VAR is akin to including
it as control in both the first- and second-stage regressions of a traditional 2SLS estimation.
Figure 6 shows that the results of the trivariate model are consistent with those of the bivari-
ate one: the slope of the reserve demand is negative in 2010–2011 and in 2018–April 2020,
whereas it is statistically insignificant during 2012–2017 and after April 2020.29

Panel (b) of Table 1 reports the effect of a shock in normalized reserves on the federal
funds-IORB spread by year, when controlling for repo rates. Results are quantitatively
similar to those from our baseline specification, and even stronger in the earlier part of the
sample: a decrease of 1 pp in normalized reserves leads to an increase in the spread of 2 bp
in 2010 and 1 bp in 2019, while having no impact during 2012–2017 and 2020–2024.

To explicitly control for the possible confounding effect of Treasury-market conditions,
we proceed in a similar fashion. We augment our baseline VAR with the spread between
daily market yields on one-year Treasuries and the IORB rate. We then use lagged reserve
forecast errors as instrument for reserves in our IV estimation. Figure 7 shows the results:
consistent with the results of the bivariate model in Figure 5 and the trivariate model with
repo rates in Figure 6, the demand curve exhibits a negative slope in 2010–2011 and in April
2018–April 2020, while it is flat throughout 2012–2017 and since May 2020.

The estimates of the reserve demand elasticity when controlling for Treasury yields are
also quantitatively close to those from the baseline specification. Panel (c) of Table 1 shows
that in 2010, a one-percentage-point decrease in normalized reserves leads to a median in-

29The only exception is the 2012Q4–2013Q2 period. Reserves slightly but steadily decline between the
second quarter of 2011, just after the second round of large-scale asset purchases, and the fourth quarter
of 2012, when the third round starts. As a result, the slope becomes slightly negative in October 2012 but
returns to be indistinguishable from zero in June 2013, during the persistent balance-sheet expansion of 2013.
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Figure 6: IV estimate of the elasticity of the federal funds rate to reserves control-
ling for repo rates. The IV estimate of the elasticity (panel (c)) is obtained as the ratio
between the impulse response of the federal funds rate (panel (a)) and the impulse response
of reserves (panel (b)) to a forecast error in reserves at a five-day horizon; see equation (9).
Forecast errors and impulse responses are estimated in-sample using a trivariate version of
model (A.3) that includes daily repo rates, with ten lags (m = 10 days). The solid blue line
represents the posterior median. The dark and light blue shaded areas correspond to the
68% and 95% confidence bands. The elasticity is calculated daily. Reserves are measured
as a ratio to bank assets, in percent. The federal funds rate is measured as a spread to the
IORB rate, in basis points.

crease in the federal funds-IORB spread of 1.4 bp. The same drop in the reserves-to-assets
ratio has no effect in 2014, whereas it leads to an increase of 1 bp in 2019.

5.1.4 Robustness II: sign-restricted VAR

The key identifying assumption behind our strategy is that, at the daily frequency, the
reserve supply only depends on the past federal funds-IORB spread, not on the current one;
as a result, supply shocks can be retrieved through a forecasting model, like our time-varying
VAR, without additional structural assumptions. For robustness, we replicate our analysis

31



Figure 7: IV estimate of the elasticity of the federal funds rate to reserves con-
trolling for Treasury yields. The IV estimate of the elasticity (panel (c)) is obtained as
the ratio between the impulse response of the federal funds rate (panel (a)) and the impulse
response of reserves (panel (b)) to a forecast error in reserves at a five-day horizon; see equa-
tion (9). Forecast errors and impulse responses are estimated in-sample using a trivariate
version of model (A.3) that includes daily yields on 1-year U.S. Treasury securities, with
ten lags (m = 10 days). The solid blue line represents the posterior median. The dark and
light blue shaded areas correspond to the 68% and 95% confidence bands. The elasticity is
calculated daily. Reserves are measured as a ratio to bank assets, in percent. The federal
funds rate is measured as a spread to the IORB rate, in basis points.

using a structural time-varying VAR with sign restrictions to extract the supply shocks and
covariances that we use in our IV estimation (9).

Sign-restricted VARs impose restrictions on the signs of the contemporaneous effects of
the structural shocks on the VAR variables. We implement two variations of this type of
structural model. The first one imposes the traditional sign restrictions of supply-demand
frameworks: supply shocks have a negative effect on prices and a positive effect on quantities,
whereas demand shocks have a positive effect on both. The second variation combines these
restrictions with the institutional feature that, in the current monetary policy framework,
reserve supply does not contemporaneously respond to demand shocks at the daily frequency;
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namely, we further assume that the positive contemporaneous effect of demand shocks on
quantities is small (i.e., we impose an additional upper bound).

These sign-restricted time-varying VARs are estimated with the same Bayesian method
as our baseline model; details on these specifications and their estimation are in Internet
Appendix D. Results are in Figures IA.11 and IA.12.

For both robustness checks, the estimates of the reserve demand elasticity follow those
of the baseline model: significantly negative in 2010–2011 and 2018–2019, insignificant in
the rest of the sample. The estimates based on traditional sign restrictions are more volatile
because bivariate VARs of supply and demand identified solely through sign restrictions
generate problematic posterior distributions for demand and supply elasticities (Baumeister
and Hamilton, 2015; see Internet Appendix D for a detailed discussion). Once we impose that
the contemporaneous response of the systematic reserve supply to demand shocks is small,
as it the case in the current monetary policy framework, the elasticity becomes smoother
and closer in magnitude to the elasticity from our baseline model.

5.2 Validation

5.2.1 Sources of variation in forecast errors

To support the validity of the 5-day-lagged reserve forecast errors from our time-varying
VAR as instruments in the demand-elasticity estimation, we show that variation in the
errors comes from factors that are uncorrelated with demand for reserves five days later.

Panel (a) of Figure 8 shows a scatterplot of the daily forecast errors for reserves over bank
assets from model (A.3) against the contemporaneous daily changes in the TGA over bank
assets, together with a fit line. There is a clear negative relationship: a 1 pp daily increase in
the ratio between the TGA and bank assets is associated with a contemporaneous forecast
error for normalized reserves of −0.63 pp (p-value<0.01 and R2 = 0.21); that is, the model
predicts a higher level of reserves than the realized one when the TGA increases, and the
size of the error is equal to 63% of the surge in TGA. Panel (b) shows that this negative
correlation is even stronger when restricting the sample to the largest 300 forecast errors in
absolute value (β = −0.94, with p-value<0.01 and R2 = 0.26).

This evidence suggests that variation in our reserve forecast errors comes from unusual
fluctuations in Treasury auctions or tax payments that are not captured by our forecasting
model; this result supports the exogeneity of our instrument because, as we explain in
the Section 4.2, daily fluctuations in Treasury auctions or tax payments do not depend on
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(a) All Forecast Errors (b) Top 300 Forecast Errors

Figure 8: Daily forecast errors of reserves over bank assets from the time-varying
VAR model (A.3) against daily changes in TGA over bank assets, from 2010
to 2024. Panel (a) includes all forecast errors; panel (b) restricts the sample to the 300
largest errors in absolute value. Each panel includes a linear OLS fit y = α + βx, with
95% confidence intervals. The results of the OLS fits are: β = −0.63 (p-value < 0.01) with
R2 = 0.21 in panel (a); β = −0.94 (p-value < 0.01) with R2 = 0.26 in panel (b).

contemporaneous changes in the federal funds-IORB spread (i.e., their contribution to the
systematic reserve supply is only a function of past spreads) and are uncorrelated with banks’
demand shocks after 5 days. Importantly, this evidence is also consistent with the literature
that explicitly uses daily TGA fluctuations to estimate the elasticity of the federal funds and
other money-market rates to reserve shortages (Hamilton, 1996; Correa et al., 2020).

5.2.2 Out-of-sample performance and real-time monitoring

Our methodology allows us to detect changes in the elasticity of the reserve demand curve—
due to either movements along the curve or slow-moving horizontal shifts in the curve—in
real time. Figure 9 compares the in-sample (IS) and out-of-sample (OOS) elasticity estimates
from our baseline specification. The IS estimate (blue) is the same as the one in Figure 5:
for each day, it is obtained using information from the full sample. The OOS estimate
(red), in contrast, uses information up to the day at which it is calculated: it is what
the econometrician would measure if they re-estimated the model every day, expanding the
sample by one day. Comparing IS and OOS estimates shows how our methodology performs
in real time.
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As Figure 9 shows, IS and OOS elasticities move closely together throughout the sample.
As expected, OOS estimates are more volatile and more dispersed at the beginning, reflecting
a smaller sample size. As time passes and the sample size increases, the OOS estimates
become smoother and their error bands smaller. In 2010 and 2011, the OOS elasticity is
negative and significant, with the 95% confidence interval consistently below zero, as with
the IS one. During this early period, the OOS estimates are larger in absolute value than the
IS ones, likely because the sample size is small and the priors’ parameters have been set using
data from 2009 (when reserves were scarcer); the difference, however, is never statistically
significant at the 95% level. Like the IS elasticity, the OOS elasticity becomes statistically
insignificant in 2012 and is practically zero from 2014 throughout 2017.

Figure 9: In-sample (IS) and out-of-sample (OOS) IV estimates of the elasticity
of the federal funds rate to reserves. The estimates are obtained as the ratio between
the impulse response of the federal funds-IORB spread and the impulse response of reserves
to a forecast error in reserves at a five-day horizon from model (B.1) with ten lags (m =
10 days). The blue solid line represents the posterior median IS estimate; the red solid line
shows the posterior median OOS estimate. The dark and light shaded areas correspond to
the 68% and 95% confidence bands.

Albeit with a lag of a few months, the OOS estimates also follow the IS ones in 2018–
2019, when the elasticity returned to be negative as reserves steadily declined. In the second
half of 2018, the OOS elasticity returns to be significantly negative at the 68% level, and by
2019Q1, it becomes significant at the 95% level and as large as the IS one. That is, if used in
real time and taking significance at the 95% level as early-warning signal, our methodology
would have suggested that we were approaching the negatively sloped region of the reserve
demand curve as early as six months ahead of the events of September 2019.

As with the IS elasticity, the OOS elasticity remains significantly negative through June
2020, hovering below the IS one and suggesting that reserves were still relatively scarce in
March 2020. The OOS elasticity returns to be insignificant in August 2020, two months
after the IS one, and remains practically zero until the end of the sample.

These results show that our methodology can be used in real time to monitor tightness in
the federal funds market; a significantly negative elasticity would suggest that even relatively
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small shocks could lead to significant price dislocations. In particular, we show that our time-
varying elasticity estimates would have provided an early-warning signal several months in
advance of the events of September 2019.

5.2.3 Other indicators of reserve ampleness

In this section, we compare our estimates of the reserve demand elasticity with four other
indicators of reserve ampleness, which are not based on fluctuations in the federal funds-
IORB spread. Comparing our estimates with these alternative indicators allows us to check
the soundness of our results and validate our methodology.

The first indicator is the daily volume-weighted share of overnight Treasury repos with
rates above the IORB. If overnight repo rates are above the IORB (i.e., banks’ opportunity
cost of lending reserves), banks have an incentive to use their reserve balances to invest
in the repo market, thereby keeping repo rates close to the IORB. This reserve-draining
repo intermediation (Correa et al., 2020) is limited by banks’ liquidity constraints: if the
ampleness of reserves declines, banks will be less willing to drain their reserves, and the
share of repo trades above the IORB should increase (d’Avernas et al., 2024). In Internet
Appendix E, we also present an alternative measure focusing on quarter-end dynamics.30

The second indicator is the daily volume-weighted share of late interbank payments in
Fedwire Funds Service.31 Reserves are the settlement asset for interbank payments. As
reserves decline and become less ample, banks have an incentive to delay their outgoing
payments towards the end of the day to synchronize incoming and outgoing payments and
economize on intraday liquidity. As a result, the share of late payments (e.g., after 5 pm)
should increase as reserves become less ample (Afonso et al., 2022b; Copeland et al., 2025).

The third indicator is the daily average of the banking system per-minute intraday over-
draft. An intraday overdraft occurs when a bank’s Federal Reserve account has a temporary
negative balance during a business day. Overdrafts are measured at the end of each minute
within the business day. To get a sense of the banking system’s use of overdrafts, we aggre-
gate overdrafts for all banks at the end of each minute and then average over minutes within

30As we explain in Section 2.3, the balance-sheet costs of European banks and their affiliated dealers
increase on quarter ends due to the specific implementation of the Basel III leverage ratio in Europe. As a
result, intermediation capacity in the repo market declines, and repo rates increase. If reserves are less than
ample, the size of these spikes will be larger because U.S. banks will be less willing to use their own reserves
to substitute for the decline in European banks’ intermediation (Correa et al., 2020; Copeland et al., 2025).

