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Abstract 

Binned scatter plots are a powerful statistical tool for empirical work in the social, behavioral, and 

biomedical sciences. Available methods rely on a quantile-based partitioning estimator of the conditional 

mean regression function to primarily construct flexible yet interpretable visualization methods, but they 

can also be used to estimate treatment effects, assess uncertainty, and test substantive domain-specific 

hypotheses. This paper introduces novel binscatter methods based on nonlinear, possibly nonsmooth     

M-estimation methods, covering generalized linear, robust, and quantile regression models. We provide a 

host of theoretical results and practical tools for local constant estimation along with piecewise 

polynomial and spline approximations, including (i) optimal tuning parameter (number of bins) selection, 

(ii) confidence bands, and (iii) formal statistical tests regarding functional form or shape restrictions. Our 

main results rely on novel strong approximations for general partitioning-based estimators covering 

random, data-driven partitions, which may be of independent interest. We demonstrate our methods with 

an empirical application studying the relation between the percentage of individuals without health 

insurance and per capita income at the zip-code level. We provide general-purpose software packages 

implementing our methods in Python, R, and Stata. 

 

JEL classification: C14, C18, C21 

 

Key words: partition-based semi-linear estimators, generalized linear models, quantile regression, robust 

bias correction, uniform inference, binning selection, treatment effect estimation 

 

 

 

 

 

_________________ 
 
Crump: Federal Reserve Bank of New York (email: richard.crump@ny.frb.org). Cattaneo: Princeton 
University (email: cattaneo@princeton.edu). Farrell: UC Santa Barbara (email: maxhfarrell@ucsb.edu). 
Feng: Tsinghua University (email: fengyj@sem.tsinghua.edu.cn). The authors thank Isaiah Andrews, 
Ricardo Masini, Boris Shigida, Rocio Titiunik, and Rae Yu for helpful comments and discussions. 
Ignacio Lopez Gaffney provided excellent research assistance. Cattaneo gratefully acknowledges 
financial support from the National Science Foundation through grants SES-1947805, SES-2019432, and 
SES-2241575. Feng gratefully acknowledges financial support from the National Natural Science 
Foundation of China (NSFC) through grants 72203122, 72133002, and 72250064. Software and 
replication files are available at https://nppackages.github.io/binsreg/. 
 

This paper presents preliminary findings and is being distributed to economists and other interested 

readers solely to stimulate discussion and elicit comments. The views expressed in this paper are those of 

the author(s) and do not necessarily reflect the position of the Federal Reserve Bank of New York or the 

Federal Reserve System. Any errors or omissions are the responsibility of the author(s). 

To view the authors’ disclosure statements, visit 
https://www.newyorkfed.org/research/staff_reports/sr1110.html. 



1 Introduction

Data visualization is a crucial step in any statistical analysis. In the era of big data it

has become increasingly important to have simple yet informative visual tools to guide,

supplement, or in some cases even supplant, numerical statistical analyses. However, it is

important to maintain statistical formality and rigor to ensure the validity of any conclusions

based on the data. We seek to accomplish both of these goals—effective visualization couched

in a formal framework—with binned scatter plot methods.

Often known simply as a binscatter, the binned scatter plot has become a popular tool

for visualization in large data sets, particularly in the social and behavioral sciences. The

goal is to flexibly estimate, and visualize, features of the conditional distribution of a scalar

outcome yi, which may be discrete or continuous, given a covariate or treatment variable xi,

which is scalar and continuous, while possibly also controlling for a d-dimensional vector of

additional factors wi. For estimating the conditional mean, as in the traditional regression

analysis, binning has a long history: so familiar is this approach that over 60 years ago Tukey

(1961), calling it a regressogram, went so far as to claim that “[a]ll statisticians who handle

data know how to attack the simple case of this situation where y and x are both single real

numbers” (p. 682). Going on to describe the construction, Tukey writes: “[t]he x-axis is

to be divided into suitable intervals, the mean of all the y-values corresponding to x-values

falling in each given interval is to be found, the results are then to be plotted, either as

points, each located above the center of the corresponding x-interval, or better as horizontal

bars, each extending over the corresponding x-interval” (p. 682).

This simple construction (perhaps disappointingly often with plotted dots rather than

horizontal lines) has recently gained popularity in statistics, economics, and data science.

The prevalence of binscatter plots can be partly ascribed to its intuitive construction and

compelling visualization properties: given only data on xi and yi, the plot is a clean and

interpretable depiction of the conditional mean. Moreover, several limitations of the classical

scatter plot account for the rising use of binned scatter plots in modern analyses. First, in big
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data sets the classical scatter plot is too dense to be informative, particularly about general

“patterns” in the data which are to be modeled in subsequent analyses. Second, somewhat

conversely, in cases where privacy is a concern the scatter plot is not allowed, regardless of

its informational use as a visualization tool. Third, classical scatter plots do not provide a

well-defined way to control for other factors, a common goal in treatment effect estimation

and causal inference. Finally, particularly relevant to our setting, a scatter plot is not useful

when outcomes are discrete. In contrast, a binned scatter plot provides a simple, yet flexible

way of visualizing features of the conditional distribution of a (possibly discrete) outcome

variable given a continuous covariate (or treatment) of interest, while controlling for other

important factors.

Formally, a binscatter is grounded in the classical semilinear regression model. To date,

however, binscatters have been available only to visualize (and estimate) conditional mean

functions fitted using least squares. A common usage in this setting is comparing the non-

parametric estimate to a linear fit, as a precursor to linear regression analysis. See Starr

and Goldfarb (2020) for a practical review and background references. In the least squares

setting, a binscatter is formally an estimator of a semilinear model for the conditional mean,

nonparametric in the covariate of interest and linear in the controls, where the nonpara-

metric component is estimated by partitioned regression. Cattaneo et al. (2024b) used that

framework to derive formal statistical properties of canonical binscatter, including correct-

ing a common mistake in empirical practice when using controls, and provide asymptotically

valid confidence bands and optimal tuning parameter selection.

The restriction to least squares semilinear regression to estimate the conditional mean has

limited the applicability of binscatter methods. For one, important features of the data,

such as spread or variability, cannot be visualized. Further, existing methods (and theory)

can be misleading in settings where the outcome is discrete or in another way restricted. For

example, in the empirical illustration we use throughout, we study uninsuredness rates using

a fractional outcome model, most naturally fitted using quasi-likelihood methods based on
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the logistic link. Last but not least, binscatter methods for quantile regression analysis are

currently lacking in the literature, despite of their usefulness for empirical work.

This paper introduces and studies a broad class of binscatter M-estimation methods, in

models allowing for (i) a nonlinear and/or nonsmooth loss function and (ii) a nonlinear link

function. Our results provide for the use of binned scatter plots for various visualization

goals and different data types, particular leading cases being semiparametric conditional

quantile regression and generalized partially linear models. We make several methodological

and theoretical contributions: (i) we propose a feasible method for optimal tuning parameter

selection to choose the appropriate number of bins; (ii) we provide (pointwise and) uniform

inference to construct confidence bands and hypothesis tests for parametric specifications

and shape restrictions, and (iii) we develop group-wise comparisons for continuous treat-

ment effects or for treatment effect heterogeneity. Developing these methods relies on novel

technical work: allowing for a large class of binning methods, including random binning, we

prove new uniform (in x) Bahadur representations and strong approximations, and thus uni-

form distribution theory, for the broad class of nonlinear semiparametric models considered.

Obtaining these results for nonlinear, nonsmooth models, with data-dependent partitions

and additional covariates, represents the main technical contributions of our paper, some of

which may be of independent interest.

Our proposed nonlinear binscatter methods help restore, and in cases such as discrete out-

comes or additional controls, surpass, the utility of the conventional scatter plot. We offer

principled ways to visually assess patterns in the data, quantify uncertainty, and develop

hypothesis tests about the findings. Our results on quantile regression allow researchers to

assess the spread of the conditional distribution, detect outliers or influential observations

in the data, and study a larger class of treatment effects, formalizing and expanding com-

mon practices based on the classical scatter plot in small data sets, all while controlling

for additional important factors. Our confidence bands properly quantify and communicate

the uncertainty around the estimated function of interest, and can also be used to guide
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further analyses. We also develop formal uniform hypothesis testing procedures regarding

those functions, to assess shape constraints and parametric specifications. Causal inference

is an important application area of our uniform inference results: studying treatment effect

heterogeneity for binary treatments or the dose response function for a continuous treat-

ment without imposing a functional form (e.g., to evaluate important hypotheses such as

monotonicity in the dosage).

The paper proceeds as follows. We next discuss the connections between our work and

the existing literature. Section 2 introduces binned scatter plots, defines the statistical

model, and clarifies the parameters of interest. Section 3 gives details on our theoretical

contributions, which are then used in Sections 4 and 5 to deliver tuning parameter selection

and uniform inference. We illustrate our methods and results with a running empirical

application using zip code-level data from the American Community Survey (ACS). The

dependent variable, yi, is the percentage of individuals without health insurance, and the

independent variable of interest, xi, is per capita income. Section 6 concludes. The online

Supplemental Appendix (SA hereafter) contains additional technical and implementation

details, all mathematical proofs, and further discussion of how our technical contributions

improve on the related literature. General-purpose software in Python, R, and Stata, as

well as replication files, are available at https://nppackages.github.io/binsreg/. See

Cattaneo et al. (2024a) for an introduction.

1.1 Related Literature

This paper contributes to several strands of the literature. First, from a practical point

of view, our work builds upon and extends existing binned scatter plot methods available

for applied research. See Starr and Goldfarb (2020) for a review of that literature and

Cattaneo et al. (2024b) for formal results concerning least squares semilinear binscatter. Our

main methodological contribution is to introduce nonlinear binscatter methods, constructed

using a general, possibly nonsmooth semilinear M-estimation approach. As a result, we
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propose a broad array of new binscatter methods for generalized linear models (e.g., Logit

or Probit), robust semiparametric regression (e.g., Huber or trimmed least squares), and

quantile regression.

Second, our theoretical results contribute to the literature on series/sieve estimation in

general, and partitioning-based methods in particular (i.e., piecewise polynomials and splines

approximations). See Györfi et al. (2002) for a textbook introduction, and Shen et al. (1998),

Huang (2003), Belloni et al. (2015), Cattaneo and Farrell (2013), Cattaneo et al. (2020), as

well as references therein, for prior convergence rates and distribution theory. These prior

works studied uniform estimation and inference for linear piecewise polynomials and spline

series regression without data-driven partitioning and without additional covariates, often

imposing strong regularity conditions. Our primary technical contributions as compared

to the recent literature are (i) allowing for general, possibly nonlinear and nonsmooth M-

estimation, (ii) allowing for random partitions and hence random basis functions in the series

estimator, (iii) controlling for other factors in a semilinear model, and (iv) obtaining novel

strong approximations and uniform inference under weaker conditions than those previously

available. A substrand of the series estimation literature studies quantile regression, the clos-

est antecedent to our work being Belloni et al. (2019). Unlike that prior work, we consider

general nonlinear, possibly nonsmooth, M-estimation problems and allow for random parti-

tions and additional controls, and our technical results are obtained under weaker regularity

conditions, which in particular permit the use of piecewise constant fitting necessary for a

binned scatter plot. Finally, none of the results in Cattaneo et al. (2024b) are applicable

to the large class of nonlinear binscatter estimators considered in this paper, because they

only consider least squares semilinear binscatter models. Further details of how each of our

individual theoretical results improves on the extant literature is given throughout the SA.

Finally, our paper also contributes to the literature on data visualization, which has become

an increasingly active field of study in recent years due to the rise of big data and machine

learning methods. Our results speak directly to this literature, and in particular to the need
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for clear and explicit depictions of uncertainty, both in terms of variance and estimation

error (Healy, 2018). These are crucial in data visualization in science and research contexts

as this “builds trust and credibility” (Schwabish, 2021, p.189).

2 Setup

A binned scatter plot is designed to provide a flexible, nonparametric estimate of a regression

function. The construction and interpretation of a binned scatter plot is simple and intuitive,

which drives their appeal for applied work. But as we will see, there are some subtleties when

binned scatter plots are applied to nonlinear, nonsmooth models—especially when controlling

for additional covariates.

To describe the construction, it is helpful to first make precise the model and objects of

interest. Our goal is to learn a regression function (which need not be the conditional mean)

that features in the conditional distribution of a scalar outcome yi, which may be discrete or

continuous, given a covariate or treatment variable xi, which is scalar and continuous, while

possibly also controlling for a d-dimensional vector of additional factors wi. In applications,

the goal is to flexibly study the relationship of yi to xi, but not necessarily to discover (or

allow for) heterogeneity or nonlinearity in wi. Further, wi is often a large-dimensional set

of controls, such as fixed effects or factor variables. Consequently, we assume the regression

function depends on the scalar index θ0(xi,wi) := µ0(xi) + w′
iγ0, for an unknown func-

tion µ0 and vector γ0, and is thus partially linear in nature. This specification is directly

interpretable, and in cases where d is moderate or large, empirically convenient.

The model is defined by the following structure, which determines how the scalar index

θ0(xi,wi) relates to the outcome yi. Let θ be a generic value of the index. For a loss function

ρ(y; η(θ)) and inverse link function η(θ), let

(µ0(·),γ0) = argmin
µ∈M,γ∈Rd

E
[
ρ(yi; η(µ(xi) +w′

iγ))
]
, (2.1)
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where we assume the solution is unique, and ρ(y; η(θ)), η(θ), and the function class M obey

typical boundedness and smoothness restrictions discussed in Section 3. For different choices

of ρ(·) and η(·) this formulation covers a large class of problems including generalized linear

models, robust regression, quantile regression, and nonlinear least squares. We illustrate

with some leading specific examples.