31Fedwire Funds Service is a real-time gross settlement system that settles transactions individually on
an order-by-order basis, without netting. Fedwire Funds Service currently operates twenty-two hours each
business day from 9:00 pm Eastern Time (ET) on the preceding calendar day to 7:00 pm ET. From May
2004 to March 7, 2021, Fedwire Funds Service operated twenty-one and a half hours (9:00 pm–6:30 pm ET).
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the business day.32 As reserves become less ample and banks more liquidity-constrained,
aggregate intraday overdrafts should increase.

Finally, the fourth indicator of reserve ampleness is the daily volume-weighted share of
federal funds borrowing by U.S. banks. As opposed to branches of foreign banks, which
mainly borrow in the federal funds market for the IORB arbitrage (borrowing below IORB
from FHLBs and earning IORB on their reserve balances), U.S. banks typically borrow
for liquidity needs. As reserves become less ample, the share of U.S. banks federal funds
borrowing should increase.

Figure 10 depicts the 30-business-day moving averages of these additional indicators of
reserve ampleness, together with our estimates of the reserve demand elasticity, from 2015
to 2024.33 To have a fair comparison, we plot the OOS elasticity estimates, so that all the
indicators on day t only use information up to that day; since the OOS estimates closely
track the in-sample ones, this choice does not significantly affect the comparison. As panels
(a)–(d) show, the additional indicators of reserve ampleness negatively comove with our
elasticity estimates, supporting the validity of our methodology. Indicators are low in 2015–
2017, increase significantly in 2018–2019, and decline again in the second half of 2020. Since
then, all the indicators have remained well below their 2018–2019 levels, consistent with our
elasticity estimates being statistically insignificant.

This evidence suggests that in addition to externally validating our methodology, these
indicators can be used, jointly with our OOS elasticity estimates, as real-time early-warning
signals of reserve ampleness during QT cycles. Comparing their values across different peri-
ods can inform on changes in the tightness of reserve supply.

Figure 11 shows the values of these indicators and of our OOS elasticity estimates across
four different periods between 2015 and 2024, on a spider-web chart. Each variable is nor-
malized such that the inner and outer pentagons correspond to the highest and lowest levels
of reserve ampleness between 2015 and 2024, as measured by that variable; e.g., the outer
pentagon for the repo indicator corresponds to the share of repos transacted at rates above
the IORB in 2019Q3. The periods are chosen to reflect the evolution of the indicators toward
a well-known episode of reserve scarcity (September 2019) and a period of reserve abundance
(2024Q4).34 All indicators are near the outer edge of the pentagon in 2019 and near the inner

32The business hours for the calculation of bank overdrafts are the same as those of Fedwire Funds Service.
33We start in 2015 because collection of daily data on the share of federal funds borrowing by U.S. banks

only began in April 2014, and there may have been reporting issues in the earlier months. To be consistent
with the rest of the paper, each time series excludes one-day windows around month-ends (see Section 2.3).

342018Q3 and 2019Q1 correspond to the quarters when the OOS elasticity estimate becomes significant
at the 68% confidence level and at the 95% confidence level, respectively.
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(a) Repo volume above IORB (b) Late payments

(c) Intraday overdrafts (d) Federal funds borrowed by U.S. banks

Figure 10: Additional indicators of reserve ampleness and the OOS elasticity
estimates over time. For each indicator, this figure reports the 30-business-day moving
average of its daily value. Panel (a) shows the percentage of overnight Treasury repos with
rates above the IORB rate; panel (b) the percentage of Fedwire Funds Service payments
settled after 5 pm ET; panel (c) the average aggregate per-minute intraday overdraft in
USD billions; panel (d) the percentage of federal funds borrowed by U.S. banks. Percentages
are volume-weighted. The red line shows the OOS estimates of the reserve demand elasticity.

edge in 2024. This type of chart can be used as a synoptic tool to monitor reserve ampleness
in real time by simultaneously looking at different indicators.

Relative to our elasticity estimates, when used as a monitoring tool, these indicators
have the advantage of being easier to calculate. They have, however, two main drawbacks.
First, based on economic theory, we can use the reserve-demand elasticity to exactly define
the transition between ample and abundant reserves as the level of reserves above which the
elasticity is zero (the demand-satiation point). In contrast, there is no similar theory-based
threshold for the other indicators of reserve ampleness; they can only be used to make relative
statements. This makes the construction of an early warning signal from these indicators
more challenging and arbitrary. Second, since these indicators are based on raw data, they
are more volatile by construction, which can lead to false positive and false negative signals.
The problem is particularly acute for repo rates, as they are affected by several factors other
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Figure 11: Indicators of reserve ampleness: spider-web chart. This chart plots the
OOS reserve demand elasticity and four additional indicators of reserve ampleness: (i) the
daily share of overnight Treasury repos with rates above the IORB rate; (ii) the daily share
of Fedwire Funds Service payments settled after 5 pm ET; (iii) the daily average aggregate
per-minute intraday overdraft; (iv) the daily share of federal funds borrowed by U.S. banks.
All shares are volume-weighted. Each variable is normalized such that the inner and outer
pentagons correspond to the highest and lowest levels of reserve ampleness between 2015 and
2024, as measured by that variable. We show the average values of the normalized variables
in: 2018Q3, 2019Q1, September 2019, and 2024Q4.

than reserves (e.g., arbitrage opportunities, hedge funds’ demand for overnight borrowing).
For these reasons, these indicators should be considered in a holistic way when assessing
reserve ampleness.

6 Identifying Vertical Shifts

Our estimates of the reserve demand elasticity over time can also help identify the drivers
of vertical shifts in the curve. We focus on periods of zero elasticity, when the federal
funds market operates in the flat region of the reserve demand curve. During these periods,
neither supply shocks nor horizontal demand shifts can affect the federal funds-IORB spread;
persistent changes in the spread must be the result of structural vertical shifts.

As we discuss in Section 2.1, two sources of structural vertical shifts in the reserve demand
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curve are: changes in the spread between the ONRRP and IORB rates and changes in banks’
balance-sheet costs. An increase in the ONRRP rate relative to the IORB raises FHLBs’
outside option when lending in the federal funds market, pushing rates up; an increase in
banks’ balance-sheet costs decreases banks’ willingness to borrow, pushing rates down. To
quantify the effect of changes in the ONRRP-IORB spread, we focus on the adjustments
to these rates implemented by the FOMC in 2014–2015; to study the effect of changes in
bank balance-sheet costs, we focus on the Supplementary Leverage Ratio (SLR) relief of
2020–2021.

In Internet Appendix F, we repeat our analysis for a few episodes that occurred during
periods of negative elasticity (i.e., in the steep region of the curve) and that may have had
important effects on the reserve demand curve: the ONRRP-IORB adjustments of 2018–2019
and the 2011 change in the FDIC assessment fee. Results are qualitatively consistent with
the ones reported here but smaller in magnitude. Note, however, that since the elasticity is
significantly negative during 2011 and 2018–2019, changes in the federal funds-IORB spread
also reflect supply shocks and horizontal demand shifts; the results in Internet Appendix F
should therefore be taken cautiously.

6.1 Changes in the ONRRP-IORB spread

6.1.1 Daily horizon analysis

Theory predicts that, when reserves are abundant, the federal funds rate lies below the
IORB (i.e., banks’ return from holding reserves) and above the ONRRP rate (i.e., FHLBs’
opportunity cost of lending reserves). An increase in the ONRRP rate relative to the IORB
should therefore push the federal funds rate up, closer to the IORB.35 Table 2 shows the list
of changes in the ONRRP-IORB spread implemented by the FOMC in our sample.

We focus on the ONRRP-IORB adjustments of 2014–2015 for three reasons. First, during
this period, the reserve demand elasticity was zero, ensuring that any change in the federal
funds-IORB spread could not be due to supply shocks or horizontal demand shifts. Second,
these adjustments were part of an operational readiness exercise, not a response to changing

35In general, the pass-through will be smaller than one because the federal funds rate is bounded by the
Federal Reserve administered rates. To see this, suppose that reserves are abundant and that the ONRRP
rate is increased to be equal to the IORB; since the federal funds rate must lie within these two rates in the
region of abundant reserves, it will increase by a smaller amount than the ONRRP rate. The pass-through
is also likely to depend on the level of reserves in the system, with the effect being stronger for larger reserve
levels: in the region of abundant reserves, the federal funds rate is “anchored” to the IORB and ON RRP
rates; in the region of scarce reserves, in contrast, it is also affected by changes in the DW rate.
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ONRRP-IORB Spread (bp)
Date t− 1 t ∆

21 Oct. 2013 -24 -23 1
04 Nov. 2013 -23 -22 1
12 Nov. 2013 -22 -21 1
19 Nov. 2013 -21 -20 1
23 Dec. 2013 -20 -22 -2
18 Feb. 2014 -22 -21 1
26 Feb. 2014 -21 -20 1
03 Nov. 2014 -20 -22 -2
17 Nov. 2014 -22 -18 4
01 Dec. 2014 -18 -15 3
15 Dec. 2014 -15 -20 -5
17 Dec. 2015 -20 -25 -5
14 Jun. 2018 -25 -20 5
20 Dec. 2018 -20 -15 5
02 May 2019 -15 -10 5

Table 2: List of changes to the spread between the ONRRP and IORB rates
implemented by the FOMC from September 23, 2013 (when the ONRRP facility
was introduced) to December 13, 2024.

market conditions. Third, the ONRRP volume in 2014–2015 was robust ($120 billion per
day on average), indicating active usage by market participants; in our robustness checks,
however, we also include the adjustments of September–December 2013, when ONRRP usage
was still low ($15 billion per day on average).

We run the following time series regression at daily frequency from January 2014 to
December 2017:36

∆pt+h,t−1 =α + β∆ONRRP-IORBt,t−1 + γ1 ∆Controlst+h,t−1

+ γ2 Calendar Controlst+h + εt+h, (10)

where ∆pt+h,t−1 is the change in the federal funds-IORB spread between day t− 1 and day
t+h, and ∆ONRRP-IORBt,t−1 is the change in the ONRRP-IORB spread between day t−1

and day t. β measures the change in the federal funds-IORB spread over h+ 1 days around
a change in the ONRRP-IORB spread. We use h = 0 and h = 1, i.e., we consider one-day
and two-day changes in the federal funds-IORB spread.

36We end our sample on December 2017 because the reserve demand elasticity returned to being signifi-
cantly negative in early 2018.
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Since the reserve demand elasticity is zero, neither supply shocks nor horizontal demand
shifts affect the federal funds-IORB spread. The spread, however, could still be affected by
other factors. To control for high-frequency variation in risk aversion, credit risk, and interest
rate risk, we include the (h + 1)-day changes in the VIX, TED spread, and MOVE index.
We also include mid-month dummies to control for calendar effects related to the settlement
of Treasury auctions and tax payments, day-of-week fixed effects to control for calendar
fluctuations in payment activity, and month fixed effects to control for low-frequency time
trends.37 Consistent with our estimation of the reserve demand elasticity, we drop one-day
windows around month ends to control for the window-dressing practices of European banks
(Section 2.3). We use Newey-West standard errors with 5 lags.

Results of regression (10) are in Columns (1) and (2) of Table 3. The pass-through of the
2014–2015 changes in the ONRRP-IORB spread to the federal funds-IORB spread is 37%
on the day of the adjustment and 35% on the following day (p-values < 0.01). In Columns
(3) and (4), we replicate the analysis starting the sample in September 2013 to include the
adjustments implemented in the early months of the ONRRP facility; results are slightly
smaller but similar: 32% at the one-day and 31% at the two-day horizons (p-values < 0.01).

(1) (2) (3) (4)
∆pt,t−1 ∆pt+1,t−1 ∆pt,t−1 ∆pt+1,t−1

∆ONRRP-IORBt,t−1 0.37∗∗∗ 0.35∗∗∗ 0.32∗∗∗ 0.31∗∗∗
(3.70) (4.17) (3.23) (3.53)

R2 0.13 0.15 0.11 0.13
Sample 1/2014–12/2017 1/2014–12/2017 9/2013–12/2017 9/2013–12/2017
Observations 829 825 883 880

Table 3: One-day and two-day impact of ONRRP-IORB spread adjustments on
the federal funds-IORB spread when reserves are abundant (i.e., flat region of the
demand curve). The table shows the results of regression (10). Data are daily. ∆pt+h,t−1
is the change in the federal funds-IORB spread between t − 1 and t + h, with h = 0 in
Columns (1) and (3) and h = 1 in Columns (2) and (4). ∆ONRRP-IORBt,t−1 is the change
in the ONRRP-IORB spread between t−1 and t. All columns include the following controls:
the changes in the VIX, TED spread, and MOVE index between t − 1 and t + h (h = 0 in
Columns (1) and (3), and h = 1 in Columns (2) and (4)); two mid-month dummies (one
for t + h = T and one for t − 1 = T ); day-of-week fixed effects; and month fixed effects.
Newey-West standard errors with 5 lags are in parentheses. ***, **, *, represent statistical
significance at the 99%, 95%, and 90%, respectively.

37There are two mid-month dummies. The first captures the change from t − 1 to mid-month, i.e., it is
equal to one at t+ h = T , where T is mid-month. The second captures the change from mid-month to h+ 1
days afterwards, i.e., it is equal to one at t− 1 = T .
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6.1.2 Monthly horizon analysis

Since changes in the ONRRP-IORB spread are low-frequency events that permanently
change FHLBs’ opportunity cost of lending reserves relative to banks’ benefit from hold-
ing them, their effect on the federal funds-IORB spread should be persistent. Moreover, it
may take more than a few days for the federal funds rate to react. To gauge the longer-term
effects of ONRRP-IORB rate adjustments, we look at their impact at a monthly horizon.

For this analysis, we focus on three episodes: the December 2013 and December 2015
adjustments, because there were no other changes in the ONRRP-IORB spread for one
month before and one month after these events; and the February 2014 adjustments. For
simplicity, since the two February 2014 changes were close in time (February 18 and 26) and
in the same direction (+1 bp in both cases), we treat them as a single event happening on
the day of the first adjustment; results do not change if we use the exact cumulative change
in the ONRRP-IORB spread across those days.

For each of the three ONRRP-IORB adjustments, we run the following daily regression
on the two-month period surrounding the event (20 business days before and after):

pt = α +
4∑
i=1

βi 1[t ∈ Post-Change Weeki]×∆ONRRP-IORB + γ Controlst + εt, (11)

where pt if the federal funds-IORB spread, Post-Change Weeki is a dummy for the i-th week
(5 business days) after the adjustment, and ∆ONRRP-IORB is the size of the adjustment.
βi measures the average pass-through of the ONRRP-IORB adjustment to the federal funds-
IORB spread in the i-th week after the adjustment, using the average spread in the four
weeks before the adjustment as control level. The set of Controls include the VIX, TED
spread, MOVE index, and day-of-week fixed effects. Since regression (11) is estimated on a
two-month window around the event, with the first month serving as control period, we do
not include month fixed effects and mid-month dummies.

Results are in Figure 12, with 90%-level confidence intervals based on Newey-West stan-
dard errors with five lags. The one-week pass-through of ONRRP-IORB adjustments to
the federal funds-IORB spread is between 25% (December 2015; p-value = 0.22) and 52%
(February 2014; p-value = 0.05), quantitatively consistent with the estimates of the daily-
frequency regressions in Table 3. At the one-month horizon, the pass-through ranges between
64% (February 2014; p-value < 0.01) and 106% (December 2013; p-value < 0.01).

In Internet Appendix F, we replicate our analysis including the changes in the ONRRP-
IORB spread of 2018–2019. We show that the pass-through of those adjustments was sig-
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(a) 12-23-2013 (b) 02-18-2014

(c) 12-17-2015

Figure 12: Monthly horizon impact of ONRRP-IORB spread adjustments on the
federal funds-IORB spread when reserves are abundant (i.e., flat region of the
demand curve). Each chart shows the estimated βi from running regression (11) on a
40-day window around a specific ONRRP-IORB rate adjustment (20 days before and after),
together with 90% confidence intervals based on Newey-West standard errors with 5 lags.
Panel (a) is for the adjustment of December 23, 2013; panel (b) for the adjustment of
February 18, 2014; and panel (c) for the adjustment of December 17, 2015.

nificantly smaller, consistent with the effect of ONRRP-IORB spread adjustments on the
federal funds-IORB spread being weaker when reserves are less ample and rates above the
IORB rate.

6.2 Balance-sheet costs: the SLR relief of 2020–2021

Theory predicts that a decrease in bank balance-sheet costs should raise the federal funds
rate because banks are willing to borrow at higher rates to expand their balance sheets; as a
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result, the federal funds-IORB spread should increase (see the model in Appendix A). The
SLR relief of 2020–2021 temporarily lowered banks’ balance-sheet costs by excluding reserves
and Treasuries from the calculation of the SLR. For depository institutions, those that can
hold reserves and trade in the federal funds market, the relief was announced on May 15 and
became effective on June 1, 2020. The expiration date of the relief was March 31, 2021, and
was announced at the time of its introduction.

Figures 13 shows the federal funds-IORB spread around the SLR relief implementation;
consistent with the relief shifting the reserve demand curve upward, the spread increased
right after the relief introduction and started to decline ahead of its expiration, which had
been known since the temporary regulatory change was announced. Since our estimates
of the reserve demand elasticity are insignificant from May 2020 onward, these changes in
the federal funds-IORB spread around the SLR relief cannot be due to supply shocks or
horizontal shifts in the demand curve. Moreover, from late July 2020 to late January 2021,
the federal funds-IORB spread was stable around -1 bp, suggesting that the spread was not
significantly affected by other factors during that period.

Figure 13: Federal funds-IORB spread around the implementation of the SLR
relief of 2020–2021. The blue line represents the spread. The two dashed vertical lines
represent the introduction (6/1/2020) and end (3/31/2021) of the SLR relief.

To quantify the vertical shift in the reserve demand curve caused by the introduction of
the SLR relief, we run the following daily regression over the two months surrounding the
event (i.e., four weeks before and after):

pt = α +
N∑
i=0

βi ∗ 1[t ∈ Post SLR-Relief Weeki] + γ ∗ Controlst + εt, (12)

45



where 1[Post SLR-Relief Weeki]t is a dummy for the i-th week following the SLR relief
introduction, and all the variables are defined as in equation (11). As in regression (11), the
control period is the four weeks before the event.

Results of regression (12) are in Panel (a) of Figure 14, with 90%-level confidence intervals
based on Newey-West standard errors with five lags. Relative to its average level in the
previous month, the federal funds-IOR spread increases by 0.6 bp (p-value < 0.01) in the
first week after the SLR relief introduction; by the fourth week, the increase is 2.5 bp
(p-value < 0.01).38

We also estimate regression (12) on the eight weeks surrounding the end of the SLR relief,
with the week dummies being defined relative to the expiration of the temporary regulatory
change. Results are in Panel (b) of Figure 14. The federal funds-IORB spread declines
around the end of the relief, but the effect is smaller in magnitude: −0.3 bp within the first
week and −0.6 bp at the one-month horizon (p-values < 0.01); the smaller magnitude is
consistent with the expiration date being known to market participants long in advance.

(a) SLR Relief Introduction (b) SLR Relief End

Figure 14: One-month horizon impact of the 2020–2021 SLR relief on the federal
funds-IORB spread. Panel (a) shows the estimated βi from running regression (12) on a
40-day window (20 days before and after) around the introduction of the SLR relief (June
1, 2020), together with 90% confidence intervals based on Newey-West standard errors with
5 lags. Panel (b) shows the results from running regression (12) on a 40-day window around
the end of the SLR relief (March 31, 2020).

To measure the effect of the SLR relief at longer horizons, we also estimate regression
(12) on the four-month periods surrounding the introduction and expiration of the relief
(i.e., 40 business days before and after each event). Results are in Figure 15. The effects are

38This upward shift is consistent with the results in Internet Appendix G, where we run a nonlinear fit of
model forecasts allowing for low-frequency shifts across 2010–2014, 2015–2019, and 2020-2024.
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stronger at longer horizons, as market adjustments to changes in bank balance-sheet costs
may take time. At two months after the introduction of the relief, the federal funds-IORB
spread increases by 7 bp (p-value < 0.01) relative to its average level in the two months
preceding the relief. As for the regressions on the shorter time period, the effect around
the end of the relief is smaller (-2 bp, with p-value < 0.01), consistent with the event being
anticipated and market participants acting in advance.

(a) SLR Relief Introduction (b) SLR Relief End

Figure 15: Two-month horizon impact of the 2020–2021 SLR relief on the federal
funds-IORB spread. Panel (a) shows the estimated βi from running regression (12) on a
80-day window (40 days before and after) around the introduction of the SLR relief (June
1, 2020), together with 90% confidence intervals based on Newey-West standard errors with
5 lags. Panel (b) shows the results from running regression (12) on a 80-day window around
the end of the SLR relief (March 31, 2020).

In Internet Appendix F, we replicate our analysis for the 2011 change in the calculation
of the FDIC assessment fee, which significantly increased U.S. banks’ balance-sheet costs
(Banegas and Tase, 2020). Consistent with the predictions of the theory, the implementation
of the new fee pushed the federal funds-IORB spread down, representing a downward vertical
shift in the reserve demand curve.

7 Conclusion

In this paper, we study the U.S. banking system demand for reserves and identify the level
of reserves that satiates it. We provide structural estimates of the different slopes of the
reserve demand curve for reserve levels ranging from scarce to abundant, using 15 years of
data, from 2010 to 2024.
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We find that, as predicted by economic theory, the reserve demand curve is highly nonlin-
ear with a clear satiation level: it is flat when reserves are sufficiently large; and increasingly
negatively sloped as reserves decline below the satiation point. Second, we observe horizontal
shifts in the demand for reserves. In the earlier part of the sample, we observe a significantly
negative slope when reserves are below 12% of bank assets; in the second half, when reserves
drop below 13%. These findings suggest that the reserve demand curve, and hence its sati-
ation point, have moved outward over time. Third, we show that the curve has also shifted
vertically. Upward vertical shifts are especially relevant in the later part of the sample; this
observation has an important implication: the level of the federal funds-IORB spread is not
a sufficient statistic for the rate elasticity to reserve shocks. Fourth, using our elasticity
estimates, we identify two drivers of vertical shifts of the reserve demand curve: changes in
the spread between the ONRRP and IORB rates and variation in banks’ balance-sheet costs.

To produce our time-varying estimates of the reserve demand elasticity, we use an
instrumental-variable approach that instruments reserves with past forecast errors from a
daily time-varying VAR model of the joint dynamics of reserves and federal funds rates.
This methodology addresses the three main issues affecting the estimation of the reserve
demand curve: nonlinearity, low-frequency structural changes, and endogeneity. We validate
our estimates by comparing them to four alternative indicators of reserve ampleness based
on conditions in repo markets, timing of payments, banks’ borrowing in the federal funds
market, and banks’ usage of intraday credit. Our findings are robust to normalizing reserves
by deposits or GDP and to controlling for changing conditions in repo and Treasury markets.
Finally, we also show that our methodology works well out-of-sample and can be used as a
tool to monitor reserve ampleness in real time.
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Appendix

Appendix A Demand for Reserves with Balance-sheet Costs

In this appendix, we present a variation of the model in Section 2.1 that incorporates banks’
balance-sheet costs. Banks optimize their end-of-day reserve level as in Section 2.1; the main
difference relative to the baseline model is that banks face a cost proportional to the size of
their balance sheets at the end of the day.

As in the baseline model, banks can hold two assets in their balance sheets: reserves and
federal funds loans.39 At the end of the day, bank i compares its end-of-day balances r′i with
its target balance r̄i. If bank i enters the end-of-day period with excess reserves (r′i > r̄i),
the size of its balance sheet is r′i−min{0, fi}, where fi < 0 (fi > 0) denotes bank i’s lending
(borrowing) in the federal funds market. If the bank enters the end-of-day period with a
reserve deficit r′i < r̄i, it borrows at the discount window the amount r̄i − r′i necessary to
meet its target r̄i; in this case, its balance-sheet size will be r̄i−min{0, fi}. Let κ > 0 be the
balance-sheet cost per unit of assets; for simplicity, we assume κ is the same for all banks.

The bank’s optimization problem (1) can then be re-written as

min
fi

[
(if − iIORB + κ)

∫ z

ẑi

(r′i − r̄i)g(z)dz + (iDW − if )
∫ ẑi

z

(r̄i − r′i)g(z)dz − κmin{0, fi}
]
,

(A.1)

where ẑi ≡ r̄i − r̃i − fi, as in equation (1).

Objective function (A.1) is not differentiable due to the minimum function in the last
term. To simplify the derivation, we use a smooth approximation of the minimum: min{0, x} ≈
− 1

α
ln (1 + e−αx) for large α > 0. An advantage of this smooth minimum is that it is strictly

increasing and strictly convex everywhere. Under this approximation, we can simply take
the first-order condition for equation (A.1) to derive the optimal federal funds net borrowing:

if = (iIORB − κ) + (iDW − iIORB + κ)G(r̄i − (r̃i + f ∗i )) +
κ

1 + eαf
∗
i
, (A.2)

where f ∗i is the unique minimizer of equation (A.1).

Equation (A.2) represents the inverse demand for reserves of an individual bank in the
39We can easily generalize this assumption to include loans and other assets.
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presence of (smooth) balance-sheet costs proportional to balance-sheet size. It is easy to see
that the if is a smooth decreasing function of f ∗i , converging to iIORB − κ from above as
f ∗i goes to infinity and converging to iDW + κ from below as f ∗i goes to negative infinity.
Since the aggregate inverse demand for reserves is the horizontal summation of the individual
curves, it retains these properties, as depicted in Figure 1 in the text.