Example 1 (Least Squares Regression). Setting η(θ) = θ and ρ(y; η) = (y − η)2 recovers

semiparametric least squares regression for partially linear models. ⌟

Example 2 (Logistic Regression). Assume that the binary outcome yi, conditional on xi and

wi, is distributed Bernoulli with probability η(µ(xi) +w′
iγ), where η(θ) = (1 + exp(−θ))−1,

then ρ(y; η) = −y log(η)− (1− y) log(1− η). ⌟

Example 3 (Huber Regression). Semiparametric robust partially linear regression sets

η(θ) = θ and ρ(y; η) = (y − η)21(|y − η| ≤ τ) + τ(2|y − η| − τ)1(|y − η| > τ) for a

user-specified τ > 0. ⌟

Example 4 (Quantile Regression). Set ρ(y; η) = [τ − 1(y < η)](y − η) with η(θ) = θ for a

user-specified quantile τ ∈ (0, 1). ⌟

The key statistical challenge is (uniform in x) recovery of the function µ0(x) for estimation

and inference. Once accomplished, we can cover a wide variety of objects derived from (2.1).

For concreteness we will focus on the following three objects, as they are of primary practical

importance:

(i) the level of the regression function, ϑ0(x,w) = η(µ0(x) + w′γ0) = η(θ0(x,w)),

(ii) the nonparametric component itself (or its derivative), µ
(v)
0 (x) = dv

dxvµ0(x), v ≥ 0, and

(iii) the marginal effect ζ0(x,w) =
∂
∂x
η(µ0(x) + w′γ0) = η(1)(θ0(x,w))µ

(1)
0 (x),

where h(1)(u) = d
du
h(u) denotes the derivative of a function with respect to its scalar ar-

gument and w is a user-chosen evaluation point for the additional controls. Typically, w
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is chosen as the mean or median, or for discrete variables or fixed effects, set to a baseline

category. The role of w in both plotting and inference introduces some important nuances

that are discussed below.

Each of these parameters corresponds to different empirical questions. The level, ϑ0(x,w),

is directly useful for visualization of the relationship of yi to xi and is commonly used in causal

inference. If the variable xi is a continuous treatment, our results yield a nonparametric

estimate of the dose response function, while controlling for relevant factors wi. A plot

of ϑ0(x,w) shows this function for the subgroup defined by wi = w. We can also obtain

separate dose response functions for different subgroups of the data to be used in multi-

sample comparisons. On the other hand, if xi is a pre-treatment variable, the same multi-

sample results provide an analysis of treatment effect heterogeneity for discrete (often binary)

treatments, and our uniform inference allows for discovery of treatment effect heterogeneity.

Finally, for visualization, obtaining ϑ0(x,w) in the quantile regression case can be used to

assess the spread of the conditional distribution (especially for quantiles close to zero and

one) or robust measures of central tendancy, as would be done with a classical scatter plot.

The nonparametric component, µ0(x), is most often studied to assess its functional form,

generally against a parsimonious parametric specification to be considered for later analyses

or for a shape restriction that is of substantive interest, such as monotonicity or convexity.

Historically, a common use of binscatter was to visually (and informally) assess if µ0(x) is

well-approximated by a linear model, and if so, proceeding under that specification for the

empirical results. Our results provide rigor to such practice, and expand the idea to a much

richer class of models and hypotheses.

The marginal (or partial) effect ζ0(x,w) is a standard object in economic analysis in

nonlinear models. In binary choice models it is common to study how the probability of

y = 1 changes as a function of x. The marginal effect at the average, obtained by setting w

to the sample mean, is a standard way to summarize nonlinear models by giving the effect for

the “average” individual. For example, we show that the marginal effect of income changes
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sign in our application, indicating a changing response in the uninsuredness rate as a result

of Medicaid. Comparing marginal effects across groups for heterogeneity analysis, in causal

or noncausal settings, is a common goal in social science applications with nonlinear models.

2.1 Estimation

Given an i.i.d. sample (yi, xi,w
′
i)
′, i = 1, . . . , n, the binscatter estimator is constructed

by solving the empirical analogue of (2.1) using a partitioning-based approximation to the

unknown function µ0(x). This nonparametric approximation requires two choices: the par-

titioning of the support of xi and the estimation within each bin.

To fix ideas, it is useful to begin with the simplest case where local constant fitting is used

and wi is absent. First, the support of xi is divided into J < n disjoint bins. J is the main

tuning parameter for this nonparametric estimation problem, and its choice is crucial both

visually and statistically. To describe the estimator, we will take J < n as given at present,

and return to its choice in Section 4 below.

Coupled with a choice of J is a method to divide the support. A major theoretical

innovation of our work is that the bin breakpoints themselves can be data-dependent, distinct

from a data-driven choice of J . The partition is denoted by ∆̂ = {B̂1, B̂2, . . . , B̂J}, with the

bins and breakpoints denoted by

B̂j =


[
τ̂j−1, τ̂j

)
if j = 1, 2, . . . , J − 1,[

τ̂J−1, τ̂J
]

if j = J.

The breakpoints {τ̂j}Jj=1 result from a user-chosen, possibly data-driven, partitioning method.

Our theoretical results cover any random partition that is independent of the outcomes

yi’s (given xi’s and wi’s), and “quasi-uniform”, which intuitively requires the bins to be

sufficiently similar. The formal condition is stated in the next section. The simplest ap-

proach is evenly-spaced breakpoint locations (τ̂j = xmin + j(xmax − xmin)/J). The most
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popular choice, however, is to use the empirical quantiles of xi, setting τ̂j = F̂−1(j/J)

with F̂ (u) = 1
n

∑n
i=1 1(xi ≤ u) the standard empirical cumulative distribution function,

and F̂−1 its generalized inverse. In the SA we show that both of these satisfy our generic

assumptions. Other possible methods include certain adaptive regression trees and related

partitioning methods, such as those with the so-called “X-property” or via sample splitting;

see Devroye et al. (2013), Zhang and Singer (2010), and references therein. For concreteness,

we will use quantile spacing for empirical analysis throughout the paper.

Given a partition ∆̂, the binscatter estimate is formed by fitting the sample analogue of

(2.1) within each bin, using only an intercept. In the simple case of least squares regression,

this is identical to computing the sample average of yi for observations in each bin, exactly

as Tukey (1961) described, yielding a piecewise constant approximation to the unknown

conditional expectation. The same method is followed for all other models. For example,

in the case of binary data or fractional outcomes, a logistic regression of yi on a constant is

fit for each bin. For the median, or any other quantile, one simply computes the empirical

quantile of yi using observations only within the bin.

Formally, we define the basis functions b̂0(x) = [1B̂1
(x),1B̂2

(x), · · · ,1B̂J
(x)]′, consisting of

indicators for each bin. We then obtain

µ̂(x) = b̂0(x)
′β̂, β̂ = argmin

β∈RJ

n∑
i=1

ρ
(
yi; η

(
b̂0(xi)

′β
))
. (2.2)

A graphical illustration of this procedure is shown in Figure 1. The data are obtained from

the ACS using the 5-year survey estimates beginning in 2013 and ending in 2017 (available

from the Census Bureau website). All analyses are performed at the zip code tabulation

area level for the United States (excluding Puerto Rico). The dependent variable, yi, is

the percentage of individuals without health insurance, and the independent variable of

interest, xi, is per capita income. The fractional nature of the outcome motivates the use

of logistic quasi-maximum likelihood for estimation and inference (Papke and Wooldridge,
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1996). Figure 1(a) shows the classical scatter plot of the raw data. This data set has about

32,000 observations, far from the millions commonly encountered, and already this plot

fails to be useful for assessing the functional form: the visualization is dominated by a dense

cloud of data with a few outlying observations. Figure 1(b) shows a binned scatter plot being

constructed, with the raw data in the background. The dots are the fitted values of applying

(2.2) following Example 2, i.e., we show ϑ̂(x) = η(µ̂(x)). Figure 1(c) isolates the binscatter

and overlays a linear fit (i.e., a global logistic quasi-likelihood with µ0(x) assumed linear

in x). The linear approximation to µ0(x) appears satisfactory at first, but this is because

the nonparametric estimate is undersmoothed. Figure 1(d) presents the estimate using the

optimal number of bins (Section 4), and shows that the informal analysis, relying on an ad

hoc choice of J , would miss an important feature of the data: the presence of the Medicaid

program which provides subsidized health insurance for limited-income individuals. As a

preview, Table 1 below shows that formal tests reject polynomial parametric specifications

and reject the hypothesis that the uninsurance rate is monotonically decreasing with per

capita income.

Graphs like Figures 1(c) and (d) have a long tradition in statistics and data science, and

have recently become ubiquitous in applied microeconomics. Visually assessing functional

forms is the typical use. Importantly, in this case the visualization shows an estimate of

ϑ0(x,w), not µ0(x) directly. Further, although the binned scatter plot invites the viewer

to “connect the dots” smoothly, the actual estimator is piecewise constant, which generally

gives a less appealing visualization but underpins any formal analysis.

We expand on (2.2) in two ways: adding the covariateswi and enriching the set of allowable

basis functions. The covariates can be directly incorporated into the loss, exactly as they

are in (2.1). Moreover, the additively separable and linear nature of the controls makes this

generalization straightforward empirically. Importantly, the presence of controls invalidates

bin-by-bin estimation, as the coefficients γ0 are global parameters. The SA discusses different

approaches to estimating µ0 and γ0.
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s = 1 is continuous but nondifferentiable. This change to the basis gives additional flexibility

that is crucial for bias reduction and derivative estimation, the latter being instrumental for

studying shape restrictions and specification testing. By construction, p ≥ s ≥ 0, and

derivative estimation requires that the derivative of interest, v ≥ 0, is no larger than p.

The general basis is defined as b̂p,s(x) := T̂s[b̂0(x)
′ ⊗ (1, x, . . . , xp)′], where ⊗ denotes the

Kronecker product and T̂s is a [(p+1)J−(J−1)s]×(p+1)J transformation matrix ensuring

that the (s−1)-th derivative of the estimate is continuous. The exact form of T̂s is available in

Section SA-5.2 of Cattaneo et al. (2024b), and we note that T̂s also depends on the random

partitions. When s = 0, T̂s is the identity matrix, and the fit is a piecewise polynomial

of degree p. The piecewise constant fit (as bars or as dots) corresponds to s = p = 0.

Another popular choice are cubic B-splines, obtained by setting s = p = 3. On account of

its popularity and to simplify notation, we will assume throughout the paper that s = p and

use the notation b̂p(x) := b̂p,p(x). The SA treats the general case of s ≤ p.

The generalized, covariate-adjusted binscatter can now be defined. We first solve

[
β̂
γ̂

]
= argmin

β,γ

n∑
i=1

ρ
(
yi; η

(
b̂p(xi)

′β +w′
iγ
))
. (2.3)

Using (2.3) the estimators of the three functions of interest are:

ϑ̂p(x, ŵ) = η(θ̂p(x, ŵ)), (2.4)

µ̂(v)
p (x) = b̂(v)

p (x)′β̂, (2.5)

ζ̂p(x, ŵ) = η(1)(θ̂p(x, ŵ))µ̂
(1)
p (x), (2.6)

respectively, where θ̂p(x, ŵ) = µ̂p(x)+ŵ′γ̂, is the plug-in estimator of the true index θ0(x,w),

and ŵ (non-random or generated based on {wi}ni=1) is a consistent estimator for the desired

evaluation point w. We will often make the polynomial order p explicit, as this is needed for

clarity when constructing confidence bands and hypothesis tests in Section 5; dependence
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on ∆̂ and choice of J is suppressed, but also important.

It is worth mentioning that nonlinear binscatter methods can be constructed for both

fixed J < ∞ and large J → ∞ as n → ∞, naturally leading to different interpretations.

The functions of interest defined at the beginning of this section cannot be recovered when

J is fixed, but coarsened versions thereof will be, and these objects can have an interesting

interpretation: if the parition “settles” as n → ∞ to some fixed ∆0 with associated fixed

basis bp(x) (see Assumption 4 below for a precise definition), then the probability limit of

the fixed-J binscatter is the solution to (2.1) where the function class M is restricted to

be M = {µ(x) = bp(x)
′β : β ∈ RK , K = dim(bp(x))}. This is most natural with p = 0

and quantile-spacing, because the binscatter shows average outcomes across quantiles of a

continuous covariate. For p = 0 and J = 100, for example, the results allow for comparison

of yi across percentiles of xi (possibly controlling for wi), which is standard for xi variables

such as test scores or measures of wealth. All our estimation and inference results remain

valid when J is fixed, provided the target parameter is adjusted accordingly; see Cattaneo

et al. (2024a,b) for further discussion of fixed-J binscatter methods. For the remainder of

the paper, we will consider only the case J → ∞ as n→ ∞ to streamline the presentation.

3 Theory

This section presents two main novel technical results: a uniform Bahadur representation

and a feasible strong approximation. The methodological results in subsequent sections—

tuning parameter selection, confidence bands, and hypothesis testing—are built from these

results. To conserve space and notation, in this section we only show the results for ϑ̂p(x, ŵ).

The analogous results for µ̂
(v)
p (x) and ζ̂p(x, ŵ) are deferred to the SA (specific references

below) and are conceptually similar. The SA also gives other important technical results

and additional discussion of how our theory improves on the existing literature.

First, we state the assumptions required. The class of data generating processes is re-
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stricted by the following.

Assumption 1 (Data Generating Process).

(i) {(yi, xi,w′
i) : 1 ≤ i ≤ n} are i.i.d. random vectors satisfying (2.1) and supported on

Y × X ×W, where X is a compact interval and W is a compact set.

(ii) The marginal distribution of xi has a Lipschitz continuous (Lebesgue) density bounded

away from zero on X .

(iii) The conditional distribution of yi given (xi,w
′
i) has a (conditional) density with respect

to some sigma-finite measure uniformly bounded over its support and X ×W.

This assumption is fairly standard. It restricts attention to cross-sectional data and

bounded covariates with minimal regularity imposed on the underlying joint distribution.

Requiring xi to be continuously distributed is natural given the visualization and estimation

goals, but our results can also be applied to discrete xi by taking each mass point as its own

bin to conduct simultaneous estimation and inference over those support points.

The following assumption restricts the class of statistical models.

Assumption 2 (Statistical Model).

(i) ρ(y; η) is absolutely continuous with respect to η ∈ R and admits a derivative ψ(y, η) :=

ψ†(y − η)ψ‡(η) almost everywhere. ψ‡(·) is continuously differentiable and strictly

positive or negative. If the conditional distribution of yi given (xi,w
′
i) does not have a

Lebesgue density, then ψ†(·) is Lipschitz continuous, otherwise it is piecewise Lipschitz

with finitely many discontinuity points.

(ii) ρ(y; η(θ)) is convex with respect to θ and η(·) is strictly monotonic and three-times

continuously differentiable.

(iii) E[ψ(yi, η(θ0(xi,wi)))|xi,wi] = 0. σ2(x,w) := E[ψ(yi, η(θ0(xi,wi)))
2|xi = x,wi = w] is

bounded away from zero uniformly over X ×W. E[η(1)(θ0(xi,wi)
2σ2(xi,wi)|xi = x] is
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Lipschitz continuous on X , and E[|ψ(yi, η(θ0(xi,wi)))|ν |xi = x,wi = w] is uniformly

bounded over X ×W for some ν > 2. E[ψ(yi, η)|xi = x,wi = w] is twice continuously

differentiable with respect to η.

(iv) For Υ(x,w) := ∂
∂η
E[ψ(yi, η)|xi=x,wi=w]|η=η(θ0(x,w)), Υ(x,w)η(1)(θ0(x,w))2 is bounded

away from zero uniformly over X ×W and E[Υ(xi,wi)η
(1)(θ0(xi,wi))

2|xi = x] is Lip-

schitz continuous on X .

(v) µ0(·) is ς-times continuously differentiable for some ς ≥ p+ 1.

This assumption imposes regularity conditions on the statistical model in (2.1), particu-

larly on the loss function and resulting parameters of interest. The complexity of part (i)

reflects the breadth of the class of models and parameters we cover. When yi is continuous

the loss function can have points of nondifferentiability, but for discrete outcomes the loss

must be smoother. To illustrate, consider first Example 4 in Section 2: the loss function

for quantile regression is continuous but not differentiable everywhere, which is covered by

our assumptions with ψ(y, η) = 1(y − η < 0) − τ , where ψ†(y − η) = 1(y − η < 0) − τ

exhibits a discontinuity point, and ψ‡(η) = 1 is smooth. Alternatively, for logistic regression

(Example 2) yi ∈ {0, 1} and we have ψ(y, η) = (y − η)[η(1 − η)]−1, which exactly matches

the required structure of ψ†(y − η)ψ‡(η). Both functions are clearly as smooth as required

and the definition of η(θ) ensures that ψ‡ > 0. The rest of the assumption gives standard

moment and boundedness conditions to ensure that the parameters and their estimators are

well-defined; those regularity conditions are also satisfied in all examples of interest. Finally,

the nonparametric object µ0(·) is assumed to be smooth, as is standard in the nonparametric

inference literature.

We next give several high-level conditions on the estimation procedure. These conditions

ensure that the partitioning scheme is sufficiently regular and that the evaluation point for

the control variables wi and the Gram matrix can be estimated sufficiently well.

Assumption 3 (High-Level Estimation Conditions).
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(i) The partition ∆̂ is independent of {yi}ni=1 given {xi,wi}ni=1 and, with probability ap-

proaching 1, max1≤j≤J |τ̂j − τ̂j−1| ≤ Cmin1≤j≤J |τ̂j − τ̂j−1|, for an absolute constant

C > 0.

(ii) ∥ŵ−w∥ = oP(1) and ∥γ̂−γ0∥ = oP(
√
J/n+J−p−1), where ∥ ·∥ is the Euclidean norm.

(iii) For the infeasible Gram matrix Q̄p := n−1
∑n

i=1 b̂p(xi)b̂p(xi)
′Υ(xi,wi)η

(1)(θ0(xi,wi))
2,

there is an estimator Υ̂(xi,wi) such that ∥Q̄p − Q̂p∥ = OP
(
J−p−1 +

(
J logn
n1−2/ν

)1/2)
, where

Q̂p := n−1
∑n

i=1 b̂p(xi)b̂p(xi)
′Υ̂(xi,wi)η

(1)(θ̂p(xi,wi))
2, and ∥ · ∥ is the operator norm.

The requirement that the partition intervals are not too dissimilar in length is satisfied

for evenly spaced partitioning, trivially, and is shown to hold for quantile spacing in the

SA (Lemma SA-5.2). For other data-driven methods this condition must be checked. This

assumed property of the random bining structure is often called quasi-uniformity (Cattaneo

et al., 2020; Huang, 2003), and is important for controlling the approximation bias and, when

combined with the assumptions on the density of xi, for ensuring that each bin contains

sufficient data to control the variance. Part (ii) requires that the desired evaluation point of

wi (such as the mean) can be estimated consistently and that the coefficient vector γ0 can

be estimated sufficiently accurately. Generally neither is restrictive, as the nonparametric

estimation of µ0(x) is the most statistically difficult estimation in this setting. Finally, part

(iii) ensures that we have a feasible estimator of the Gram matrix that converges rapidly

enough. The infeasible Gram matrix Q̄p defined above is not a population object, but rather

retains the randomness of the estimated basis. This will be key in our results and is discussed

following Theorem 1. See Section SA-4.1 for examples of Υ̂(xi,wi) for different models.

Our first theoretical result is a uniform (in x) Bahadur representation for ϑ̂p(x, ŵ) as

defined in (2.4).

Theorem 1 (Bahadur Representation). Suppose that Assumptions 1, 2, and 3 hold, and
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that J
ν

ν−2 log n+ J(log n)7/3 + (J2(log n))
ν

ν−1 = o(n) and log n = o(J). Then,

sup
x∈X

∣∣ϑ̂p(x, ŵ)− ϑ0(x,w)− L̂p(x,w)
∣∣ = OP(rn),

where

L̂p(x,w) := η(1)(θ0(x,w))b̂p(x)
′Q̄−1

p

1

n

n∑
i=1

b̂p(xi)η
(1)(θ0(xi,wi))ψ(yi, η(θ0(xi,wi))),

and rn :=
(
J logn

n

)3/4
log n+ J− p

2

(
log2 n

n

)1/2
+ J−p−1 + ∥γ̂ − γ0∥+ ∥ŵ − w∥.

This result is essentially a stochastic linearization of the estimator, and yields important

consequences including the mean squared error expansion used to choose J and the asymp-

totic variance formula for inference. The form of the variance is reminiscent of its parametric

counterpart (e.g., for generalized linear models), but estimation is more complicated. Herein

we maintain general high-level conditions justifying several alternatives commonly used in

practice. These are discussed in Section SA-4.1. The analogous Bahadur representations

for µ̂
(v)
p (x) and ζ̂p(x, ŵ), under the same assumptions, are given in Theorem SA-3.1. The

“linear” term is slightly different to account for the different structure of the three estimands

and the remainder rate for derivative estimation is slower.

With the Bahadur representation in place, we can develop tools for inference. Our main

result is a strong approximation for the (Studentized) t-statistic process for each of the three

estimators, allowing us to obtain a feasible asymptotic distributional approximation. Again

we give the details only for ϑ̂p(x, ŵ) and defer the others to the SA. The variance is an

immediate consequence of the expansion in Theorem 1, and is made feasible by replacing

unknown objects by their estimators. For a given p, define the statistic

Tϑ,p(x) =
ϑ̂p(x, ŵ)− ϑ0(x,w)√

Ω̂ϑ,p(x)/n
, Ω̂ϑ,p(x) := η(1)(θ̂p(x, ŵ))

2b̂p(x)
′Q̂−1

p Σ̂pQ̂
−1
p b̂p(x), (3.1)
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where Σ̂p := n−1
∑n

i=1 b̂p(xi)b̂p(xi)
′ψ(yi, η(θ̂p(xi,wi)))

2η(1)(θ̂p(xi,wi))
2 and Q̂p is defined in

Assumption 3. The t-statistics Tµ(v),p(x) and Tζ,p(x), for µ
(v)
0 (x) and ζ0(x,w) respectively,

are entirely analogous, and are defined in Section SA-3.3.

Our inference results will follow from the next key theorem.

Theorem 2 (Strong Approximation). Suppose that Assumptions 1, 2, and 3 hold, and let

(an : n ≥ 1) be a sequence of non-vanishing constants such that J and ŵ obey

J(log n)2

n1− 2
ν

+
(J(log n)7

n

)1/2

+ nJ−2p−3 +
(log n)2

Jp+1
+ nJ−1∥γ̂ − γ0∥2 = o(a−2

n ),

∥ŵ − w∥ = oP(a
−1
n

√
J/n), and (J2 log(n))ν/(ν−1) = o(n). Then, on a properly enriched

probability space, there exists a (J + p)-dimensional standard Normal random vector N such

that for any ξ > 0,

P
(
sup
x∈X

|Tϑ,p(x)− Z̄ϑ,p(x)| > ξa−1
n

)
= o(1), Z̄ϑ,p(x) =

b̂p(x)
′η(1)(θ0(x,w))Q̄

−1
p Σ̄

1/2
p√

Ω̄ϑ,p(x)
N,

where Σ̄p and Ω̄ϑ,p(x) are shown in Section SA-3. On a further enriched space, there exists

a conformable standard Normal vector N⋆, independent of {(yi, xi,w′
i)
′}ni=1 and ∆̂, such that

for any ξ > 0,

P
(
sup
x∈X

|Z̄ϑ,p(x)− Ẑϑ,p(x)| > ξa−1
n

∣∣∣{(yi, xi,w′
i)
′}ni=1, ∆̂

)
= oP(1),

Ẑϑ,p(x) =
b̂p(x)

′η(1)(θ̂p(x, ŵ))Q̂
−1
p Σ̂

1/2
p√

Ω̂ϑ,p(x)
N⋆.

The approximating process, Z̄ϑ,p(·), is a Gaussian process conditional on {xi,wi}ni=1 and

∆̂ by construction, and the elements of Σ̄p, Ω̄ϑ,p(x) and b̂p(x) reflect this conditioning. This

process is infeasible but the second result shows that all the unknown quantities in in Z̄ϑ,p(·)

can be replaced by their sample analogues to obtain a feasible approximation. Theorems

SA-3.5 and SA-3.6 give the corresponding results for Tµ(v),p(x) and Tζ,p(x), under the same
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assumptions. Pointwise inference results are also given in the SA for completeness.

Theorems 1 and 2 substantially generalize the least squares results in Cattaneo et al.

(2024b), under essentially the same rate restrictions, with an error of approximation that is

optimal up to log(n) terms. Our results are on par with, or improve upon, prior theory for

kernel estimators of nonlinear models (Kong et al., 2010) and series estimation for quantile

regression (Belloni et al., 2019). There are several key improvements. First, having sharp rate

conditions allows us to accommodate p = 0, which is generally excluded by the prior literature

but necessary for binned scatter plots. Note that these theorems give approximations for the

entire t-statistic process, and not just functionals thereof, under such weak conditions. Prior

work has obtained such sharp results only for the supremum of the process. Further, we

allow for random partitioning (i.e. series estimation with data-dependent basis functions),

which represents a major technical hurdle, and also allow for additional control variables.

In fact, beyond being ruled out by prior work, the randomness in the basis functions

requires a novel theoretical approach. The key motivation behind this approach is that the

basis functions b̂
(v)
p (x) do not converge uniformly to a nonrandom counterpart, due to the

sharp discontinuity of the (random) indicator functions. It is not possible to obtain the

uniform results of Theorem 1 (or the strong approximations below) by expanding around a

nonrandom limit. Thus b̂
(v)
p (x) is left as random in the Bahadur representation, including in

the matrices Q̄p and Σ̄p. This further separates our results from prior literature. The more

general theorems in the SA are followed by remarks detailing how our work improves on the

relevant literature in each case.

4 Tuning Parameter Selection

We can use our theoretical results from the previous section to directly inform implementa-

tion in empirical applications. Our first task is selecting the number of bins. The choice of J

determines both the visual and statistical properties of the estimator. Consistent estimation
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and valid inference is possible for a range of diverging sequences of J , but this does not pro-

vide sufficiently precise guidance for implementation. Thus, our first methodological result

is a Nagar-type integrated mean squared error expansion that enables an optimal choice of

J in empirical applications.

To obtain the result, we need one further assumption to characterize the leading terms of

the expansion. Intuitively, we require that the random partition ∆̂ “converges” to a fixed

one which obeys the same restrictions as in Assumption 3. This assumption is not needed

for any other results.

Assumption 4. There exists a non-random partition ∆0 = {B1, · · · ,BJ} with Bj = [τj−1, τj)

for j ≤ J − 1 and BJ = [τJ−1, τJ ] such that max1≤j≤J |τj − τj−1| ≤ Cmin1≤j≤J |τj − τj−1|, for

an absolute constant C > 0 and max1≤j≤J |τ̂j − τj| = oP(J
−1).

This condition trivially holds for well-behaved nonrandom partitions, but also holds for

the leading case of quantile-spacing, since sample quantiles converge to their population

counterparts. In more general cases with data-driven partitions this condition could fail.

However, all our other results remain valid, and furthermore, even if this condition fails a

rule-of-thumb choice of J is available, which has the optimal rate but suboptimal constants.

See Section SA-4.2 for discussion.

Our IMSE result for ϑ̂p(x, ŵ) is given by the following. The corresponding results for

µ̂
(v)
p (x) and ζ̂p(x, ŵ) are stated in Theorem SA-3.4.