Appendix B The Time-Varying VAR

Appendix B.1 Model description

To generate daily reserve forecasts, we model the relationship between aggregate reserves
and the federal funds rate at a daily frequency using a time-varying vector autoregression
(TV-VAR) based on Primiceri (2005) and Del Negro and Primiceri (2015). The model is
a multivariate time series model with time-varying coefficients and time-varying covariance
matrices for the innovations. The model can be written as follows:

qt = cq,t + bq,q,1,tqt−1 + bq,p,1,tpt−1 + ...+ bq,q,m,tqt−m + bq,p,m,tst−m + uq,t,

pt = cp,t + bp,q,1,tqt−1 + bp,p,1,tpt−1 + ...+ bp,q,m,tqt−m + bp,p,m,tst−m + up,t,
(A.3)

where p is the federal funds-IORB spread, q is aggregate reserves divided by banks’ total
assets, and uq and us are serially uncorrelated, heteroskedastic unobservable errors. These
errors are assumed to be jointly normally distributed, with zero mean and a 2×2 covariance
matrix Ωt; i.e., (uq,t, up,t)

′ ∼ N (0,Ωt) on each day t. The number of lags is m = 10.

The vectorized form of model (A.3) is:

yt = ct +B1,tyt−1 + ...+Bm,tyt−m + ut with t = 1, ..., T, (A.4)

where yt is a 2× 1 stacked vector of (qt, pt)
′; ct is an 2× 1 vector of stacked constant terms

(cq,t, cp,t)
′; Bi,t, with i = 1, . . . ,m, are the following 2×2 matrices of time-varying coefficients:

Bi,t =

[
bq,q,i,t bq,p,i,t

bp,q,i,t bp,p,i,t

]
.

To model time variation in the covariance matrix of the errors, we reparameterize Ωt as
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follows:
AtΩtA

′
t = ΣtΣ

′
t, (A.5)

where Σt =

[
σ1,t 0

0 σ2,t

]
is a diagonal matrix, and At =

[
1 0

α21,t 1

]
is a lower triangular

matrix. It follows that

yt = ct +B1,tyt−1 + ...+Bm,tyt−m + A−1t Σtεt, (A.6)

V ar(εt) = In,

where εt is a 2 × 1 vector of reserve and rate shocks that are uncorrelated with each other
at each point in time by construction. The factorization of the covariance matrix in (A.5) is
convenient because the first ε error is proportional to the forecast error in reserves (σ1,tε1,t =

uq,t). As shown in the next section, this modeling strategy implies that the impulse response
functions of qt and pt to ε1,t−h are proportional to the covariances of qt and pt with uq,t−h.

Stacking all the time-varying coefficients in a vector Bt, we can represent the model in
the following companion form:

yt = X ′tBt + A−1t Σtεt, (A.7)

X ′t = In ⊗ [1, y′t−1, . . . , y
′
t−m],

where ⊗ denotes the Kronecker product.

We model the parameters in the following way:

Bt = Bt−1 + νt, (A.8)

αt = αt−1 + ζt, (A.9)

log σt = log σt−1 + ηt, (A.10)

where αt = α21,t is the non-zero off-diagonal term in At, and σt = (σ1,t, σ2,t)
′ is the 2 × 1

vector of diagonal terms in Σt. B and α are modeled as random walks; σt is modeled as a
geometric random walk, which belongs to the broader class of stochastic volatility models.
All innovations in the model (εt, νt, ζt, ηt) are assumed to be jointly normally distributed
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with covariance matrix

V = V ar



εt

νt

ζt

ηt


 =


I2 0 0 0

0 Q 0 0

0 0 S 0

0 0 0 W

, (A.11)

where I2 is the 2×2 identity matrix, S is the variance of ζt, and Q andW are positive-definite
matrices.

In our robustness checks, we consider trivariate versions of this TV-VAR model that also
include either repo rates or Treasury yields. We augment yt to become a 3 × 1 vector of
system variables, with the following order: normalized reserves, the repo-IORB spread (or
the Treasury-IORB spread), and the federal funds-IORB spread. The vector Bt expands
to include the additional auto-regressive parameters and constant. At maintains its lower
triangular structure, expanding to

At =

 1 0 0

α21,t 1 0

α31,t α32,t 1

 ,
so that αt in (A.9) becomes a 3× 1 vector of the stacked parameters of At. Σt maintains its
diagonal structure and expands to include σ3,t, so that σt in (A.10) becomes a 3× 1 vector.

The covariance matrix of εt expands to become I3. The covariance matrices of the
parameter innovations (Q, S, and W ) also expand to account for the additional parameters.
We assume S is a block-diagonal matrix, with blocks corresponding to parameters belonging
to separate equations:

S =

S1,1 0 0

0 S2,1,1 S2,1,2

0 S2,2,1 S2,2,2

 ,
where S1,1 is the variance of the ζ innovation for α21, and the lower block is the covariance
of the ζ innovations for (α31, α32)

′.

Appendix B.2 Covariance between errors and observables

In this section, we show how the covariances in equation (9) can be interpreted as the h-
day-ahead impulse responses of spreads and reserves to a reserve shock under a Choleski
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decomposition with reserves ordered first, such as the factorization in (A.5).

Let n be the number of variables in the system, i.e., two in our case. We rewrite the VAR
in the companion form:



yt

yt−1

yt−2
...

yt−m+1


︸ ︷︷ ︸

Yt

=



ct

0n

0n
...

0n


︸ ︷︷ ︸

ct

+



B1,t B2,t . . . Bm−1,t Bm,t

In 0n×n . . . 0n×n 0n×n

0n×n In . . . 0n×n 0n×n
...

... . . . ...
...

0n×n 0n×n . . . In 0n×n


︸ ︷︷ ︸

Bt



yt−1

yt−2

yt−3
...

yt−m


︸ ︷︷ ︸

Yt−1

+



ut

0n

0n
...

0n


︸ ︷︷ ︸

ut

Define J = (In 0n×n . . . 0n×n︸ ︷︷ ︸
m−1 times

)′; we have yt = J′Yt and ut = J′ut. Iterating the model

backward for h periods, we get:

Yt =

(
ct +

h∑
j=1

j∏
k=1

Bt−k+1ct−j

)
+

(
ut +

h∑
j=1

j∏
k=1

Bt−k+1ut−j

)
+

h∏
k=0

Bt−kYt−h−1,

and therefore

yt =

(
J′ct +

h∑
j=1

J′
j∏

k=1

Bt−k+1ct−j

)
+

(
J′ut +

h∑
j=1

J′
j∏

k=1

Bt−k+1ut−j

)
+ J′

h∏
k=0

Bt−kYt−h−1.

We can now compute the covariance between the observables and the reserve forecast
error, conditional on the model parameters Γ1:T = {ct, B1,t, ..., Bm,t, At,Σt; t = 1, ..., T}. As
reserves are ordered first in our system, we can write the reserve forecast error as u1,t = u′t j1,
where j1 is the first column of J. Also note that ut = Jut, as JJ′ = Inm by construction.
Since the forecast errors have zero mean and are serially uncorrelated, we have

cov (yt, u1,t−h|Γ1:T ) = E [ytu1,t−h|Γ1:T ] = J′
h∏
k=1

Bt−kE
[
ut−hu

′
t−h|Γ1:T

]
j1 = J′

h∏
k=1

Bt−kJΩt−hJ
′j1,

= J′
h∏
k=1

Bt−kJΩt−hι1

where ι1 = (1 0 . . . 0︸ ︷︷ ︸
n−1 times

)′. Ωt−hι1 is the first column of the covariance matrix Ωt−h.
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The Cholesky factorization (A.5) implies that Ωtι1 = A−1t ΣtΣ
′
t (A′t)

−1 ι1 =
(
A−1t ι1

)
σ2
1t.

As a result,

cov (yt, u1,t−h|Γ1:T ) =

(
J′

h∏
k=1

Bt−kJA
−1
t−hι1

)
σ2
1t−h. (A.12)

For simplicity, to estimate these covariances at day t, we approximate past values of the
model parameters with their most recent value; in this way, the matrix product

∏h
k=1Bt−k

simply becomes the matrix power Bh
t . This approximation is valid because, given our priors,

the model parameters evolve significantly more slowly than the daily errors (see Appendix
B.3), and because we choose a relatively short time horizon (h = 5) for the forecast errors
used in our IV estimation.

Up to the scaling factor σ2
1,t, our estimates of the covariances in (A.12) are therefore

equal to the h-day-ahead impulse responses of the system variables to the standardized
reserve shocks calculated using factorization (A.5); in fact, in the traditional VAR literature,

the i-th variable’s impulse response to ε1 after h days,
∂yi,t+h
∂ε1,t

, is estimated with the i-th

element of the vector J′Bh
t JA

−1
t ι1. Note also that the scaling factor σ1,t is the same for all

variables in the system; as a result, our IV estimate (9), obtained as ratio of the covariances
in (A.12), is exactly equal to the ratio of the h-day-ahead impulse responses of spreads and
reserves to reserve shocks.

Appendix B.3 Priors

We use Bayesian methods to estimate model (A.3). As outlined in Primiceri (2005), we use
the following prior densities for the initial states of the time-varying parameters:

P (B0) = N(B̂, 4 · Ψ̂B),

P (α0) = N(α̂, 4 · Ψ̂α),

P (log σ0) = N(log σ̂, In),

where N(µ, σ2) denotes a normal density function with mean µ and variance σ2, and B̂, α̂,
log σ̂, Ψ̂B, and Ψ̂α are set using a time-invariant VAR with the same ordering as in (A.5)
estimated by OLS on the pre-sample from 01/05/2009 to 01/19/2010, covering T0 = 226

daily observations. The prior means, B̂ and α̂, are set to the OLS point estimates. The prior
variances, Ψ̂B and Ψ̂α, are set equal to the sampling variances of the OLS point estimates.
The prior means of the initial states of the log-volatilities are set to the logarithm of the
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standard errors of the OLS residuals.

Following Primiceri (2005), we set the prior densities for Q, S, and W as:

P (Q) = IW (λ21 · T0 · Ψ̂B, T0),

P (S) = IW (λ22 · 2 · Ψ̂α, 2),

P (W ) = IW (λ23 · 3 · I3, 3),

where IW (A, df) is the inverse-Wishart density function with scale matrix A and degrees
of freedom df . Smaller values of λi imply less time variation in the dynamic parameters of
the model; we set λ1 = 0.04, λ2 = 0.1, and λ3 = 0.01. These tight priors, especially that on
Q, ensure that the model parameters move more slowly than the daily errors and liquidity
shocks affecting banks’ demand for reserves.

The posterior distribution of the parameters and the forecasts are obtained by Montecarlo
simulations, as described in Primiceri (2005), D’Agostino et al. (2013), and Del Negro and
Primiceri (2015).
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Internet Appendix

Internet Appendix A Non-Reserve Liabilities

The variability of the Federal Reserve’s non-reserve liabilities, especially the TGA and ON-
RRP, has increased significantly over time (Afonso et al., 2020). Figure IA.1 shows that,
excluding currency in circulation, non-reserve liabilities amounted to 32% of reserves in Jan-
uary 2010 and to 40% in December 2024, with a peak of 120% in September 2022. The
TGA increased from $90 billion at the end of 2010 to $711 billion at the end of 2024, with
a peak of $1.8 trillion in July 2020. Since its inception on September 2013, the ONRRP has
fluctuated between less than a billion and $2.4 trillion, reached in September 2022.40

Internet Appendix B Time-varying VAR: Out-of-sample

Validation

As discussed in Section 4.4, our model does not suffer from the curse of dimensionality
in spite of its flexibility and generality. Indeed, the out-of-sample (OOS) predictions are
reasonable and compare well with in-sample (i.e. ex post) predictions. This suggests that
the model is able to capture in a parsimonious way the salient features of a time-varying
market. In this section, we provide additional evidence in support of this claim.

To evaluate the forecasting performance of the bivariate TV-VAR model (A.3), we con-
duct a series of OOS forecasting exercises and evaluate the model’s predictive accuracy
according to various metrics. To construct OOS predictive forecast densities, the model is
recursively estimated, and the forecasts are generated, every 5 business days from January
20, 2010 to December 13, 2024, using an expanding window of observations.

For comparison, we also generate OOS forecasts using two time-invariant models: a
standard bivariate VAR and a vector of two independent AR processes (one for each series).
In both models, the innovations in qt and pt are assumed to have zero mean, to be serially
uncorrelated, and to be normally distributed (jointly in the VAR and independently in the
AR processes). Both models are estimated via OLS on daily data, using a 260-day rolling
window to allow their parameters to adapt to a changing environment. As in the TV-VAR,
both the VAR and the AR models include ten lags and are estimated every 5 business days.

40Afonso et al. (2022a) discuss the drivers of the recent surge in ONRRP investment.

1



(a) Reserves (b) Non-reserve liabilities (net of currency)/reserves

(c) TGA (d) ONRRP

Figure IA.1: Federal Reserve Liabilities from January 2010 to December 2024.
Reserves (panel (a)), ratio of non-reserve liabilities (excluding currency in circulation) to
reserves (panel (b)), Treasury General Account (TGA) (panel (c)), and Overnight Reverse
Repurchase Agreement (ONRRP) balances (panel (d)).