Theorem 3. Set ω(x) to be a continuous weighting function over X bounded away from zero.

Suppose that Assumptions 1, 2, 3, and 4 hold, and let J
ν

ν−2 log n+J
2ν
ν−1 (log n)

ν
ν−1+J(log n)7 =

o(n) and log n = o(
√
J), and ∥ŵ − w∥ = oP(

√
J/n+ J−p−1). Then,

∫
X

(
ϑ̂p(x, ŵ)− ϑ0(x,w)

)2

ω(x)dx = AISEϑ + oP

(J
n
+ J−2(p+1)

)
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where AISEϑ obeys

E[AISEϑ|{(xi,w′
i)
′}ni=1, ∆̂] =

J

n
Vn(p) + J−2(p+1)Bn(p) + oP

(J
n
+ J−2(p+1)

)
,

for nonrandom terms Vn(p) and Bn(p) shown in Theorem SA-3.4 that are bounded and

nonzero in general.

This result is stated in terms of J , as it is the tuning parameter, but the rates and

constants depend on the fixed polynomial order p (recall that we set p = s, see Section 2.1).

An L2 convergence rate immediately follows from this result. An L∞ convergence rate is

also available in the SA (Corollary SA-3.1). This theorem, and the L2 and L∞ rates, are

new to the literature, even in the case of non-random partitioning and without covariate

adjustment, for nonlinear series estimators and binscatter methods.

The practical consequence of Theorem 3 is that we can balance the (squared) bias and

variance to obtain an IMSE-optimal choice of J , which is given by

JIMSE(p) :=

(
2(p+ 1)Bn(p)

Vn(p)

) 1
2p+3

n
1

2p+3 . (4.1)

Implementing binscatter with this J is optimal in the sense of providing the IMSE-optimal

estimate of the unknown function ϑ0(·,w). In the next section we discuss the use of JIMSE(p)

for inference, where, as is typical, a bias correction must be applied. A feasible version of

JIMSE(p) is described in Section SA-4 and implemented in the binsreg package (Cattaneo

et al., 2024a). Section SA-4.3 discusses binned scatter plots with a fixed choice of J , which

can be visually appealing and interpretable in some applications.

Figure 2 demonstrates the use of the optimal J for quantile estimation (see Figure 1(d)

for the mean). Quantile regression can be used to visualize the spread of the conditional

distribution. Observe that Figure 2 restores the visualization of the variability in the data

that is present in Figure 1(a) but hidden by the averaging in Figure 1(c). Figure 2(a) shows

that there is much larger variance in the fraction insured in lower income areas, but Figure
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implemented in the binsreg package, but omitted here to save space.

A key element of our uniform inference results—from a practical point of view—is the

pairing of a feasible tuning parameter choice with valid inference. To give the most accurate

estimate, and therefore also visualization, of ϑ0(x,w) we prefer to use JIMSE(p) of (4.1).

However, as is typical for nonparametric problems, the (I)MSE-optimal tuning parameter

choice delivers invalid inference, as it fails to eliminate a first-order bias. We therefore use

robust bias correction to ensure that JIMSE(p) remains a valid choice across all uses, delivering

optimal estimation and valid inference. With this eye toward practicality, we state all results

below specifying J = JIMSE(p), but the SA gives the more general results under mild rate

restrictions on J .

Bias correction involves estimating, and removing, the leading smoothing bias term, and

is made “robust” by correcting the standard errors to account for the additional sampling

variability that has been introduced. Robust bias correction has theoretically superior higher-

order inference properties (Calonico et al., 2018, 2022), performs well in simulations, and has

been empirically validated in specific contexts (Hyytinen et al., 2018). Robust bias correction

is operationalized in the present context by (i) selecting a degree p and creating a partition

∆̂ based on JIMSE(p) to form the optimal point estimate of ϑ̂p(x, ŵ) and then (ii) conducting

inference using Tϑ,p+1(x) (or its feasible analogue Ẑϑ,p+1(x)), i.e. the statistic formed using

a higher-degree polynomial but the partitioning scheme based on p in (i): ∆̂ = ∆̂(JIMSE(p)).

Any higher-degree polynomial may be used, but p+ 1 is simple and robust. Cattaneo et al.

(2020) give further discussion of robust bias correction in the context of partition regression,

including alternative strategies.

5.1 Confidence Bands

Our first uniform inference result delivers confidence bands for the functions ϑ0(x,w), µ
(v)
0 (x),

and ζ0(x,w). Confidence bands are similar in spirit as the more familiar concept of confi-

dence intervals, but instead cover the entire function (uniformly over x ∈ X ) with a prespec-
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ified probability. Confidence bands are the appropriate tool for visualizing the uncertainty

around the estimated function. The size of the band also changes to reflect the presence

of heteroskedasticity in the data. These bands can be used directly to identify interesting

or important features of the function, for example, regions where it is statistically indistin-

guishable from zero or from a constant function. Bands are also useful for assessing the

functional form or shape, such as regions of linearity or monotonicity, and therefore visually

complement the formal hypothesis tests we introduce below.

The confidence bands are built from Theorem 2, coupled with robust bias correction, as

discussed above. Confidence bands are defined as the area between an upper and lower

bounding function. Recall that we employ robust bias correction, so that ϑ̂p+1(x, ŵ) is the

bias-corrected version of ϑ̂p(x, ŵ), and is thus the “center” of the confidence band, and

using Ω̂ϑ,p+1(x) in the standard error accounts for the additional variability. The robust

bias-corrected confidence band for ϑ0(x,w) is given by

Îϑ,p+1(x) =
[
ϑ̂p+1(x, ŵ)± cϑ

√
Ω̂ϑ,p+1(x)/n

]
, (5.1)

where the critical value is determined by

cϑ = inf

{
c ∈ R+ : P

[
sup
x∈X

|Ẑϑ,p+1(x)| ≤ c

∣∣∣∣ {(yi, xi,w′
i)
′}ni=1, ∆̂

]
≥ 1− α

}
. (5.2)

The asymptotic validity of this confidence band follows from Theorem 2, which allows us to

approximate the distribution of the supremum of Tϑ,p+1(x) by applying the same functional

to Ẑϑ,p+1(x). This yields the following result. Here we assume directly that the optimal

J is used. Theorem SA-3.8 states a more general result, valid for a range of J , as well as

inference results for µ
(v)
0 (x) and ζ0(x,w).

Theorem 4. Set J = JIMSE(p). Suppose that Assumptions 1, 2, and 3 hold, with p + 1 in

place of p and ν > 3, and let ∥ŵ−w∥ = oP(
√
J/(n log J)) and ∥γ̂−γ0∥ = oP(

√
J/(n log J)).
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Then, for Îϑ,p+1(x) defined in (5.1),

P
[
ϑ0(x,w) ∈ Îϑ,p+1(x), for all x ∈ X

]
= 1− α + o(1).

This result establishes valid confidence bands for generalized, covariate-adjusted binscat-

ters. We can use this result to visually assess uncertainty about the form and shape of the

regression function. One can visually “test” hypotheses of interest, though formal testing

(Section 5.2) is recommended. Plotting both the estimate ϑ̂p(x, ŵ) and the band Îϑ,p+1(x) is

advisable in applications because doing so presents both the IMSE-optimal point estimate

and a valid measure of uncertainty (and one that uses the same bins).

In nonlinear models, particularly in social sciences, partial effects are often the preferred

way of summarizing the relationship (causal or not) of xi to yi, controlling for wi. In our

setting this corresponds to the estimate of ζ0(x,w) and its associated confidence band. When

xi is a treatment variable, ζ0(x,w) captures the effect of increasing the treatment dosage,

and the band can help identify regions of X with the largest effects, or any other noteworthy

shape.

Figure 3 shows examples of confidence bands using our running empirical application.

The confidence band in Figure 3(a) displays the uncertainty surrounding the estimate first

shown in Figure 1(d). The presence of the Medicaid program is clearly delineated by the

shape of the band at lower income levels. From the band we can immediately conclude that

the relationship is nonmonotonic. This is further emphasized in Figure 3(b), showing the

marginal effect. Using the bands, we can reject the null hypothesis of monotonicity as the

band lies completely on either side of zero at low and high income levels.

There are two features of our confidence bands that warrant mention. First, the user-

selected point of evaluation w can impact the shape, placement, and size, of the confidence

band. One might expect that since the additional controls are modeled as additively linear,

the evaluation point w (and the coefficient γ0) should not impact conclusions about the
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nonparametric relationship between y and x. But this intuition overlooks the fact that the

function µ0(x) is only defined relative to howwi is coded. For example, ifwi contains a binary

variable indicating groups of substantially different sizes, then the estimation uncertainty will

be different between the two groups. This can cause a level shift in µ̂
(v)
p (x) and alter the

uncertainty around the estimate. For ϑ0(x,w) and ζ0(x,w), the shape may also change.

This impacts all aspects of inference, both visual and the formal tests below. This is not

particular to our method; it is always present in analyses of models like (2.1).

Second, the bias correction may result in the point estimate lying outside the confidence

band. This occurs in regions of high bias. This is formally correct but can be visually

unappealing. Figure 3(b) shows an example of this phenomenon. This can arise in any

application of bias correction methods, and is not necessarily a failing: the point estimate

remains IMSE-optimal and inference remains valid.

Figure 3: Confidence Bands. This figure illustrates confidence bands in a nonlinear binned
scatter plot using the ACS data. Panel (a) shows the point estimate (dots) and robust bias corrected
confidence band (shaded region) for the conditional mean function with no controls, i.e., ϑ0(x) =
η(µ0(x)), while panel (b) shows the corresponding point estimate and confidence band for the
marginal effect, ζ0(x). Shaded regions denote 95% confidence bands and are based on 50,000
random draws.

(a) Conditional Mean (b) Marginal Effect
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5.2 Hypothesis Testing

We also provide formal hypothesis tests for substantive questions including functional form

or shape restrictions for ϑ0(x,w), µ0(x), and ζ0(x,w). Our discussion here is brief. Full

details are given in the SA.

A leading case is testing a parametric functional form for µ0(x). This is a two-sided testing

problem where under the null there exists some finite-dimensional parameter θ such that

µ0(x) = m(x;θ), uniformly in x ∈ X (we can also test any derivative of µ0(x)). The testing

problem is

Ḣµ
0 : sup

x∈X

∣∣∣µ0(x)−m(x;θ)
∣∣∣ = 0, for some θ, vs.

Ḣµ
A : sup

x∈X

∣∣∣µ0(x)−m(x;θ)
∣∣∣ > 0, for all θ.

This test formalizes the notion of visual inspection in plots like Figure 1(c) and (d), beyond

what is already done by adding a confidence band. We test this hypothesis using the statistic

Ṫµ,p+1(x) :=
µ̂p+1(x)−m(x; θ̃)√

Ω̂µ,p+1(x)/n
,

where θ̃ and γ̃ are estimators of θ and γ0 that are consistent under Ḣµ
0 where θ0(x,w) =

m(x;θ) +w′γ0. Theorem 2 again provides the tools to obtain the appropriate critical value.

Theorem SA-3.9 gives the formal result showing size control and consistency of the test, as

well as the corresponding tests for ϑ0(x,w) and ζ0(x,w). The tests can be performed using

any Lq norm for q ≥ 1, instead of L∞ as shown above. Last, we also provide for testing shape

restrictions, which are conceptually similar but are generally one-sided testing problems. A

leading example would be testing monotonicity of ϑ0(x,w) or ζ0(x,w).

Table 1 shows several testing examples using the L∞ norm. Consider first the left column

of results. We test against the linear specification model, formalizing the visual compari-

son in Figure 1(d). We also test against a cubic (in x) logistic quasi-likelihood model for
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added flexibility. Both parametric specifications are rejected, and moreover, also rejected

when including other controls. This highlights the need for nonparametric modeling in this

application. Finally we test the substantive null hypothesis that the uninsuredness rate is

monotonically decreasing with income. This null is also strongly rejected due to the existence

of Medicaid. This motivates the right column of results, where we repeat the analysis after

restricting the sample to zip codes with per capita income above 138% of the 2013–2017

average federal poverty line for a single-person household ($16,248). This is the cutoff for

expanded Medicaid eligibility based only on income. When we restrict to this sample, which

diminishes the influence of the Medicaid program, we fail to reject the null hypothesis of a

monotonic decline, but still reject the parametric specifications. This aligns with the need

for flexible estimation and matches the conclusions we draw from the shape of the confidence

bands shown in Figure 3.

Table 1: Specification and Shape Testing

Full Sample Above Income Cutoff

Test Stat. p-value ĴIMSE Test Stat. p-value ĴIMSE
Test of Linear Fit

No Covariates 3113.083 0.000 80 4315.983 0.000 40

Covariates, ŵ = w̄ 1979.468 0.000 22 2908.763 0.000 12

Test of Cubic Fit

No Covariates 2245.499 0.000 80 14814.862 0.000 40

Covariates, ŵ = w̄ 1981.105 0.000 22 3587.529 0.000 12

Test of Monotonic Decline

No Covariates 23.991 0.000 16 0.644 0.998 10

Covariates, ŵ = w̄ 6.997 0.000 13 -0.016 1.000 8

Notes. This table reports the test statistics and associated p-values along with the IMSE-optimal choice of J
from hypothesis tests of parametric specifications and shape restrictions using the ACS data. The first and
second panels report test results for the null hypotheses of linear and cubic (in x) logistic quasi-likelihood
models, respectively, while the third panel reports results for the null hypothesis of a monotonic decline
in the level (i.e., negative derivative). All tests are performed with and without control variables (control
variables are same as in Figure 2). The left panel (“Full Sample”) reports results for the full sample whereas
the right panel (“Above Income Cutoff”) restricts to the sample of zip codes with per capita income above
$16,248. All p-values are based on 50,000 random draws.
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5.3 Multi-Sample Comparisons

Our results extend to comparisons between different samples, or groups, within the data.

This is a common goal in program evaluation and causal inference settings. With discrete

(e.g., binary) treatments, the groups are defined by treatment arms and the differences

define heterogeneous (in xi) effects. In the continuous case, the grouping is the dimension

of heterogeneity and xi is the treatment. Our results extend naturally to this setting. For

a grouping indicator ti = 0, . . . , L, we replace the scalar index in the model (2.1) with

θ0(xi,wi, ti) :=
∑L

t=0 1{ti = t}θ0,t(xi,wi), where each θ0,t(xi,wi) = µ0,t(xi) + w′
iγ0,t. The

level and marginal effect can then be defined groupwise, as ϑ0,t(x,w) = η(θ0,t(x,w)) and

ζ0,t(x,w) = η(1)(θ0,t(x,w))µ
(1)
0,t (x) for some evaluation point w of control variables.

For example, in a randomized experiment ϑ0,1(x,w) − ϑ0,0(x,w) is the conditional av-

erage treatment effect (CATE) function, and the binscatter naturally captures treatment

effect heterogeneity along the xi dimension holding fixed wi = w. The rate of change in

this heterogeneity is ζ0,1(x,w) − ζ0,0(x,w). Our methods can be used to formally test the

null hypothesis that ϑ0,1(x,w) = ϑ0,0(x,w) for all x ∈ X , which captures the idea of no

(heterogeneous) treatment effect. As a second example, our theory can be used to quantify

uncertainty for the largest heterogeneous treatment effect:

x̂⋆ = arg sup
x∈X

∣∣ϑ̂0,1(x,w)− ϑ̂0,0(x,w)
∣∣.

These and many other problems of interest in applied microeconometrics concern the uniform

discrepancy of two or more binscatter function estimators, which can be analyzed using our

strong approximation and related theoretical results in the supplemental appendix. We

do not provide further details here to conserve space, but our software implements several

multi-sample estimation, uncertainty quantification, and hypothesis testing procedures.

Figure 4 shows an example of this type of analysis. We divide states into two groups

based on their population density, with low and high density states as those with population
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densities below or above 100 people per square mile, respectively. Density is defined as the

average population per square mile, and the data is available from the Census Bureau. Panel

(a) shows ϑ̂t(x) for each group, i.e. without controls, while panel (b) adds controls and shows

ϑ̂t(x, ŵ), with ŵ set to the sample mean. The point estimates show higher uninsured rates

in zip codes in low population density states as compared to high density states. Without

controls, there is generally overlap in the confidence bands except for very low incomes. In

contrast, when covariates are added, there is a much clearer delineation between the two

groups at all but the lowest of income levels. This is made clear in panels (c) and (d),

which plot the point estimate of the difference (the CATE) and the associated confidence

band. The null hypothesis that ϑ0,1(x,w) = ϑ0,0(x,w) for all x ∈ X is rejected in both cases,

with test statistics of 7.719 and 8.308, respectively, and negligible p-values. Multi-sample

comparisons share the same sensitivity to the chosen evaluation point as discussed above.

These issues are unavoidable; researchers must be mindful when implementing the tests and

interpreting the results.

6 Conclusion

With the rise of large data sets, new visualization tools, such as binned scatter plots, have

emerged and gained in popularity. This paper has thoroughly studied binned scatter plots

in nonlinear, nonsmooth regression models. Our main contributions are to propose novel

nonlinear binscatter methods, together with IMSE-optimal tuning parameter selection and

uniform inference methods, including valid confidence bands and functional testing. Our

companion binsreg software package makes these tools available for applications.

One avenue for future work would be to generalize the analysis beyond a scalar covariate

of interest. For example, in two dimensions such an approach would produce “heat maps”

which are the bivariate extension of binned scatter plots. Extending our results to that case

would be a valuable addition to the practitioner’s toolkit.
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Figure 4: Two Sample Comparison. This figure uses the same ACS data to compare areas in
low density states (blue) and high density states (orange). Low density states are defined as those
with average population per square mile below 100. Panels (a) and (b) show the point estimate
(squares or dots) and robust bias corrected confidence band (shaded region) for each group, first
without control variables and then with controls added (the same controls as in Figure 2). Panels
(c) and (d) show the estimated difference (evaluated using the binning of the low density states)
and the associated confidence bands. Shaded regions denote 95% confidence bands and are based
on 50,000 random draws.

(a) Conditional means w/o controls (b) Conditional means w/ controls

(c) Difference of means w/o controls (d) Difference of means w/ controls
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SA-1 Introduction

This supplemental appendix is a comprehensive collection of all our new theoretical results for

nonlinear binscatter estimators with semi-linear covariate-adjustment and random partitioning.

Many of our results contribute to the broader literature on nonparametric estimation and infer-

ence, particularly when using series estimators, and are thus of independent interest outside of

binned scatter plots. To help place our results in the literature, we include a remark labelled

“Improvements over literature” at the end of each technical subsection that discusses in detail the

technical improvements presented in that subsection and gives related references.

Here we give a brief summary of this appendix, including pointers to some of the major new

results. We proceed as follows. The next subsection lists notation used throughout; further no-

tation is defined throughout Section SA-2 and at the outset of Section SA-3. Then, Section SA-2

describes the setup for nonlinear binscatter methods, including the statistical model, parameters of

interest, and assumptions, as well as the (random) partitioning and estimation details. Specifically,

Assumption SA-DGP imposes some basic conditions on the data generating process. Assumption

SA-SM imposes some technical conditions that characterizes and restricts the statistical model

of interest. The loss function specified there is general enough to cover many practically impor-

tant examples such as mean regression, quantile regression, logit/probit estimation, and Huber

regression. Assumption SA-HLE imposes some mild high-level conditions on the estimation proce-

dure. Assumption SA-RP summarizes the key conditions on the partitioning scheme used in our

theory. We allow for a large class of random partitions. Importantly, the “convergence” of the

random partition (Assumption SA-RP(ii)) is not necessary for most of our main theoretical results,

thereby allowing for flexible data-driven partitioning methods, including certain recursive adaptive

partitioning methods: see Devroye et al. (2013), Zhang and Singer (2010), and references therein.

Section SA-3.1 presents some preliminary technical lemmas for analyzing nonlinear binscatter

(and thus also partitioning-based estimators more broadly). New results include precise non-

asymptotic concentration results related to Gram matrices (Lemma SA-3.1), asymptotic variances

(Lemmas SA-3.2 and SA-3.3), approximation errors (Lemma SA-3.4), and uniform convergence

(Lemma SA-3.5). Sharp control of these objects is a crucial ingredient for obtaining results under

weak conditions, as below.
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Section SA-3.2 presents a tight uniform (in x) Bahadur representation for nonlinear binscatter

(Theorem SA-3.1). This is our first main result. We allow for random partitions and much weaker

rate restrictions (on the tuning parameter J) than previously imposed in the literature, in addition

to additional controls. The data-dependent partitioning means our series estimator uses random

basis functions, and this is entirely new. In terms of tuning parameter rate restrictions, previous

results required J4/n → 0 (up to log(n) terms) or something stricter, while our restriction is that

J
2ν
ν−1 /n→ 0 (up to log(n) terms), with ν > 2 denoting the number of finite moments of the “score”,

and thus may be substantially weaker. Note that our class of models is often broader than prior

work also. Importantly, our results can now allow for piecewise constant binscatters, i.e., with

degree p = 0, which is excluded by prior results in the literature (i.e., for previous technical results

there was no sequence J → ∞ such that the bias and variance are simultaneously controlled).

In addition, employing our novel uniform Bahadur representation, we can establish the uniform

convergence rates of nonlinear binscatter (Corollary SA-3.1) and variance estimators (Theorem

SA-3.2) under similarly weak restrictions.

Section SA-3.3 studies the pointwise distributional approximation for nonlinear binscatter esti-

mators. These results are omitted from the main paper to save space, but are standard properties of

interest in the nonparametrics literature and thus are included for completeness. The main result is

Theorem SA-3.3, which establishes pointwise asymptotic Normality for our point estimators, again

allowing for random (and possibly “non-convergent”) partitions, and under mild rate restrictions

similar to those for the (uniform) Bahadur representation.

Section SA-3.4 presents a new Nagar-type approximate IMSE expansion for nonlinear binscatter

estimators with semi-linear covariate-adjustment and random partitions (Theorem SA-3.4), which

has no antecedent in the literature. Our results can be used to design data-driven procedures for

selecting IMSE-optimal choices of tuning parameters for nonlinear binscatter. Again, these results

are novel in their breadth, the weakness of the assumptions, and the conditions on the partitioning.

Here we do require an extra assumption on the partitioning in order to characterize the leading

terms in the expansion: intuitively, the random partitioning must “settle” to a population partition

so that the leading constants of the expansion can be expressed. For example, sample quantiles

converge to population quantiles, so this assumption is satisfied.

Uniform inference is dealt with in the next several sections of this appendix. First, Section SA-3.5
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establishes a uniform (in x) distributional approximation for nonlinear binscatter estimators. The

two main results, which are combined into one in the main text (Theorem 2), are the (conditional)

strong approximation in Theorem SA-3.5 and the feasible implementation thereof in Theorem SA-

3.6. Again, We allow for a large class of random partitions, a broad class of (possibly) nonlinear and

nonsmooth models, and additional controls. Here the partitions do not need to be “convergent” in

any sense. These results are obtained under weak assumptions, including in particular mild rate

restrictions, as in the case of the uniform Bahadur representation, all of which improves on the

literature in various directions as explained in the text below. Finally, Theorem SA-3.7 shows a

distributional approximation for the suprema of the t-statistic processes in the case of the convergent

partition (as in the previous paragraph).

Sections SA-3.6–SA-3.8 employ the strong approximation results to study uniform inference for

various parameters of interest in the specific context of nonlinear binscatter. These results rely

on, and inherit the novelty of, Theorems SA-3.5 and SA-3.6. New results include valid uniform

confidence bands (Theorem SA-3.8), consistent hypothesis tests about parametric specification

(Theorem SA-3.9) and tests for shape restrictions (Theorem SA-3.10). All these results explicitly

account for the possibly random partitioning scheme and semi-linear covariate-adjustment with

random evaluation points.

Section SA-4 discusses implementation details for nonlinear binscatter, including standard error

computation, feasible data-driven number of bins selector, and choices of polynomial orders given

a fixed number of bins. For a more explicit treatment of the package binsreg per se, see Cattaneo

et al. (2024a) and https://nppackages.github.io/binsreg/.

Finally, Section SA-5 contains the proofs for all the technical results in Section SA-3.

SA-1.1 Notation

See van der Vaart and Wellner (1996), Bhatia (2013), Giné and Nickl (2016), and references therein,

for background definitions.

Matrices and Norms. For (column) vectors, ∥ · ∥ denotes the Euclidean norm, ∥ · ∥1 denotes

the L1 norm, ∥ · ∥∞ denotes the sup-norm, and ∥ · ∥0 denotes the number of nonzeros. For matrices,

∥ · ∥ is the operator matrix norm induced by the L2 norm, and ∥ · ∥∞ is the matrix norm induced

by the supremum norm, i.e., the maximum absolute row sum of a matrix. For a square matrix
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A, λmax(A) and λmin(A) are the maximum and minimum eigenvalues of A, respectively. [A]ij

denotes the (i, j)th entry of a generic matrix A. We will use SL to denote the unit circle in

RL, i.e., ∥a∥ = 1 for any a ∈ SL. For a real-valued function g(·) defined on a measure space

Z, let ∥g∥Q,2 := (
∫
Z |g|2dQ)1/2 be its L2-norm with respect to the measure Q. In addition, let

∥g∥∞ = supz∈Z |g(z)| be L∞-norm of g(·), and if g is a univariate function, let g(v)(z) = dvg(z)/dzv

be the vth derivative for v ≥ 0.

Asymptotics. For sequences of numbers or random variables, we use ln ≲ mn to denote that

lim supn |ln/mn| is finite, ln ≲P mn or ln = OP(mn) to denote lim supε→∞ lim supn P[|ln/mn| ≥ ε] =

0, ln = o(mn) implies ln/mn → 0, and ln = oP(mn) implies that ln/mn →P 0, where →P denotes

convergence in probability. Accordingly, we write ln ≳ mn if mn ≲ ln, and ln ≳P mn if mn ≲P ln.

ln ≍ mn implies that ln ≲ mn and mn ≲ ln.

Empirical Process. We employ standard empirical process notation: En[g(vi)] =
1
n

∑n
i=1 g(vi),

and Gn[g(vi)] =
1√
n

∑n
i=1(g(vi)−E[g(vi)]) for a sequence of random variables {vi}ni=1. In addition,

we employ the notion of covering number extensively in the proofs. Specifically, given a measurable

space (A,A) and a suitably measurable class of functions G mapping A to R equipped with a

measurable envelop function Ḡ(z) ≥ supg∈G |g(z)|, the covering number of N(G, L2(Q), ε) is the

minimal number of L2(Q)-balls of radius ε needed to cover G for a measure Q. The covering number

of G relative to the envelope is denoted as N(G, L2(Q), ε∥Ḡ∥Q,2).

Other. ⌈z⌉ outputs the smallest integer no less than z and a ∧ b = min{a, b}. “w.p.a. 1” means

“with probability approaching one”.

SA-2 Setup

Suppose that (yi, xi,w
′
i), 1 ≤ i ≤ n, is a random sample where yi ∈ Y is a scalar response variable,

xi ∈ X is a scalar covariate, and wi ∈ W is a vector of additional control variables of dimension d.

Let D = [(yi, xi,w
′
i)
′ : i = 1, 2, . . . , n].