Internet Appendix B.1 Point forecasts

We first evaluate the median forecasts for normalized reserves (qt) and the federal funds-
IORB spread (pt) from the three forecasting models. For each variable we calculate the
root-mean-square forecast errors (RMSE) at forecasting horizons of 5, 10, and 20 business
days. We also report the determinant of the variance-covariance matrix of the forecast error,
as a measure of joint predictive accuracy.

Table IA.1 presents these marginal and joint forecasting performance of each model over
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different sample periods. On the full sample, both the marginal and the joint RMSE of
the TV-VAR are smaller than those of the VAR and AR models at any forecast horizon.
The only exception is the VAR’s RMSE for the spread at h = 10, which is equal to the
corresponding TV-VAR’s RMSE.

The TV-VAR also displays a higher forecasting accuracy when the RMSE are calculated
on non-overlapping two-year windows (e.g., 2010-2011, 2012-2013); only for the 2014-2015
and 2022-2024 periods, when reserves were so abundant that rate fluctuations were unrelated
to reserve shocks, are results more mixed, with no model dominating the others.

Internet Appendix B.2 Density forecasts

We then evaluate the entire predictive forecast density. Given the draws from each predictive
forecast density, we fit a normal distribution to the marginal draws and a multivariate normal
distribution to the joint draws. For each fitted predictive forecast density, we generate a score
by evaluating the density function at the realized data and then take its logarithm. This
score measures the likelihood of the realized data under the predictive density implied by
the forecasting model. Lower scores correspond to lower likelihoods, suggesting lower model
accuracy.

Table IA.2 presents the average marginal and joint log scores of each model over the
whole sample period and over non-overlapping two-year sub-periods. Over the full sample,
the TV-VAR displays significantly higher log-scores both for the marginal density of reserves
and for the joint density at all horizons. The log-score for the density of the federal funds-
IORB spread is slightly lower than those from the VAR and AR models at horizons of 5, 10,
and 20 business days, though it is only materially lower for the latter. When considering the
performance by sub-period, all log-scores from the TV-VAR tend to be higher than those
from the time-invariant models in the early and late part of the sample (i.e., 2010-2013 and
2018-2021). It is only in the interim (2014-2017) and last (2022-2024) parts, when reserves
were so abundant that rate fluctuations were unrelated to reserve shocks, that the TV-VAR’s
performance tends to be slightly worse. Unsurprisingly, in that period, univariate models
tend to perform slightly better.

Lastly, we assess the calibration of the predictive forecast densities by using probability
integral transforms (PITs). The PITs are the values of the predictive marginal cumulative
distributions evaluated at the realized data. For each variable, we estimate the PIT by
computing the fraction of draws from the forecast density that are less than the realized
value. If the predictive density is well calibrated, the PIT should be distributed uniformly
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Sample Model Reserves/Assets (%) Federal Funds- Joint
IORB Spread (bp)

h = 5 h = 10 h = 20 h = 5 h = 10 h = 20 h = 5 h = 10 h = 20
2010 - 2024 TV-VAR 0.412 0.602 0.860 1.50 1.83 2.07 0.607 1.07 1.74

VAR 0.437 0.645 0.996 1.78 1.82 2.38 0.765 1.14 2.18
AR 0.424 0.632 1.01 2.38 3.46 5.53 - - -

2010 - 2011 TV-VAR 0.342 0.454 0.677 1.47 1.75 2.24 0.442 0.731 1.43
VAR 0.376 0.526 0.806 1.66 2.09 2.93 0.520 0.899 1.81
AR 0.358 0.501 0.747 1.58 1.99 2.77 - - -

2012 - 2013 TV-VAR 0.338 0.438 0.534 1.27 1.73 2.44 0.416 0.719 1.21
VAR 0.345 0.473 0.653 1.38 1.88 2.70 0.454 0.799 1.49
AR 0.346 0.455 0.611 1.37 1.90 2.69 - - -

2014 - 2015 TV-VAR 0.584 0.833 1.05 0.779 1.04 1.27 0.454 0.864 1.33
VAR 0.617 0.774 0.815 0.820 1.04 1.28 0.506 0.807 1.04
AR 0.588 0.768 0.849 0.778 0.986 1.29 - - -

2016 - 2017 TV-VAR 0.364 0.537 0.751 0.424 0.648 0.970 0.152 0.341 0.721
VAR 0.386 0.611 0.835 0.473 0.714 0.983 0.174 0.416 0.776
AR 0.374 0.570 0.774 0.462 0.709 1.04 - - -

2018 - 2019 TV-VAR 0.262 0.370 0.476 2.44 2.77 2.97 0.556 0.818 1.14
VAR 0.311 0.455 0.547 3.38 2.70 3.63 0.938 1.04 1.77
AR 0.270 0.392 0.522 5.43 8.29 14.0 - - -

2020 - 2021 TV-VAR 0.484 0.807 1.38 2.49 3.10 3.09 1.20 2.45 4.14
VAR 0.508 0.922 1.88 2.58 2.84 3.32 1.31 2.58 5.28
AR 0.520 0.947 1.99 2.67 3.26 3.36 - - -

2022 - 2023 TV-VAR 0.450 0.655 0.933 0.229 0.314 0.375 0.102 0.201 0.340
VAR 0.469 0.690 0.986 0.201 0.260 0.326 0.093 0.179 0.320
AR 0.463 0.685 0.975 0.199 0.258 0.295 - - -

2024 TV-VAR 0.323 0.429 0.469 0.171 0.243 0.280 0.054 0.099 0.120
VAR 0.331 0.412 0.512 0.160 0.210 0.244 0.053 0.085 0.125
AR 0.318 0.406 0.497 0.133 0.166 0.182 - - -

Table IA.1: Out-of-sample (OOS) root-mean-square forecast error (RMSE). OOS
RMSE for normalized reserves and the federal funds-IORB spread from the TV-VAR (A.3)
and the VAR and AR models described in Internet Appendix B.
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Sample Model Reserves/Assets (%) Federal Funds- Joint
IORB Spread (bp)

h = 5 h = 10 h = 20 h = 5 h = 10 h = 20 h = 5 h = 10 h = 20
2010 - 2024 TV-VAR -0.523 -0.874 -1.34 -1.72 -2.06 -3.04 -2.27 -2.94 -4.35

VAR -0.657 -1.13 -1.85 -1.70 -1.82 -2.16 -2.54 -3.16 -4.30
AR -0.587 -1.05 -1.73 -1.69 -1.85 -2.10 - - -

2010 - 2011 TV-VAR -0.362 -0.653 -1.13 -1.82 -2.02 -2.29 -2.06 -2.63 -3.35
VAR -0.570 -0.952 -1.76 -2.02 -2.29 -2.76 -2.40 -3.08 -4.44
AR -0.491 -0.857 -1.46 -1.94 -2.19 -2.60 - - -

2012 - 2013 TV-VAR -0.360 -0.656 -0.970 -1.86 -2.20 -2.68 -2.22 -2.89 -3.62
VAR -0.424 -0.823 -1.31 -1.75 -2.13 -2.70 -2.13 -2.88 -3.84
AR -0.406 -0.735 -1.09 -1.74 -2.14 -2.67 - - -

2014 - 2015 TV-VAR -1.11 -1.44 -1.62 -1.59 -2.46 -4.26 -2.72 -3.93 -5.82
VAR -1.25 -1.41 -1.42 -1.30 -1.59 -1.90 -2.64 -3.16 -3.42
AR -1.11 -1.39 -1.49 -1.21 -1.47 -1.86 - - -

2016 - 2017 TV-VAR -0.427 -0.836 -1.52 -1.07 -2.24 -4.31 -1.50 -3.07 -5.79
VAR -0.465 -0.948 -1.33 -0.550 -0.901 -1.31 -1.04 -1.93 -2.82
AR -0.426 -0.835 -1.16 -0.547 -0.890 -1.31 - - -

2018 - 2019 TV-VAR -0.161 -0.532 -0.957 -4.66 -3.27 -3.29 -5.09 -3.76 -4.22
VAR -0.342 -0.763 -0.953 -5.56 -4.55 -4.76 -6.91 -6.14 -6.65
AR -0.129 -0.515 -0.858 -5.65 -4.90 -4.46 - - -

2020 - 2021 TV-VAR -0.598 -1.04 -2.00 -1.55 -2.03 -3.17 -2.21 -3.12 -5.19
VAR -0.998 -2.05 -4.96 -1.94 -2.17 -2.54 -3.32 -4.88 -8.53
AR -1.00 -2.07 -4.79 -1.99 -2.36 -2.66 - - -

2022 - 2023 TV-VAR -0.712 -1.03 -1.35 -0.324 -0.928 -1.96 -1.02 -1.95 -3.31
VAR -0.706 -1.19 -1.73 0.124 -0.116 -0.300 -0.649 -1.40 -2.15
AR -0.684 -1.16 -1.72 0.126 -0.130 -0.339 - - -

2024 TV-VAR -0.325 -0.647 -0.946 -0.004 -0.537 -1.36 -0.318 -1.17 -2.30
VAR -0.304 -0.548 -0.766 0.447 0.178 0.029 0.197 -0.271 -0.687
AR -0.273 -0.530 -0.739 0.562 0.376 0.300 - - -

Table IA.2: Mean Log Scores. Average marginal log scores for normalized reserves and
the federal funds-IORB spread, together with the average joint log scores, from the TV-
VAR (A.3) and the VAR and AR models described in Internet Appendix B.
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on [0, 1]. Figure IA.2 plots the empirical cumulative distribution functions (CDFs) of the
PITs for each horizon and each series across different models. For a well-calibrated forecast,
the PIT should have a CDF matching that of a uniform distribution, i.e., a 45-degrees line.

For normalized reserves, the empirical CDF of the PIT from the TV-VAR is close to the
45-degree line and within its 90% confidence bands at all horizons; in contrast, the empirical
CDFs of the PITs from the VAR and AR models tend to be consistently above the 45-degree
line and outside their confidence bands over a sizable share of the [0, 1] support, especially at
longer horizons. This is particularly evident for the AR forecasting model at horizon h = 20.

For the spread, all models are less well calibrated: the CDFs of the PITs for the spread
forecasts are further away from 45-degree line than those for the reserve forecasts, especially
at longer horizons. That CDF of the PIT from the TV-VAR, however, has a clear sigmoid
shape crossing the 45-degree line from below around 0.5, which suggests that the predictive
distribution is quite dispersed but centered around the realized data. The PITs’ CDFs from
the VAR and AR models, instead, tend to be below the 45-degree line for most of the
[0, 1] support, suggesting that the predictive distributions may be biased; this is particularly
visible for the VAR model at horizons h = 10 and 20.

Figure IA.2: Empirical cumulative distribution function (CDF) of the probability
integral transforms (PITs). Empirical CDFs of the PITs of the forecasts of normalized
reserves and of the federal-funds-IORB spread from the TV-VAR (A.3) and the VAR and
AR models described in Internet Appendix B. The colored dashed lines represent the 90%
confidence bands for the different models, constructed using the bootstrap method outlined
in Rossi and Sekhposyan (2019).
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Internet Appendix C Different Normalizations of Reserves

Internet Appendix C.1 Normalization by bank deposits

In this section, we replicate the main results of the paper using aggregate reserves normalized
by commercial banks’ deposits, instead of reserves normalized by banks’ assets. Weekly data
on deposits of U.S. commercial banks and U.S. branches and agencies of foreign banks are
publicly available from the Federal Reserve Economic Data, FRED (“DPSACBW027SBOG”).
We linearly interpolate these weekly data to obtain a daily series. Figure IA.3 shows the
evolution of reserves normalized by deposits over 2010-2024. Compared to reserves normal-
ized by banks’ assets, the level is higher (as bank deposits are smaller than bank assets), but
the time variation is almost identical.

Figure IA.4 shows our time-varying IV estimate of the elasticity of the federal funds-IORB
spread to shocks in deposit-normalized reserves, using as instrument the forecast errors from
the baseline bivariate model (A.3); Figures IA.5, and IA.6 show the robustness results from
the trivariate models controlling for repo rates and Treasury yields, respectively. Results are
almost identical to those obtained using asset-normalized reserves (see Figures 5, 6, and 7):
the elasticity is significantly negative in 2010-2011 and from early 2018 to mid-2020, while
being indistinguishable from zero during 2012-2017 and after mid-2020.

Table IA.3 reports the posterior median elasticity to deposit-normalized reserves by year.
Quantitatively, the elasticity is smaller in absolute value because the ratio of reserves to
deposits is larger than the ratio of reserves to assets. In economic terms, however, results
are comparable: a decline in deposit-normalized reserves equal to one standard deviation of
the daily changes in reserves (0.27 pp) leads to an increase in the federal funds-IORB spread
by 0.24 bp in 2010 and 0.16 bp in 2019, which correspond to 25% and 20% of the standard
deviation of the daily changes in the spread. These effects are similar to those estimated
using bank assets to normalize reserves (see Table 1).