For a loss function ρ(·; ·) and a strictly monotonic transformation function η(·), define

(µ0(·),γ0) = argmin
µ∈M,γ∈Rd

E
[
ρ
(
yi; η(µ(xi) +w′

iγ)
)]
, (SA-2.1)
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where M is a space of functions satisfying certain smoothness conditions to be specified later.

This setup is general. For example, consider γ0 = 0. If ρ(·; ·) is a squared loss and η(·) is the

identity function, µ0(x) is the conditional expectation of yi given xi = x. Let 1(·) denote the

indicator function. If ρ(y; η) = (q − 1(y < η))(y − η) for some 0 < q < 1 and η(·) is an identity

function, then µ0(x) is the qth conditional quantile of yi given xi = x. Introducing a transformation

function η(·) is useful. For instance, it may accommodate logistic regression for binary responses.

When γ0 ̸= 0, the parametric and the nonparametric components are additively separable, and

thus (SA-2.1) becomes a generalized partially linear model.

Binscatter estimators are typically constructed based on a (possibly random) partition of the

support of the covariate xi. Specifically, the relevant support of xi is partitioned into J disjoint

intervals, leading to the partitioning scheme ∆̂ = {B̂1, B̂2, . . . , B̂J}, where

B̂j =


[τ̂j−1, τ̂j) if j = 1, · · · , J − 1

[τ̂J−1, τ̂J ] if j = J

,

One popular choice in binscatter applications is the quantile-based partition: τ̂j = F̂−1
X (j/J) with

F̂X(u) = n−1
∑n

i=1 1(xi ≤ u) the empirical cumulative distribution function and F̂−1
X its general-

ized inverse. Our theory is general enough to cover other partitioning schemes satisfying certain

regularity conditions specified below. An innovation herein is accounting for the additional ran-

domness from the partition ∆̂. The number of bins J plays the role of the tuning parameter for

the binscatter method, and is assumed to diverge: J → ∞ as n→ ∞ throughout the supplement,

unless explicitly stated otherwise.

The piecewise polynomial basis of degree p, for some choice of p = 0, 1, 2, . . . , is defined as

[
1B̂1

(x) 1B̂2
(x) · · · 1B̂J

(x)

]′
⊗
[
1 x · · · xp

]′
,

where 1A(x) = 1(x ∈ A) and ⊗ is the Kronecker product operator. For convenience of later

analysis, we use b̂p,0(x) to denote a standardized rotated basis, the jth element of which is given by

√
J × 1B̂j̄

(x)×
(x− τ̂j̄−1

ĥj̄

)j−1−(j̄−1)(p+1)
, j = 1, · · · , (p+ 1)J,
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where j̄ = ⌈j/(p+ 1)⌉, ⌈·⌉ is the ceiling operator, and ĥj̄ = τ̂j̄ − τ̂j̄−1. Thus, each local polynomial

is centered at the start of each bin and scaled by the length of the bin.
√
J is an additional scaling

factor which helps simplify some expressions of our results. The standardized rotated basis b̂p,0(x)

is equivalent to the original piecewise polynomial basis in the sense that they represent the same

(linear) function space.

To impose the restriction that the estimated function is (s− 1)-times continuously differentiable

for 1 ≤ s ≤ p, we introduce the following basis

b̂p,s(x) =
(
b̂p,s,1(x), . . . , b̂p,s,Kp,s(x)

)′
= T̂sb̂p,0(x), Kp,s = (p+ 1)J − s(J − 1),

where T̂s := T̂s(∆̂) is a Kp,s × (p + 1)J matrix depending on ∆̂, which transforms a piecewise

polynomial basis into a smoothed binscatter basis. Some useful properties of T̂s are given in

Lemma SA-5.3 in Section SA-5, and the explicit representation of T̂s is available in the proof of

Lemma SA-3.2 in Cattaneo, Crump, Farrell and Feng (2024b). When s = 0, we let T̂0 = I(p+1)J ,

the identity matrix of dimension (p+1)J . When s = p, b̂p,s(x) is the well-known B-spline basis of

order p+ 1 with simple knots, which is (p− 1)-times continuously differentiable. When 0 < s < p,

they can be defined similarly as B-splines with knots of certain multiplicities. See Definition 4.1 in

Section 4 of Schumaker (2007) for more details about spline functions. We require s ≤ p, since if

s = p+ 1, b̂p,s(x) reduces to a global polynomial basis of degree p.

Given a choice of basis, we consider the following generalized binscatter estimator:

µ̂(v)p,s(x) := b̂(v)
p,s(x)

′β̂,

 β̂

γ̂

 = argmin
β,γ

n∑
i=1

ρ
(
yi; η

(
b̂p,s(xi)

′β +w′
iγ
))
, (SA-2.2)

where b̂
(v)
p,s(x) =

dv

dxv b̂p,s(x) for some v ∈ Z+ such that v ≤ p. This estimator can be written as:

µ̂(v)p,s(x) = b̂(v)
p,s(x)

′β̂, β̂ := β̂(γ̂) := argmin
β∈RKp,s

n∑
i=1

ρ
(
yi; η(b̂p,s(xi)

′β +w′
iγ̂)

)
. (SA-2.3)

The representation (SA-2.3) allows us to be more general and agnostic about the estimation of γ0,

and also simplifies some of the proofs. More specifically, our theory requires only a sufficiently fast

convergence rate of γ̂ (see Assumption SA-HLE below), which in nonlinear estimation models cases
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can be justified in different ways, e.g., joint estimation, backfitting, profiling, and split-sampling,

among other possibilities. Our software implementation (Cattaneo, Crump, Farrell and Feng,

2024a) relies on joint estimation, as done by the default base estimation packages in Python, R, and

Stata.

In this supplement, we focus on estimation and inference of the following three parameters:

(i) the nonparametric component µ
(v)
0 (x) for any v ≥ 0,

(ii) the level function ϑ0(x,w) = η(µ0(x) + w′γ0), and

(iii) the marginal effect ζ0(x,w) =
∂
∂xη(µ0(x) + w′γ0),

where w is a user-chosen evaluation point of the control variables, and thus these parameters are

viewed as functions of x only in our theory. Nevertheless, all our results are readily applied to other

linear or nonlinear transformations of µ0(x), such as the higher-order derivatives ∂v

∂xv η(µ0(x)+w′γ0).

Given the binscatter estimates µ̂p,s(x) and γ̂ in (SA-2.2), the estimators of the three parameters

defined above are given by

µ̂(v)p,s(x), ϑ̂p,s(x, ŵ) = η(µ̂p,s(x) + ŵ′γ̂), and ζ̂p,s(x, ŵ) = η(1)(µ̂p,s(x) + ŵ′γ̂)µ̂(1)p,s(x)

respectively, for some consistent estimate ŵ (non-random or generated based on {wi}ni=1) of the

evaluation point w. As a reminder, we need to require p ≥ v to get µ̂
(v)
p,s(x), p ≥ 0 to get ϑ̂p,s(x, ŵ),

and p ≥ 1 to get ζ̂p,s(x, ŵ).

Recall that in the main text we always set s = p and omit the dependence of estimators on

s. Thus, µ̂
(v)
p (x) = µ̂

(v)
p,p(x), ϑ̂p(x, ŵ) = ϑ̂p,p(x, ŵ), and ζ̂p(x, ŵ) = ζ̂p,p(x, ŵ). In this supplement,

however, all our results hold for a general choice of the degree and the smoothness of the basis. For

ease of notation, the subscripts p and s of the above estimators are dropped hereafter:

µ̂(v)(x) := µ̂(v)p,s(x), ϑ̂(x, ŵ) := ϑ̂p,s(x, ŵ), and ζ̂(x, ŵ) := ζ̂p,s(x, ŵ).

Remark SA-2.1 (Smoothness and Bias Correction). This supplemental appendix presents all

results under general choices of the number of bins J , the degree of the basis p, and the smoothness

of the basis s. By contrast, for simplicity, the main paper employs the basis with the maximum
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smoothness, i.e. choosing s = p, and considers the special case in which J is taken to be the

IMSE-optimal choice for a fixed p (see Theorem SA-3.4), and inference is conducted based on the

binscatter basis of degree (p + 1). Such a choice of J guarantees that the smoothing bias of the

binscatter estimator is negligible in inference under mild conditions and thus can be viewed as a

bias correction strategy. ⌟

We first assume the following basic conditions on the data generating process.

Assumption SA-DGP (Data Generating Process).

(i) {(yi, xi,w′
i) : 1 ≤ i ≤ n} are i.i.d. random vectors satisfying (SA-2.1) and supported on

Y × X ×W, where X is a compact interval and W is a compact set.

(ii) FX(x) := P[xi ≤ x] has a Lipschitz continuous (Lebesgue) density fX(x) bounded away from

zero on X .

(iii) FY |XW (y|xi,wi) := P[yi ≤ y|xi,wi] has a (conditional) density fY |XW (y|xi,wi) supported on

Yxw with respect to some sigma-finite measure, and supx∈X ,w∈W supy∈Yxw
fY |XW (y|x,w) ≲ 1.

Next, we impose several technical conditions related to the statistical model of interest.

Assumption SA-SM (Statistical Model).

(i) ρ(y; η) is absolutely continuous with respect to η ∈ R and admits a derivative ψ(y, η) :=

ψ†(y− η)ψ‡(η) almost everywhere. ψ‡(·) is continuously differentiable and strictly positive or

negative. ψ†(·) is Lipschitz continuous if FY |XW (y|xi,wi) does not have a Lebesgue density,

or piecewise Lipschitz with finitely many discontinuity points otherwise.

(ii) ρ(y; η(θ)) is convex with respect to θ. η(·) is strictly monotonic and three-times continuously

differentiable.

(iii) E[ψ(yi, η(µ0(xi)+w′
iγ0))|xi,wi] = 0. For σ2(x,w) := E[ψ(yi, η(µ0(xi)+w′

iγ0))
2|xi = x,wi =

w], infx∈X ,w∈W σ2(x,w) ≳ 1. E[η(1)(µ0(xi)+w′
iγ0)

2σ2(xi,wi)|xi = x] is Lipschitz continuous

on X , and supx∈X ,w∈W E[|ψ(yi, η(µ0(xi) + w′
iγ0))|ν |xi = x,wi = w] ≲ 1 for some ν > 2.

E[ψ(yi, η)|xi = x,wi = w] is twice continuously differentiable with respect to η.
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(iv) infx∈X ,w∈W κ(x,w) ≳ 1 and E[κ(xi,wi)|xi = x] is Lipschitz continuous on X where κ(x,w) :=

Ψ1(x,w; η(µ0(x)+w′γ0))(η
(1)(µ0(x)+w′γ0))

2, Ψ1(x,w; η) := ∂
∂ηΨ(x,w; η), and Ψ(x,w; η) :=

E[ψ(yi, η)|xi = x,wi = w].

(v) µ0(·) is ς-times continuously differentiable for some ς ≥ p+ 1.

Our next assumption imposes mild high-level conditions on the estimator γ̂ of the coefficient

vector γ0, the estimator ŵ of the evaluation point w for control variables, and the estimator of the

function Ψ1 defined previously in Assumption SA-SM(iv).

Assumption SA-HLE (High-Level Estimation Conditions).

(i) ∥γ̂ − γ0∥ ≲P rγ for rγ = o(
√
J/n+ J−p−1), and ∥ŵ − w∥ = oP(1).

(ii) For some estimator Ψ̂1 of Ψ1, ∥En[b̂p,s(xi)b̂p,s(xi)
′(κ̂(xi,wi) − κ(xi,wi))∥ ≲P J−p−1 +( J logn

n1−2/ν

)1/2
where κ̂(xi,wi) = Ψ̂1(xi,wi; η(µ̂(xi) +w′

iγ̂))(η
(1)(µ̂(xi) +w′

iγ̂))
2.

Note that Υ(x,w) = Ψ1(x,w; η(µ0(x)+w′γ0)) in the main paper to streamline the presentation.

Part (i) is a mild condition on the convergence of γ̂ and ŵ. Part (ii) is a high-level condition that

ensures we have a valid feasible estimator of the Gram matrix (Q̄ or Q0 defined at the outset

of Section SA-3 below). Note that the convergence rate of η(1)(µ̂(xi) + w′
iγ̂) can be deduced

from Corollary SA-3.1 below. Thus, part (ii) can be largely viewed as a restriction on Ψ̂1 only.

Note that Ψ̂1 does not have to be consistent for Ψ1 in any sense; it suffices that the estimator

En[b̂p,s(xi)b̂p,s(xi)
′κ̂(xi,wi)] based on Ψ̂1 as a whole is consistent. See Section SA-4 for several

examples of the estimator Ψ̂1.

SA-2.1 Partitions

We need some regularity conditions on the partitioning scheme, which can be verified in a case-

by-case basis. We first define a family of “quasi-uniform” partitions for some absolute constant

C > 0:

ΠC =
{
∆ :

max1≤j≤J hj(∆)

min1≤j≤J hj(∆)
≤ C

}
, (SA-2.4)

where hj(∆) denotes the length of the jth bin in the partition ∆. Roughly speaking, (SA-2.4)

says that the bins in any ∆ ∈ ΠC do not differ too much in length. Also, let X = [x1, . . . , xn]
′,

W = [w1, · · · ,wn]
′ and Y = [y1, · · · , yn]′.
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Assumption SA-RP (Random Partition).

(i) ∆̂ ⊥⊥ Y|(X,W) and ∆̂ ∈ ΠC w.p.a. 1 for some absolute constant C > 0.

(ii) There exists a non-random partition ∆0 = {B1, · · · ,BJ} with Bj = [τj−1, τj) for j ≤ J − 1

and BJ = [τJ−1, τJ ] such that
max1≤j≤J hj

min1≤j≤J hj
≤ cQU for some absolute constant cQU > 0, and

max1≤j≤J |ĥj − hj | ≲P J
−1rRP for rRP = o(1).