These results show that our findings are not sensitive to the choice of the normalization
factor; the normalization only controls for a time trend in nominal reserves. The varia-
tion used to identify the slope of the demand curve in our sample comes from exogenous
fluctuations in the supply of reserves (i.e., from the numerator, not from the denominator).
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Figure IA.3: Deposit-normalized reserves, the federal funds rate, and the reserve
demand curve. Panel (a) plots aggregate reserves relative to to commercial banks’ deposits
from January 1, 2010 to December 13, 2024. Panel (b) shows the spread between the volume-
weighted average federal funds rate and the IORB rate (in basis points). Panel (c) plots the
relationship between the spread and normalized reserves.

Internet Appendix C.2 Normalization by GDP

In this section, we replicate the main results of the paper using aggregate reserves normalized
by gross domestic product (GDP), instead of reserves normalized by banks’ assets. Quarterly
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Figure IA.4: IV estimate of the elasticity of the federal funds rate to deposit-
normalized reserves. The IV estimate of the elasticity (panel (c)) is obtained as the ratio
between the impulse response of the federal funds rate (panel (a)) and the impulse response
of reserves (panel (b)) to a forecast error in reserves at a five-day horizon; see equation (9).
Forecast errors and impulse responses are estimated in-sample from model (A.3) with ten
lags (m = 10 days). The solid blue line represents the posterior median. The dark and
light blue shaded areas correspond to the 68% and 95% confidence bands. The elasticity is
calculated daily. Reserves are measured as a ratio to bank deposits, in percent. The federal
funds rate is measured as a spread to the IORB rate, in basis points.

data on U.S. GDP are from FRED; we linearly interpolate these quarterly observations to
obtain daily estimates. Figure IA.7 shows the evolution of reserves normalized by GDP over
2010-2021. Compared to reserves normalized by banks’ assets, the level is lower by roughly
2 pp (as GDP is greater than banks’ assets), but the time variation is almost identical.

Figure IA.8 shows our time-varying IV estimate of the elasticity of the federal funds-
IORB spread to shocks in GDP-normalized reserves, using as instrument for normalized
reserves the forecast errors from the baseline bivariate model (A.3); Figures IA.9, and IA.10
show the robustness results from the trivariate models controlling for repo rates and Treasury
yields, respectively. Results are almost identical to those obtained using asset-normalized
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Figure IA.5: IV estimate of the elasticity of the federal funds rate to deposit-
normalized reserves controlling for repo rates. The IV estimate of the elasticity
(panel (c)) is obtained as the ratio between the impulse response of the federal funds rate
(panel (a)) and the impulse response of reserves (panel (b)) to a forecast error in reserves
at a five-day horizon; see equation (9). Forecast errors and impulse responses are estimated
in-sample using a trivariate version of model (A.3) that includes daily repo rates, with ten
lags (m = 10 days). The solid blue line represents the posterior median. The dark and
light blue shaded areas correspond to the 68% and 95% confidence bands. The elasticity is
calculated daily. Reserves are measured as a ratio to bank deposits, in percent. The federal
funds rate is measured as a spread to the IORB rate, in basis points.

reserves (see Figures 5, 6, and 7): the elasticity is significantly negative in 2010-2011 and
from early 2018 to mid-2020, while being indistinguishable from zero during 2012-2017 and
after mid-2020.

Results are also quantitatively close to those obtained using asset-normalized reserves.
Table IA.4 reports the posterior median elasticity to GDP-normalized reserves by year: a 1-
pp drop in reserves normalized by GDP would lead to an increase in the federal funds-IORB
spread by 1.7 bp in 2011 and by 1 bp in 2019, while having no effect in 2014 or early 2021.
These numbers are close to those reported in Table 1 of the main text.
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Figure IA.6: IV estimate of the elasticity of the federal funds rate to deposit-
normalized reserves controlling for Treasury yields. The IV estimate of the elasticity
(panel (c)) is obtained as the ratio between the impulse response of the federal funds rate
(panel (a)) and the impulse response of reserves (panel (b)) to a forecast error in reserves
at a five-day horizon; see equation (9). Forecast errors and impulse responses are estimated
in-sample using a trivariate version of model (A.3) that includes daily yields on 1-year U.S.
Treasury securities, with ten lags (m = 10 days). The solid blue line represents the posterior
median. The dark and light blue shaded areas correspond to the 68% and 95% confidence
bands. The elasticity is calculated daily. Reserves are measured as a ratio to bank deposits,
in percent. The federal funds rate is measured as a spread to the IORB rate, in basis points.

Internet Appendix D Sign-Restricted Time-Varying VARs

In this appendix, we replicate the main results of the paper using a structural time-varying
VAR identified with sign restrictions. We identify daily demand and supply disturbances
using sign restrictions (Uhlig, 2005): we assume that demand shocks induce positive comove-
ment between reserves and spreads, while supply shocks induce negative comovement. We
assume that these restrictions hold on impact and for the following five days. Panel (c) of Fig-
ure IA.11 shows the time-varying estimates of the elasticity of the federal funds-IORB spread
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Figure IA.7: GDP-normalized reserves, the federal funds rate, and the reserve
demand curve. Panel (a) plots aggregate reserves relative to GDP from January 1, 2010
to December 13, 2024. Panel (b) shows the spread between the volume-weighted average
federal funds rate and the IORB rate (in basis points). Panel (c) plots the relationship
between the spread and normalized reserves.

to shocks in reserves (normalized by commercial banks’ assets) from the sign-restricted VAR.
Results are similar to our estimates using the baseline model (A.3), albeit more volatile.

To improve identification and mitigate known pathologies of pure sign-restriction ap-
proaches (Baumeister and Hamilton, 2015), we impose an additional inequality restriction
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Figure IA.8: IV estimate of the elasticity of the federal funds rate to GDP-
normalized reserves. The IV estimate of the elasticity (panel (c)) is obtained as the
ratio between the impulse response of the federal funds rate (panel (a)) and the impulse
response of reserves (panel (b)) to a forecast error in reserves at a five-day horizon; see equa-
tion (9). Forecast errors and impulse responses are estimated in-sample from model (A.3)
with ten lags (m = 10 days). The solid blue line represents the posterior median. The dark
and light blue shaded areas correspond to the 68% and 95% confidence bands. The elasticity
is calculated daily. Reserves are measured as a ratio to GDP, in percent. The federal funds
rate is measured as a spread to the IORB rate, in basis points.

that limits the same-day response of reserves to demand shocks, consistent with the cur-
rent monetary policy implementation framework (Section 2.2). Namely, we impose that
the contemporaneous response of reserves to a one-basis-point demand shock in the federal
funds-IORB spread must be smaller than 0.01 percentage points of bank assets. This upper
bound is consistent with the Federal Reserve injection of reserves following the turmoil of
September 2019: the spread increased by 25 bp over September 16 and 17, and the Federal
Reserve operations only started on September 17 with a take-up of $41 billion, i.e., 0.23% of
bank assets at that time. As shown in Figure IA.12, when adding this bound, the elasticity
is smoother and closer in magnitude to that of our baseline VAR (A.3).
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Figure IA.9: IV estimate of the elasticity of the federal funds rate to GDP-
normalized reserves controlling for repo rates. The IV estimate of the elasticity
(panel (c)) is obtained as the ratio between the impulse response of the federal funds rate
(panel (a)) and the impulse response of reserves (panel (b)) to a forecast error in reserves
at a five-day horizon; see equation (9). Forecast errors and impulse responses are estimated
in-sample using a trivariate version of model (A.3) that includes daily repo rates, with ten
lags (m = 10 days). The solid blue line represents the posterior median. The dark and
light blue shaded areas correspond to the 68% and 95% confidence bands. The elasticity is
calculated daily. Reserves are measured as a ratio to GDP, in percent. The federal funds
rate is measured as a spread to the IORB rate, in basis points.

To estimate these structural time-varying VARs with inequality restrictions, we use a
two-step approach. First, we estimate the reduced-from model; second, following Rubio-
Ramírez et al. (2010), we apply 20,000 random rotation matrices to the impulse response
functions defined in Appendix B.1 and retain only those satisfying all restriction. This two-
step approach is convenient, as it keeps the estimation of the reduced-form model separate
from the identification of structural shocks. While we follow this approach here, recent
advances make it possible to perform estimation and identification jointly in a single step,
which may improve efficiency (Arias et al., 2025).
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Figure IA.10: IV estimate of the elasticity of the federal funds rate to GDP-
normalized reserves controlling for Treasury yields. The IV estimate of the elasticity
(panel (c)) is obtained as the ratio between the impulse response of the federal funds rate
(panel (a)) and the impulse response of reserves (panel (b)) to a forecast error in reserves
at a five-day horizon; see equation (9). Forecast errors and impulse responses are estimated
in-sample using a trivariate version of model (A.3) that includes daily yields on 1-year U.S.
Treasury securities, with ten lags (m = 10 days). The solid blue line represents the posterior
median. The dark and light blue shaded areas correspond to the 68% and 95% confidence
bands. The elasticity is calculated daily. Reserves are measured as a ratio to GDP, in
percent. The federal funds rate is measured as a spread to the IORB rate, in basis points.
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Figure IA.11: IV estimate of the elasticity of the federal funds rate to reserves
normalized by bank assets using sign-restricted VAR. The IV estimate of the elastic-
ity (panel (c)) is obtained as the ratio between the impulse response of the federal funds rate
(panel (a)) and the impulse response of reserves (panel (b)) to a forecast error in reserves
at a five-day horizon; see equation (9). Forecast errors and impulse responses are estimated
in-sample using a sign-restricted time-varying VAR, with ten lags (m = 10 days). The solid
blue line represents the posterior median. The dark and light blue shaded areas correspond
to the 68% and 95% confidence bands. The elasticity is calculated daily. Reserves are mea-
sured as a ratio to GDP, in percent. The federal funds rate is measured as a spread to the
IORB rate, in basis points.
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Figure IA.12: IV estimate of the elasticity of the federal funds rate to reserves
normalized by bank assets using sign-restricted VAR with zero contemporaneous
response of supply to demand shocks. The IV estimate of the elasticity (panel (c))
is obtained as the ratio between the impulse response of the federal funds rate (panel (a))
and the impulse response of reserves (panel (b)) to a forecast error in reserves at a five-day
horizon; see equation (9). Forecast errors and impulse responses are estimated in-sample
using a sign-restricted time-varying VAR with ten lags (m = 10 days) that imposes no same-
day reserve supply response to demand shocks. The solid blue line represents the posterior
median. The dark and light blue shaded areas correspond to the 68% and 95% confidence
bands. The elasticity is calculated daily. Reserves are measured as a ratio to GDP, in
percent. The federal funds rate is measured as a spread to the IORB rate, in basis points.

19



Internet Appendix E Indicator of Reserve Ampleness Based

on Quarter-End Repo Rates

An alternative indicator to the daily share of overnight repo transacted at rates above the
IORB is the size of the quarter-end spikes in repo rates. As we discuss in Section 2.3, banks
have incentives to window dress and contract their balance sheets on regulatory reporting
dates to report more favorable regulatory metrics (Bassi et al., 2024). On quarter-ends,
the balance-sheet costs of European banks and their affiliated dealers increase, leading to
a decline in repo intermediation and higher repo rates. To keep repo rates close to the
IORB on those reporting dates, U.S. banks must be willing to increase their repo lending
to accommodate the drop in intermediation by European banks. The size of the repo spikes
thus depends on the level of aggregate reserves: as reserves become less ample, U.S. banks
will be more constrained, and quarter-end repo rates increase more (Correa et al., 2020;
Copeland et al., 2025).

Figure IA.13 shows the time series of the spread between repo rates and the IORB on
quarter ends, along with our OOS estimates of the elasticity, from 2015 to 2024. Consistent
with the repo indicator based on the daily share of repo transacted at rates above the IORB
(see Section 5.2.3) and with the elasticity estimates, repo spikes are low in 2015-2017, increase
in 2018-2019, remain low since 2020. Figure Internet Appendix E shows a version of the
spider-web chart in Figure 11 that includes the size of quarter-end repo spikes as an indicator
of reserve ampleness.

Figure IA.13: Indicator of reserve ampleness: repo rates quarter-end spikes. The
blue line shows the size of spikes in repo rates relative to the IORB on quarter ends from
January 1, 2015 to December 13, 2024.
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Figure IA.14: Indicators of reserve ampleness: spider web chart. This chart plots
the OOS estimates of the reserve demand elasticity and four additional indicators of reserve
ampleness in four different periods. The additional indicators are: (i) size of quarter-end
repo rates spikes (relative to the IORB). Data on interdealer repo rates and volumes are from
the Depository Trust & Clearing Corporation; (ii) the daily share of Fedwire Funds Service
payments settled after 5 pm ET (“late payments”); (iii) the banking system average daylight
(intraday) overdraft. Account balance data are from the Daylight Overdraft Reporting and
Pricing System; (iv) the daily share of federal funds borrowed by U.S. banks. Transactions-
level data are collected in the Federal Reserve’s Report of Selected Money Market Rates
(FR 2420). Each variable is normalized such that the inner and outer pentagons correspond
to the highest and lowest levels of reserve ampleness between 2015 and 2024, as measured
by that variable. The four periods are: 2018Q3, 2019Q1, September 2019, and 2024Q4; for
each period, we show the average of the daily value of each indicator in that period.

Internet Appendix F Vertical Shifts in Reserve Demand:

Additional Evidence

Internet Appendix F.1 2018-2019 changes in the ONRRP-IORB spread

In this appendix, we replicate the analysis of the effect of ONRRP-IORB spread adjustments
on the vertical location of the reserve demand curve (Section 6.1), including the adjustments
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of 2018–2019. Based on regression (10), we run the following daily regression from January
2014 to May 2019:

∆pt+h,t−1 =α + β ∗∆ONRRP-IORBt,t−1 + βt≥2018 ∗ 1[t ∈ [2018, 2019]]×∆ONRRP-IORBt,t−1

x‘ + γ1 ∗∆Controlst+h,t−1 + γ2 ∗ Calendar Controlst+h + εt+h, (IA.1)

where the effect of the 2018–2019 ONRRP-IORB adjustments is β + βt≥2018, and βt≥2018 is
the difference relative to the effect of the 2013–2015 adjustments. All the other variables are
defined as in regression (10). Finally, as in Section 6.1.1, we use h = 0 and h = 1; that is,
we look at one-day and two-day changes in the federal funds-IORB spread around changes
in the ONRRP-IORB spread.

Results are in Table IA.5; standard errors are Newey-West with five lags. In 2018-
2019, the pass-through of ONRRP-IORB adjustments to the federal funds-IORB spread is
significantly smaller than in 2013-2015 and statistically insignificant; e.g., the one-day pass-
through is only 16% (p-value = 0.18). In Columns (3) and (4), we re-estimate the regression
starting the sample in September 2013, to also include the ONRRP-IORB adjustments that
were implemented in the early months of the facility existence; results are similar.

(1) (2) (3) (4)
∆FFR-IORt,t−1 ∆FFR-IORt+1,t−1 ∆FFR-IORt,t−1 ∆FFR-IORt+1,t−1

∆ONRRP-IORt,t−1 0.369∗∗∗ 0.359∗∗∗ 0.323∗∗∗ 0.311∗∗∗
(3.71) (4.07) (3.23) (3.46)

(t∈[2018, 2019])=1 × ∆ONRRP-IORt,t−1 -0.211 -0.194 -0.167 -0.151
(-1.37) (-1.46) (-1.08) (-1.13)

β + βt≥2018 0.158 0.164∗ 0.156 0.160
p 0.182 0.094 0.190 0.101
R2 0.128 0.139 0.110 0.124
Sample 1/2014 - 5/2019 1/2014 - 5/2019 9/2013 - 5/2019 9/2013 - 5/2019
Observations 1121 1115 1175 1170

Table IA.5: One-day and two-day impact of ONRRP-IORB spread adjustments
on the federal funds-IORB spread from January 2014 to May 2019 and from
September 2013 to May 2019.

We also replicate the analysis at the monthly horizon. We run regression (11) on the
ONRRP-IORB adjustments of June 14, 2018, December 20, 2018, and May 2, 2019. Fig-
ure IA.15 shows the results of the regressions estimated on two-month periods around these
event (20 business days before and after). Consistent with the daily frequency analysis, the
effect of the 2018–2019 ONRRP-IORB spread adjustments on the federal funds-IORB spread
is smaller in magnitude than the effect of the 2014–2015 ones. At the one-week horizon, the
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pass-through is between 0.15 bp and 0.40 bp; at the one-month horizon, it is between 0.20
bp and 0.52 bp.

As we discuss in Section 6, these results should be taken with a grain of salt because
reserves were not abundant in 2018–2019; that is, the federal funds market was operating
in the sloped region of the reserve demand curve. As a result, changes in the federal funds-
IORB spread may also reflect changes in reserve supply or horizontal shifts in the demand
curve. In contrast, the results in Section 6 are for the ONRRP-IORB spread adjustments
of 2014–2015, when reserves were abundant; that is, the market was operating in the flat
region of the demand curve, where neither supply shocks nor horizontal demand shift have
an effect on the federal funds-IORB spread.

(a) 06-14-2018 (b) 12-20-2018

(c) 05-02-2019

Figure IA.15: Monthly horizon impact of 2018-2019 ONRRP-IORB spread adjust-
ments on the federal funds-IORB spread.
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Internet Appendix F.2 2011 Change of the FDIC Assessment Fee

In 2011, the Federal Deposit Insurance Corporation (FDIC) changed the calculation of its
assessment fee: instead of paying fees proportional only to their deposit liabilities, banks
had to pay fees proportional to their total assets (net of tangible equity). By expanding the
base for the fee calculation to the size of banks’ balance sheets, this change increased banks’
balance-sheet costs. The rule was announced on February 9 and became effective on April
1, 2011.

The model in Appendix A predicts that an increase in banks’ balance-sheet costs should
decrease the rate at which banks are willing to borrow, pushing the federal funds-IORB
spread down. Consistent with theory, Figure IA.16 shows that the federal funds-IORB spread
declines around the change of the FDIC assessment fee, with the decline being particularly
notable around the implementation date.

Figure IA.16: The federal funds-IORB spread around the announcement and
implementation of the 2011 FDIC change of the assessment fee. The blue line
represents the realized spread. The two dashed vertical lines represent the announcement
(2/9/2011) and implementation (4/1/2011) of the change.

To quantify the downward vertical shift caused by the 2011 change in the FDIC assess-
ment fee, we estimate the following daily regression, both over the two months surrounding
its announcement and over the two months surrounding its implementation:

pt = α +
4∑
i=1

βi ∗ 1[Post FDIC-Fee Change Weeki]t + γ ∗ Controlst + εt, (IA.2)
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where 1[FDIC fee weeki]t is a dummy for the i-th week after the event, and all other vari-
ables are defined as in regression (11). Results are in Figure IA.17, with 90% confidence
intervals based on Newey-West standard errors with five lags; panel (a) is for the actual
implementation date and panel (b) is for the announcement date.

In the first week after the actual change in the assessment fee, the federal fund-IORB
spread declines by 3 bp (p-value < 0.01) relative to its average level in the previous month.
The spread does not change significantly in the following weeks; one month after the change in
the FDIC assessment fee, the decline relative to the previous month is about 4 bp (p-value <
0.01). The effect around the announcement is significant but smaller, with a relative decline
of 1 bp in the first week (p-value = 0.06) and 2 bp over the four weeks after the event
(p-value = 0.03).

(a) FDIC Fee Implementation (b) FDIC Fee Announcement

Figure IA.17: One-month horizon impact of the 2011 FDIC fee assessment change
on the federal funds-IORB spread.

To quantify these effects at longer horizons, we estimate regression (IA.2) expanding
the sample to two months before and two months after each event. Results are in Fig-
ure IA.18. The impact of the implementation of the 2011 FDIC assessment fee is practically
unchanged, whereas the announcement does not seem to significantly affect the federal funds-
IORB spread relative to its average level in the two months before the announcement. (The
coefficient for the eighth week after the announcements is significantly negative because that
week corresponds to the first days after the change in the assessment fee became effective.)
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(a) FDIC Fee Implementation (b) FDIC Fee Announcement

Figure IA.18: Two-month horizon impact of the 2011 FDIC fee assessment change
on the federal funds-IORB spread.

As the results on the effect of the 2018–2019 ONRRP-IORB spread adjustments, the
results on the effect of the 2011 change in the FDIC assessment fee on the federal funds-
IORB spread should be taken with caution because reserves were scarce in 2011; therefore,
the effect we measure may be due to supply shocks or horizontal demand shifts, rather than
to a vertical upward shift caused by an increase in balance-sheet costs. The analysis of
the effect of the SLR relief of 2020–2021, in contrast, is robust to this confounding factors
because reserves were abundant during that period (Section 6.2).

Internet Appendix G Non-linear Fit of the Reserve De-

mand Curve

Our estimation methodology is highly flexible and able to identify the time-varying elasticity
of the federal funds rate to reserve shocks, but it does not directly allow for the recovery of
the reserve demand function. In this section, we develop and implement a method to recover
the underlying demand function based on the joint forecasts of prices and quantities from
our time-varying VAR model. We assume a nonlinear functional form for the demand curve
consistent with the theoretical framework in Section 2.1. We assume that the shape of the
demand function is time-invariant but allow for slow-moving structural shifts in its vertical
and horizontal locations. In addition to providing an empirical description of the demand
for reserves, this exercise also facilitates the assessment of the relative scarcity of the supply
of reserves.
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Internet Appendix G.1 Post-processing of model forecasts

While our time-varying IV estimates of the slope of the reserve demand curve inform us on
the satiation level as reserves transition from ample to abundant, they do not answer two
important questions. The first one is whether the demand curve has moved vertically; our IV
estimates cannot answer this question because vertical shifts do not affect the curve’s slope.
Moreover, we cannot use the time-varying intercept from the approximate linear model (5)
since that coefficient changes not only if the underlying nonlinear curve moves vertically,
but also if we move along the demand curve due to supply shocks or if the curve moves
horizontally due to low-frequency structural changes.

Knowing whether structural factors move the reserve demand curve up or down is impor-
tant for several reasons. Structural vertical shifts can permanently push the federal funds
rate closer to the bounds of its target range, increasing the probability that the policy rate
moves outside its range. Moreover, if persistent vertical shifts are present, there is no one-
to-one mapping between the federal funds-IORB spread and the slope of the curve, which
means that the spread cannot be used as a proxy for the rate elasticity to reserve shocks.
After 2008, in fact, one may be tempted to use the federal funds-IORB spread to make infer-
ence on the curve’s slope because, according to the theory, both the curve and the absolute
value of its slope are strictly decreasing in the region between scarce and abundant reserves
(see Section 2.1).41 As a result, absent vertical shifts, an increase in the spread would im-
ply an increase in the rate elasticity, suggesting that reserves are becoming scarcer. In the
presence of vertical shifts, however, this one-to-one mapping no longer holds, and trends in
the federal funds-IORB spread do not necessarily reflect changes in the rate elasticity as is
often assumed.

The second question that our locally-linear IV estimates of the slope do not address
directly is the transition between ample and scarce reserves. Based on the theory, the dis-
tinction between abundant and ample reserves is clear: the minimum level of reserves above
which the demand curve is flat; that is, the point of demand satiation. In the empirical anal-
ysis, this definition naturally maps into the level of reserves above which the rate elasticity
to reserve shocks is statistically insignificant at a given confidence level.

The distinction between ample and scarce reserves, in contrast, is more arbitrary: loosely
speaking, reserves transition from ample to scarce when the slope goes from gently negative
to very steep. A natural way to formalize this statement is by looking at the rate at which

41In the left part of the demand curve, instead, the absolute slope increases with reserves because the
curve must flatten around the DW rate as reserves go to zero (Figure 1).
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the absolute slope increases as reserves decrease (i.e., the curve’s second derivative): we
could define the transition between ample and scarce as the reserve level for which this rate
reaches its maximum. To operationalize this definition, however, we need a nonlinear model.

Consistent with the reserve demand curve implied by the theory in equation (4), we
specify the following demand function for reserves:

pt = p∗t + f(qt − q∗t ; θ) with f(x; θ) =

(
arctan

(
θ1 − x
θ2

)
+
π

2

)
θ3, (IA.3)

where p∗ and q∗ are the vertical and horizontal locations, and θ = (θ1, θ2, θ3) is a vector of
parameters characterizing the shape of the curve: θ1 is a location parameter, θ2 is a scale
parameter, and θ3 is a normalization factor. We choose this transformation of the arctan
function because it has a smooth and decreasing sigmoid shape that goes to zero as x→∞,
as predicted by the theory (see equation (3)). Consistent with the evidence in Figure 3, we
consider three periods, corresponding to different locations of the curve: 2010–2014, 2015–
3/09/2020, and 3/16/2020–12/15/2021. We assume that q∗ and p∗ change across periods
but do not change within each period (e.g., q∗t = q∗1 and p∗t = p∗1 for all t in 2010-2014),
whereas θ is constant across periods.

We do not include the latest part of our sample, 2022–2024, because the elasticity was
zero throughout that time; that is, there are no points on the sloped part of the demand
curve, which prevents us from identifying a horizontal shift (any horizontal shift would be
consistent with those data).

Our post-processing exercise finds the parameters {θ1, θ2, θ3, (p∗1, q∗1), (p∗2, q
∗
2), (p∗3, q

∗
3)} that

minimize the following objective function:

3∑
k=1

∑
t∈Tk

N∑
i=1

[pit − p∗k − f(qit − q∗k; θ)]
2 (IA.4)

where T1, T2, and T3 represent 2010-2014, 2015-3/09/2020, and 3/16/2020-12/29/2021; i =

1, . . . , N are draws from the in-sample five-day-ahead joint posterior distribution of the
federal funds-IORB spread (p) and normalized reserves (q) from our bivariate time-varying
VAR model (A.3).42 We generate these forecasts every five days and setN = 100. To improve
efficiency and reliability, we also provide the optimization algorithm with the analytical
gradient of the objective function (IA.4).