Part (i) is the key condition for our main results and will be imposed throughout. First, it

requires that the possibly random partition ∆̂ be independent of the outcomeY given the covariates

(X,W). This conditional independence assumption is trivially satisfied if ∆̂ is deterministic (e.g.,

equally-spaced partition) or depends on X and W only (e.g., quantile-spaced partition based on

X). It also holds if a sample splitting scheme is used: a subsample (including the information

about the outcome) is used for constructing the partition, and the other is employed to construct

the binscatter estimator (so that ∆̂ is independent of the data (X,W,Y)). Second, ∆̂ is required

to be “quasi-uniform” with large probability. It is trivially true for equally-spaced partitions and

can be verified for quantile-spaced partitions under the mild conditions on the covariates density

imposed before (see Lemma SA-5.2). However, this condition may be too restrictive for other

modern machine-learning-based partitioning methods, in which case some additional regularization

may be necessary to recover the quasi-uniformity property.

Part (ii) requires that the random partition ∆̂ “stabilizes” to a fixed one in large samples. This

is true if the partition is non-deterministic or generated by sample quantiles (since sample quantiles

converge to population quantiles), but more generally, it is not always possible. Fortunately, this

“convergence” requirement is not necessary for most of our main results (except Theorem SA-3.4

and Theorem SA-3.7). Thus, we will always make it clear if part (ii) of Assumption SA-RP is

imposed.

Given the random partition ∆̂, we use the notation E
∆̂
[·] to denote the expectation operator with

the partition ∆̂ viewed as fixed. To further simplify notation, let ĥj = τ̂j − τ̂j−1 be the width of the

jth bin B̂j , and when the “limiting” partition ∆0 = {B1, · · · ,BJ} is defined (Assumption SA-RP(ii)

holds), let hj be the width of Bj . Analogously to b̂p,s(x), bp,s(x) denotes the binscatter basis of

degree p that is (s−1)-times continuously differentiable and is constructed based on the nonrandom

partition ∆0. We sometimes write bp,s(x; ∆) = (bp,s,1(x; ∆), . . . , bp,s,Kp,s(x; ∆))′ to emphasize a
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binscatter basis is constructed based on a particular partition ∆. Therefore, b̂p,s(x) = bp,s(x; ∆̂)

and bp,s(x) = bp,s(x; ∆0). Accordingly, we use Ts to denote the transformation matrix based on

the non-random partition ∆0 (which transforms bp,0(x) to bp,s(x)).

SA-3 Main Results

We introduce the following quantities that will be extensively used throughout the supplement:

ηi = η(µ0(xi) +w′
iγ0), η̂i = η(µ̂(xi) +w′

iγ̂),

ηi,1 = η(1)(µ0(xi) +w′
iγ0), η̂i,1 = η(1)(µ̂(xi) +w′

iγ̂),

η0,1(x,w) = η(1)(µ0(x) + w′γ0), η̂0,1(x, ŵ) = η(1)(µ̂(x) + ŵ′γ̂),

µ̂(xi) = b̂p,s(xi)
′β̂, ϵi = yi − ηi, ϵ̂i = yi − η̂i,

Q̂p,s := Q̂p,s(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′Ψ̂1(xi,wi; η̂i)η̂

2
i,1],

Q̄p,s := Q̄p,s(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′Ψ1(xi,wi; ηi)η

2
i,1],

Q0,p,s := Qp,s(∆0) := E[bp,s(xi)bp,s(xi)
′Ψ1(xi,wi; ηi)η

2
i,1],

Σ̂p,s := Σ̂p,s(∆̂) := En[b̂p,s(xi)b̂p,s(xi)
′ψ(yi, η̂i)

2η̂2i,1],

Σ̄p,s := Σ̄p,s(∆̂) := En

[
E
[
b̂p,s(xi)b̂p,s(xi)

′ψ(yi, ηi)
2η2i,1

∣∣∣X,W]]
,

Σ0,p,s := Σp,s(∆0) := E
[
bp,s(xi)bp,s(xi)

′ψ(yi, ηi)
2η2i,1

]
,

Ω̂µ(v),p,s(x) := Ω̂µ(v),p,s(x; ∆̂) := b̂(v)
p,s(x)

′Q̂−1
p,sΣ̂p,sQ̂

−1
p,sb̂

(v)
p,s(x),

Ω̄µ(v),p,s(x) := Ω̄µ(v),p,s(x; ∆̂) := b̂(v)
p,s(x)

′Q̄−1
p,sΣ̄p,sQ̄

−1
p,sb̂

(v)
p,s(x),

Ωµ(v),p,s(x) := Ωµ(v),p,s(x; ∆̂) := b̂(v)
p,s(x)

′Q−1
0,p,sΣ0,p,sQ

−1
0,p,sb̂

(v)
p,s(x),

Ω̂ϑ,p,s(x) := Ω̂ϑ,p,s(x; ∆̂) := [η(1)(µ̂(x) + ŵ′γ̂)]2b̂p,s(x)
′Q̂−1

p,sΣ̂p,sQ̂
−1
p,sb̂p,s(x),

Ω̄ϑ,p,s(x) := Ω̄ϑ,p,s(x; ∆̂) := [η(1)(µ0(x) + w′γ0)]
2b̂p,s(x)

′Q̄−1
p,sΣ̄p,sQ̄

−1
p,sb̂p,s(x),

Ωϑ,p,s(x) := Ωϑ,p,s(x; ∆̂) := [η(1)(µ(x) + w′γ0)]
2b̂p,s(x)

′Q−1
0,p,sΣ0,p,sQ

−1
0,p,sb̂p,s(x),

Ω̂ζ,p,s(x) := Ω̂ζ,p,s(x; ∆̂) := [η(1)(µ̂(x) + ŵ′γ̂)]2b̂(1)
p,s(x)

′Q̂−1
p,sΣ̂p,sQ̂

−1
p,sb̂

(1)
p,s(x),

Ω̄ζ,p,s(x) := Ω̄ζ,p,s(x; ∆̂) := [η(1)(µ0(x) + w′γ0)]
2b̂(1)

p,s(x)
′Q̄−1

p,sΣ̄p,sQ̄
−1
p,sb̂

(1)
p,s(x), and

Ωζ,p,s(x) := Ωζ,p,s(x; ∆̂) := [η(1)(µ0(x) + w′γ0)]
2b̂(1)

p,s(x)
′Q−1

0,p,sΣ0,p,sQ
−1
0,p,sb̂

(1)
p,s(x).
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Recall that in the main text we always set s = p and omit the dependence on s whenever there

is no confusion. Thus,

Q̂p = Q̂p,p, Q̄p = Q̄p,p, Q0,p = Q0,p,p,

Σ̂p = Σ̂p,p, Σ̄p = Σ̄p,p, Σ0,p = Σ0,p,p,

Ω̂µ(v),p(x) = Ω̂µ(v),p,p(x), Ω̄µ(v),p(x) = Ω̄µ(v),p,p(x), Ωµ(v),p(x) = Ωµ(v),p,p(x),

Ω̂ϑ,p(x) = Ω̂ϑ,p,p(x), Ω̄ϑ,p(x) = Ω̄ϑ,p,p(x), Ωϑ,p(x) = Ωϑ,p,p(x),

Ω̂ζ,p(x) = Ω̂ζ,p,p(x), Ω̄ζ,p(x) = Ω̄ζ,p,p(x), and Ωζ,p(x) = Ωζ,p,p(x).

In this supplement, however, all our results hold for a general choice of the degree and the

smoothness of the basis. For ease of notation, the subscripts p and s of the above quantities are

dropped hereafter:

Q̂ = Q̂p,s, Q̄ = Q̄p,s, Q0 = Q0,p,s,

Σ̂ = Σ̂p,s, Σ̄ = Σ̄p,s, Σ0 = Σ0,p,s,

Ω̂µ(v)(x) = Ω̂µ(v),p,s(x), Ω̄µ(v)(x) = Ω̄µ(v),p,s(x), Ωµ(v)(x) = Ωµ(v),p,s(x),

Ω̂ϑ(x) = Ω̂ϑ,p,s(x), Ω̄ϑ(x) = Ω̄ϑ,p,s(x), Ωϑ(x) = Ωϑ,p,s(x),

Ω̂ζ(x) = Ω̂ζ,p,s(x), Ω̄ζ(x) = Ω̄ζ,p,s(x), and Ωζ(x) = Ωζ,p,s(x).

In addition, given the family ΠC of the quasi-uniform partitions defined in (SA-2.4), for any

∆ ∈ Π, we let β0(∆) ∈ RKp,s be any vector such that for every v ≤ p,

sup
x∈X

∣∣∣µ(v)0 (x)− b(v)
p,s(x; ∆)′β0(∆)

∣∣∣ ≲ J−p−1+v.

Let r0,v(x; ∆) = µ
(v)
0 (x) − b

(v)
p,s(x; ∆)′β0(∆) denote the corresponding approximation error. Ac-

cordingly, given the random partition ∆̂, we let β̂0 := β0(∆̂), and r̂0,v(x) = µ
(v)
0 (x) − b̂

(v)
p,s(x)′β̂0

denote the corresponding approximation error. The existence of such vectors is guaranteed by

Assumptions SA-DGP and SA-SM(v), and is verified in Lemma SA-5.5 in Section SA-5.
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SA-3.1 Preliminary Lemmas

Lemma SA-3.1 (Gram). Suppose that Assumptions SA-DGP, SA-SM, SA-HLE and SA-RP(i)

hold. If J log J
n = o(1), then

1 ≲ λmin(Q̄) ≤ λmax(Q̄) ≲ 1, [Q̄−1]ij ≲ ϱ|i−j| w.p.a. 1, and ∥Q̄−1∥∞ ≲P 1,

where ϱ ∈ (0, 1) is some absolute constant.

If, in addition, Assumption SA-RP(ii) holds. Then,

1 ≲ λmin(Q0) ≤ λmax(Q0) ≲ 1,

∥Q̄−Q0∥ ≲P

(
J log J

n

)1/2
+ rRP, and ∥Q̄−1 −Q−1

0 ∥∞ ≲P

(
J log J

n

)1/2
+ rRP.

The next lemma shows that the limiting variance is bounded from above and below.

Lemma SA-3.2 (Asymptotic Variance). Suppose that Assumptions SA-DGP, SA-SM, SA-HLE

and SA-RP(i) hold. If J log J
n = o(1), then w.p.a. 1,

J1+2v ≲ infx∈X Ω̄µ(v)(x) ≤ supx∈X Ω̄µ(v)(x) ≲ J1+2v,

J ≲ infx∈X Ω̄ϑ(x) ≤ supx∈X Ω̄ϑ(x) ≲ J,

J3 ≲ infx∈X Ω̄ζ(x) ≤ supx∈X Ω̄ζ(x) ≲ J3.

If, in addition, Assumption SA-RP(ii) holds, then w.p.a. 1,

J1+2v ≲ infx∈X Ωµ(v)(x) ≤ supx∈X Ωµ(v)(x) ≲ J1+2v,

J ≲ infx∈X Ωϑ(x) ≤ supx∈X Ωϑ(x) ≲ J,

J3 ≲ infx∈X Ωζ(x) ≤ supx∈X Ωζ(x) ≲ J3.

The next lemma gives a bound on the variance component of the nonlinear binscatter estimator.

Lemma SA-3.3 (Uniform Convergence: Variance). Suppose that Assumptions SA-DGP, SA-SM,

14



SA-HLE and SA-RP(i) hold. If J
ν

ν−2 log J
n = o(1), then

sup
x∈X

∣∣∣b̂(v)
p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(yi, ηi)]
∣∣∣ ≲P J

v
(J log J

n

)1/2
.

Lemma SA-3.4 (Projection of Approximation Error). Suppose that Assumptions SA-DGP, SA-

SM, SA-HLE and SA-RP(i) hold. If J
ν

ν−2 log J
n = o(1), then

sup
x∈X

∣∣∣b̂(v)
p,s(x)

′Q̄−1En

[
b̂p,s(xi)

(
ηi,1ψ(yi, ηi)− η(1)(b̂p,s(xi)

′β̂0 +w′
iγ0)ψ(yi, η(b̂p,s(xi)

′β̂0 +w′
iγ0))

)]∣∣∣
≲P J

−p−1+v + J
2v−p−1

2

(J log J

n

)1/2
+
J1+v log J

n
.

Lemma SA-3.5 (Uniform Consistency). Suppose that Assumptions SA-DGP, SA-SM, SA-HLE

and SA-RP(i) hold. If J
2ν
ν−1 (log J)

ν
ν−1

n = o(1), then

∥β̂ − β̂0∥∞ = oP(J
−1/2) and sup

x∈X
|µ̂(x)− µ0(x)| = oP(1).

Remark SA-3.1 (Side rate conditions). When ν → ∞, the rate restriction J
2ν
ν−1 (log J)

ν
ν−1

n = o(1)

tends to be J2 log J
n = o(1). We conjecture this rate restriction is stronger than needed. In fact, for

piecewise polynomials (i.e., s = 0), we can show that J
ν

ν−1 (log J)
ν

ν−1

n = o(1) suffices to establish the

uniform consistency of β̂, and this restriction is redundant in our main theorems in view of the

condition J
ν

ν−2 (logn)
ν

ν−2

n = o(1) imposed below. In other words, in this special case (s = 0), the

condition J
2ν
ν−1 (log J)

ν
ν−1

n = o(1) in all theorems below can be dropped. ⌟

Our result holds without imposing any smoothness restrictions on the estimation space. Specif-

ically, the estimation procedure (SA-2.3) searches for solutions in RKp,s , leading to an estimation

space {b̂p,s(x)
′β : β ∈ RKp,s}. In contrast, many studies of series (or sieve) methods restrict the

functions in the estimation space to satisfy certain smoothness conditions, e.g., Lipschitz continuity,

to derive the uniform consistency. See, for example, Chernozhukov, Imbens and Newey (2007) and

references therein.