In other words, we perform a nonlinear least-square fit on the time-varying joint forecasts
42We choose five-day-ahead forecasts to be consistent with our instrument in the IV analysis.
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of prices and quantities from our forecasting model; in this way, we can exploit an entire
cross-section of pseudo-data at each point in time, as opposed to one single observation as
in the realized times series. This approach leverages the forecasting accuracy of our time-
varying VAR model, but in contrast to our IV estimates of the rate elasticity, its results
cannot be interpreted causally.

Internet Appendix G.2 Parameter interpretation and constraints

Our estimation method is silent regarding the origins of the vertical and horizontal shifts
in (IA.3). Based on the economic theory and institutional framework discussed in Section 2.1,
several factors can lead to structural shifts in the demand for reserves. For example, p∗

denotes the lower asymptote of the demand curve, which represents the (negative) wedge
between the federal funds and IORB rates when reserves are abundant; any factors affecting
banks’ ability to run the IORB arbitrage, such as balance-sheet costs or the bargaining
power of FHLBs (the main federal funds lenders), affect this wedge. Horizontal shifts in q∗,
in contrast, reflect factors that shift the demand for reserves at every price level, including
changes in liquidity regulation and supervision as well as banks’ response to such changes.
For normalization, we set q∗1 = 0 and interpret q∗2 and q∗3 as horizontal shifts of the curve
relative to its 2010-2014 position.

Regarding the time-invariant nonlinear part of the demand curve, θ1 represents the point
of maximum absolute slope, i.e., the reserve level at which the negative slope of the curve is
the steepest. We can think of the region around θ1 as the region of scarce reserves, where the
federal funds rate is highly sensitive to even small reserve shocks. The point of maximum
slope growth, instead, is x = θ1 + θ2/

√
3; this point is where the curve’s absolute slope

increases at the highest rate as reserves decrease, which we interpret as the threshold between
ample and scarce reserves.43 θ3 measures the vertical distance between the upper and lower
asymptotes of the nonlinear time-invariant function in (IA.3): lim

x→−∞
f(x; θ)− lim

x→+∞
f(x; θ) =

πθ3. The theory predicts that, as reserves decline, the federal funds rate should converge
(from below) to the DW rate plus a spread capturing balance-sheet costs and other frictions.44

As a result, θ3 should be (at least) of the same order of magnitude as the DW-IORB spread.

To ensure that minimizing (IA.4) leads to economically meaningful results, we use the
43Since the arctan function is strictly decreasing, there is no reserve range where curve (IA.3) is perfectly

flat, which would correspond to the abundant-reserve region. For inference on the transition between abun-
dant and ample reserves, we rely on the IV estimates of the rate elasticity in Section 5, which suggest that
this transition occurs for reserves between 12% and 13% of bank assets, depending on the time period.

44Stigma or borrowing caps may also push the federal funds rate above the DW rate.
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framework of Section 2.1 to initialize the parameters and set bounds on them. Internet
Appendix G provides a detailed description of the algorithm, parameter bounds, and initial-
ization values. Importantly, none of our parameter estimates are equal to their bounds or
initial values.

Finally, our IV estimates show that, below a given reserve threshold, the slope of the
demand curve becomes increasingly negative as reserves decrease. This evidence indicates
that, in our sample, the federal funds market has operated to the right of the scarcity region.
For this reason, we minimize (IA.4) imposing the constraint that the algorithm only fits
the right tail of the curve (i.e., qit − q∗t > θ1 for all t); in robustness checks, we use milder
constraints and obtain similar results.

Internet Appendix G.3 Results

Figure IA.19 shows the results of our nonlinear least-squares fit, with low-frequency hori-
zontal and vertical shifts, evaluated on the joint forecasts of prices and quantities from the
time-varying VAR (A.3). The estimates of the shifts are in Table IA.6; the estimates of the
parameters governing the nonlinear shape of the curve are in Table IA.7.

The reserve demand curve has moved vertically and horizontally over time. As shown
in Table IA.6, from 2010–2014 to 2015–2019, it moved upward by roughly 2 bp and to
the right by roughly 3 pp. This horizontal shift is consistent with our IV estimates of the
rate elasticity, which suggest that the reserve level at which the curve starts displaying a
significantly negative slope was higher in the second part of the sample. In 2020–2021, the
horizontal location of the curve does not seem to change; the vertical location, in contrast,
jumps further up by additional 8 bp, for a total increase of 10 bp relative to the first period
(2010–2014). These shifts, and especially the vertical ones, are economically material, as the
in-sample standard deviation of the federal funds-IORB spread is around 6 bp and that of
normalized reserves is around 3 pp.

These results confirm the evidence in Figure 3 and suggest that, although there seems to
be a horizontal shift to the right over 2010-2021, upward vertical shifts seem to be the more
relevant source of time variation in the reserve demand curve, especially in the last part of
the sample. This result is particularly important because, as we discuss above, the presence
of vertical shifts implies that a rise in the federal funds rate relative to the IORB rate cannot
be interpreted as a signal of increased reserve scarcity. To identify the transition between
abundant and scarce reserves, instead, we need to directly estimate the rate elasticity to
reserve shocks.
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Figure IA.19: Post-processing nonlinear fit of the reserve demand curve with hori-
zontal and vertical shifts using model forecasts as data. This figure shows the results
of the nonlinear least-squares (NLLS) minimization in equation (IA.4). The NLLS fit is es-
timated on a sample of five-day-ahead joint forecasts of the federal funds-IORB spread and
normalized reserves from the in-sample estimation of the time-varying VAR model in (A.3),
with ten lags (m = 10 days). Forecasts are generated every five days; for each day, we draw
N = 100 forecasts from the model-implied posterior joint distribution. Results are obtained
constraining the fit to the right of the point of maximum absolute slope of the nonlinear
demand function in (IA.3).

In terms of the time-invariant nonlinear part of the reserve demand function, our es-
timates show that the point of maximum slope (θ1) occurs when reserves are around 5%
of banks’ assets; the point of maximum slope growth (θ1 + θ2/

√
3), instead, is around 8%.

This estimate suggests that, in 2010-2014, the transition between ample and scarce reserves
occurred around 8% of banks’ assets. In 2015–2019, as a result of the 3-pp shift to the right
q∗2, this transition point seems to move to 11%. Finally, the normalization parameter θ3
that captures the distance between the upper and lower asymptotes of the demand curve is
18 bp, which is close to the average DW-IORB spread in our sample divided by π (15 bp),
confirming that our results are reasonable.

Looking back at the path of realized reserves over 2010-2021, these results suggest that,
in both 2010 and 2019, with reserves between 8% and 10% of banks’ assets, the federal funds
market may have been operating around the transition between ample and scarce reserves;
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in the second half of 2019, in particular, with reserves consistently below 9% of banks’
assets and the threshold between ample and scarce around 11%, the market may have been
operating inside the scarcity region.

1/2010-12/2014 01/2015-03/2020 03/2020-12/2021
Horizontal shifts q∗ (pp) 0 2.88 3.15
Vertical shifts p∗ (bp) -24.20 -22.31 -14.37

Table IA.6: Post-processing nonlinear fit of the reserve demand curve with hori-
zontal and vertical shifts using model forecasts as data - estimates of the shifts.
This table shows the estimates of the horizontal (q∗) and vertical (p∗) shifts in equation
(IA.3) from the nonlinear least-squares (NLLS) minimization in equation (IA.4). The NLLS
fit is estimated on a sample of five-day-ahead joint forecasts of the federal funds-IORB spread
and normalized reserves from the in-sample estimation of our time-varying VAR forecasting
model. The model includes ten lags (m = 10 days). Forecasts are generated every five days;
for each day, we draw N = 100 forecasts from the model-implied posterior joint distribution.
Results are obtained constraining the fit to the right of the point of maximum absolute slope
of the nonlinear demand function in (IA.3).

Parameter θ1 (%) θ2 (%) θ3 (bp)
4.78 5.69 18.25

Table IA.7: Post-processing nonlinear fit of the reserve demand curve with hori-
zontal and vertical shifts using model forecasts as data - estimates of the non-
linear time-invariant parameters. This table shows the estimates of θ = (θ1, θ2, θ3) in
equation (IA.3) from the nonlinear least-squares (NLLS) minimization in equation (IA.4).
The NLLS fit is estimated on a sample of five-day-ahead joint forecasts of the federal funds-
IORB spread and normalized reserves from the in-sample estimation of our time-varying
VAR forecasting model. The model includes ten lags (m = 10 days). Forecasts are gen-
erated every five days; for each day, we draw N = 100 forecasts from the model-implied
posterior joint distribution. Results are obtained constraining the fit to the right of the
point of maximum absolute slope of the nonlinear demand function in (IA.3).

Internet Appendix G.4 Algorithm details

To solve the minimization problem in (IA.4), we use the fmincon function in MatLab. We
choose the interior-point algorithm and set the maximum number of function evaluations to
109, the maximum number of iterations to 1012, the step tolerance to 10−18, and the tolerance
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on constraint violations to 10−12. We analytically derive the gradient of the objective function
in (IA.4) and include it in the minimization program.

To ensure that our results are reliable and economically meaningful, we set bounds on
the variables of the minimization problem. We are agnostic about the origins and possible
magnitude of the horizontal shift, q∗, in the reserve demand curve; for this reason, in all
periods, we set its upper and lower bounds equal to two and minus two times the maximum
level of normalized reserves in our sample, respectively. For the vertical shift p∗, we choose
bounds based on the discussion of its economic interpretation in Internet Appendix G.2. The
lower bound is the same for all periods and is equal to the minimum ONRRP-IORB spread
in our sample; the rationale behind this choice is that the ONRRP rate is the safe outside
option for FHLBs and MMFs, the main lenders to banks in the wholesale overnight funding
market. The upper bound changes across periods and is equal to the average realized federal
funds-IORB spread in the period; the reason is that f(x; θ) in equation (IA.3) is strictly
positive everywhere, which implies that p∗t < pt at all times by construction.

For the θ parameters governing the nonlinearity of the demand curve in (IA.3), we impose
the following bounds. θ1 represents the point of maximum absolute slope of the demand
curve, where reserves are highly scarce. To bound θ1 from below, we calculate the ratio
between the aggregate reserve requirement and banks’ total assets on each day, compute the
minimum value in our sample, and then take 10% of that value. To bound θ1 from above,
we multiply the maximum of normalized reserves in our sample by two. We use the same
bounds for θ2, which measures the distance between the point of maximum absolute slope
and the point of maximum slope growth (i.e., the transition point between scarce and ample
reserves) in the nonlinear function in (IA.3).

The upper asymptote of the nonlinear function (IA.3) is equal to p∗t +πθ3. In the federal
funds market, absent stigma, frictions, and caps on discount-window (DW) borrowing, the
federal funds rate should be bounded from above by the DW rate. Therefore, given our
bound on p∗, we set the upper bound on θ3 to be equal to the maximum of the spread
between the DW and ONRRP rates in our sample divided by π. The lower bound on θ3 is
simply set to zero.

To initialize the variables, we also build on our discussion of their economic interpretation
in Internet Appendix G.2. We initialize θ1 with the average level of reserves in 2009, which
is the period of lowest reserve balances since the 2008 crisis; reserves in 2009 were most
likely scarcer than in the rest of our sample. To initialize θ2, we exploit the experience of
September 2019, which suggests that reserves may have transitioned from ample to scarce
around that time (Afonso et al., 2021). Since the point of maximum slope growth in (IA.3)
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is θ1+θ2/
√

3, we initialize θ2 with
√

3(q2019−θ(0)1 ), where q2019 is the average value of reserves
in September 2019, and θ(0)1 is the initialization of θ1. The initial value of θ3 is set equal to
the average spread between the DW and IORB rates in our sample divided by π. Data on
the daily DW rate is publicly available from FRED (“DPCREDIT”).

Finally, we initialize q∗ to zero in each subperiod, as we don’t have strong priors on its
path over time; in each subperiod, we initialize p∗ to one basis point below the minimum
federal funds-IORB spread in that period, as p∗ is strictly smaller than p by construction.

Parameters Lower Bound Upper Bound Initial Value

θ1 0.18 pp 38.83 pp 7.30 pp

θ2 0.18 pp 38.83 pp 2.94 pp

θ3 0.00 bp 25.5 bp 14.74 bp

q∗t -38.83 pp 38.83 pp 0.00 pp

p∗t
01/20/2010-12/29/2014 -25.00 bp -12.52 bp -20.00 bp
01/09/2015-03/09/2020 -25.00 bp -6.33 bp -15.00 bp
03/16/2020-12/15/2021 -25.00 bp -3.31 bp -8.36 bp

Table IA.8: Bounds and initializations of the variables in the nonlinear least
squares (NLLS) minimization in equation (IA.4). θ1, θ2, and θ3 are the parame-
ters defining the nonlinear time-invariant functional form of the reserve demand function in
equation (IA.3); q∗ and p∗ are the horizontal and vertical shifts.
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