Remark SA-3.2 (Improvements over literature). Most of the results in this subsection are new

to the literature, even in the case of non-random partitioning and without covariate-adjustments,

because they take advantage of the specific binscatter structure (i.e., locally bounded series basis).
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The closest antecedent in the literature is Belloni, Chernozhukov, Chetverikov and Fernandez-Val

(2019), while it focuses on series-based quantile regression only. Furthermore, relative to prior work,

our results allow for random partitioning schemes, formally taking into account both the potential

randomness of the partition and the semi-linear regression estimation structure. Importantly,

we highlight the key conditions on the possibly random partition (Assumptions SA-RP(i) and

SA-RP(ii)) used to derive various properties of the Gram matrix, asymptotic variance and other

quantities. ⌟

SA-3.2 Bahadur Representation

Theorem SA-3.1 (Bahadur Representation). Suppose that Assumptions SA-DGP, SA-SM, SA-

HLE and SA-RP(i) hold and J
ν

ν−2 logn
n + J(logn)7/3

n + J
2ν
ν−1 (logn)

ν
ν−1

n + logn
J = o(1). Then,

(i) µ̂(v)(x) satisfies that

sup
x∈X

∣∣∣µ̂(v)(x)− µ
(v)
0 (x) + b̂(v)

p,s(x)
′Q̄−1En[b̂p,s(xi)ηi,1ψ(yi, ηi)]

∣∣∣
≲P J

v
{(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ J−p−1 + rγ

}
.

(ii) ϑ̂(x, ŵ) satisfies that

sup
x∈X

∣∣∣ϑ̂(x, ŵ)− ϑ0(x,w) + η(1)(µ0(x) + w′γ0)b̂p,s(x)
′Q̄−1En[b̂p,s(xi)ηi,1ψ(yi, ηi)]

∣∣∣
≲P

(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ J−p−1 + rγ + ∥ŵ − w∥.

(iii) ζ̂(x, ŵ) satisfies that

sup
x∈X

∣∣∣ζ̂(x, ŵ)− ζ0(x,w) + η(1)(µ0(x) + w′γ0)b̂
(1)
p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(yi, ηi)]
∣∣∣

≲P

(J log n

n

)1/2
+ J

{(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ J−p−1 + rγ

}
+ ∥ŵ − w∥

(
1 + J

(J log n

n

)1/2)
.

The following corollary is an immediate result of Lemma SA-3.3 and Theorem SA-3.1, and hence
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its proof is omitted.

Corollary SA-3.1 (Uniform Convergence). Suppose that the conditions of Theorem SA-3.1 hold

and J(logn)5

n ≲ 1. Then

sup
x∈X

|µ̂(v)(x)− µ
(v)
0 (x)| ≲P J

v
((J log n

n

)1/2
+ J−p−1

)
.

If, in addition, ∥ŵ − w∥ ≲P

(
J logn

n

)1/2
+ J−p−1, then

sup
x∈X

|ϑ̂(x, ŵ)− ϑ0(x,w)| ≲P

(J log n

n

)1/2
+ J−p−1 and

sup
x∈X

|ζ̂(x, ŵ)− ζ0(x,w)| ≲P J
((J log n

n

)1/2
+ J−p−1

)
.

The next theorem shows that the proposed variance estimator is consistent.

Theorem SA-3.2 (Variance Estimate). Suppose that Assumptions SA-DGP, SA-SM, SA-HLE

and SA-RP(i) hold. If J
ν

ν−2 (logn)
ν

ν−2

n + J
2ν
ν−1 (logn)

ν
ν−1

n + J(logn)5

n + logn
J = o(1) and ∥ŵ − w∥ ≲P(

J logn
n

)1/2
+ J−p−1, then

∥∥∥Σ̂− Σ̄
∥∥∥ ≲P J

−p−1 +
(J log n

n1−
2
ν

)1/2
,

sup
x∈X

∣∣∣Ω̂µ(v)(x)− Ω̄µ(v)(x)
∣∣∣ ≲P J

1+2v
(
J−p−1 +

(J log n

n1−
2
ν

)1/2)
,

sup
x∈X

∣∣∣Ω̂ϑ(x)− Ω̄ϑ(x)
∣∣∣ ≲P J

(
J−p−1 +

(J log n

n1−
2
ν

)1/2)
, and

sup
x∈X

∣∣∣Ω̂ζ(x)− Ω̄ζ(x)
∣∣∣ ≲P J

3
(
J−p−1 +

(J log n

n1−
2
ν

)1/2)
.

If, in addition, Assumption SA-RP(ii) holds, then

∥∥∥Σ̂−Σ0

∥∥∥ ≲P J
−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP,

sup
x∈X

∣∣∣Ω̂µ(v)(x)− Ωµ(v)(x)
∣∣∣ ≲P J

1+2v
(
J−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP

)
,

sup
x∈X

∣∣∣Ω̂ϑ(x)− Ωϑ(x)
∣∣∣ ≲P J

(
J−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP

)
, and

sup
x∈X

∣∣∣Ω̂ζ(x)− Ωζ(x)
∣∣∣ ≲P J

3
(
J−p−1 +

(J log n

n1−
2
ν

)1/2
+ rRP

)
.
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Remark SA-3.3 (Improvements over literature). Theorem SA-3.1 and Corollary SA-3.1 construct

the Bahadur representation and uniform convergence of nonlinear binscatter-based M-estimators,

which improve upon prior results in the literature in at least two aspects. First, our results allow

for random partitioning schemes, and the key condition imposed on the partition is Assumption

SA-RP(i), i.e., the conditional independence between the partition and the outcome and the quasi-

uniformity of the partition. The “convergence” of the random partition (Assumption SA-RP(ii)) is

not required, which implies that our results can accommodate more complex partitioning schemes

other than evenly-spaced or empirical-quantile-spaced partitions.

Second, our results are established under weaker rate restrictions. Specifically, we require J
8
3 /n =

o(1) up to log n terms when ν ≥ 4, thus accommodating IMSE-optimal piecewise constant binscatter

estimators. In fact, for piecewise polynomials (s = 0), we can show that the Bahadur representation

still holds under J/n = o(1) up to log n terms when a subexponential moment restriction holds for

the “score” ψ(yi, ηi), which is analogous to the result for kernel-based estimators in the literature

(see, e.g., Kong et al., 2010). For series estimators, similar results were established for particular

choices of loss functions under more stringent conditions in the literature. For example, Belloni,

Chernozhukov, Chetverikov and Fernandez-Val (2019) considers series-based quantile regression,

and Theorem 2 and Corollary 2 therein can be used to establish a Bahadur representation and

uniform convergence of the resulting estimators under J4/n1−ε = o(1) for some ε > 0.

The results in Belloni et al. (2019) are slightly stronger than our Theorem SA-3.1 in the sense that

the expansion holds uniformly over both the evaluation point x ∈ X and the desired quantiles u ∈ U

for a compact set of quantile indices U ⊂ (0, 1). Our results regarding Bahadur representation can

be extended to achieve the same level of uniformity. In general, the parameter of interest (SA-2.1)

and the estimator (SA-2.2) are defined for each particular choice of the loss function within a

function class F . For the class of check functions used in quantile regression or other function

classes with low complexity, it can be shown that the Bahadur representation still holds uniformly

over the evaluation point x ∈ X and the loss function ρ ∈ F under rate restrictions similar to those

in Theorem SA-3.1, thereby providing an improvement over the literature. ⌟
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SA-3.3 Pointwise Inference

Starting from this section, we consider statistical inference on µ
(v)
0 (x), ϑ0(x,w) and ζ0(x,w) based

on the following Studentized t-statistics:

Tµ(v),p(x) =
µ̂(v)(x)− µ

(v)
0 (x)√

Ω̂µ(v)(x)/n
,

Tϑ,p(x) =
ϑ̂(x, ŵ)− ϑ0(x,w)√

Ω̂ϑ(x)/n
and

Tζ,p(x) =
ζ̂(x, ŵ)− ζ0(x,w)√

Ω̂ζ(x)/n
.

The next theorem shows the pointwise asymptotic normality of the binscatter estimators.

Theorem SA-3.3 (Pointwise Asymptotic Distribution). Suppose that Assumptions SA-DGP,

SA-SM, SA-HLE and SA-RP(i) hold, supx∈X E[|ψ(yi, ηi)|ν |xi = x] ≲ 1 for some ν ≥ 3, and

J
ν

ν−2 (logn)
ν

ν−2

n + J
2ν
ν−1 (logn)

ν
ν−1

n + nJ−2p−3 = o(1). Then the following conclusions hold:

(i) For µ̂(v)(x),

sup
u∈R

∣∣∣P(Tµ(v),p(x) ≤ u)− Φ(u)
∣∣∣ = o(1), for each x ∈ X .

(ii) For ϑ̂(x, ŵ), if, in addition, ∥ŵ − w∥ = oP(
√
J/n), then

sup
u∈R

∣∣∣P(Tϑ,p(x) ≤ u)− Φ(u)
∣∣∣ = o(1) for each x ∈ X .

(iii) For ζ̂(x, ŵ), if, in addition, ∥ŵ − w∥ = oP(
√
J3/n+ (log n)−1/2), then

sup
u∈R

∣∣∣P(Tζ,p(x) ≤ u)− Φ(u)
∣∣∣ = o(1) for each x ∈ X .

Remark SA-3.4 (Improvements over literature). The result in this subsection is new to the

literature, even in the case of non-random partitioning and without covariate adjustments, because

it takes advantage of the specific binscatter structure (i.e., locally bounded series basis). The closest

antecedent in the literature is Belloni et al. (2019), which focuses on series-based quantile regression

only. Furthermore, relative to prior work, our results allow for more general partitioning schemes,
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formally take into account the potential randomness of the partition, and account for the semi-

linear regression estimation structure. The key condition imposed on the partition for pointwise

inference is Assumption SA-RP(i), and the “convergence” of the random partition is not required.

⌟

SA-3.4 Integrated Mean Squared Error

In this section we give a Nagar-type approximate IMSE expansion for each of the three estimators

µ̂(v)(x), ϑ̂(x, ŵ) and ζ̂(x, ŵ), with explicit characterization of the leading constants. Define

r⋆0,v(x) =
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v
Ep+1−v

(x− τLx
hx

)

where Em(·) is the mth Bernoulli polynomial for each m ∈ Z+, τ
L
x is the start of the interval in the

non-random partition ∆0 containing x and hx denotes its length.

Theorem SA-3.4 (IMSE). Suppose that Assumptions SA-DGP, SA-SM, SA-HLE and SA-RP

(including SA-RP(ii)) hold. Let ω(x) be a continuous weighting function over X bounded away

from zero. Also, assume that J
ν

ν−2 logn
n + J

2ν
ν−1 (logn)

ν
ν−1

n + J(logn)7

n + (logn)2

J = o(1).

(i) For µ̂(v)(x),

∫
X

(
µ̂(v)(x)− µ

(v)
0 (x)

)2
ω(x)dx = AISEµ(v) + oP

(J1+2v

n
+ J−2(p+1−v)

)

where

E[AISEµ(v) |X,W, ∆̂] =
J1+2v

n
Vn(p, s, v) + J−2(p+1−v)Bn(p, s, v) + oP

(J1+2v

n
+ J−2(p+1−v)

)
,

Vn(p, s, v) := J−(1+2v) trace
(
Q−1

0 Σ0Q
−1
0

∫
X
b(v)
p,s(x)b

(v)
p,s(x)

′ω(x)dx
)
≍ 1,

Bn(p, s, v) := J2p+2−2v

∫
X

(
r⋆0,v(x)− b(v)

p,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)r
⋆
0,0(xi)]

)2
ω(x)dx ≲ 1.

(ii) For ϑ̂(x, ŵ), if ∥ŵ − w∥ = oP(
√
J/n+ J−p−1), then

∫
X

(
ϑ̂(x, ŵ)− ϑ0(x,w)

)2
ω(x)dx = AISEϑ + oP

(J
n
+ J−2(p+1)

)
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where

E[AISEϑ|X,W, ∆̂] =
J

n
Vn(p, s) + J−2(p+1)Bn(p, s) + oP

(J
n
+ J−2(p+1)

)
,

Vn(p, s) := J−1 trace
(
Q−1

0 Σ0Q
−1
0

∫
X
η0,1(x,w)

2bp,s(x)bp,s(x)
′ω(x)dx

)
≍ 1,

Bn(p, s) := J2p+2

∫
X

[
η0,1(x,w)

(
r⋆0,0(x)− bp,s(x)

′Q−1
0 E[bp,s(xi)κ(xi,wi)r

⋆
0,0(xi)]

)]2
ω(x)dx ≲ 1.

(iii) For ζ̂(x, ŵ), if ∥ŵ − w∥ = oP(
√
J3/n+ J−p + (log n)−1/2), then

∫
X

(
ζ̂(x, ŵ)− ζ0(x,w)

)2
ω(x)dx = AISEζ + oP

(J3

n
+ J−2p

)

where

E[AISEζ |X,W, ∆̂] =
J3

n
Vn(p, s) + J−2pBn(p, s) + oP

(J3

n
+ J−2p

)
,

Vn(p, s) := J−3 trace
(
Q−1

0 Σ0Q
−1
0

∫
X
η0,1(x,w)

2b(1)
p,s(x)b

(1)
p,s(x)

′ω(x)dx
)
≍ 1,

Bn(p, s) := J2p

∫
X

[
η0,1(x,w)

(
r⋆0,1(x)− b(1)

p,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)r
⋆
0,0(xi)]

)]2
ω(x)dx ≲ 1.

In general, Bn(p, s, v) ≳ 1 (see Remark SA-3.7 in Cattaneo et al. (2024b)), and thus the above

theorem implies that the (approximate) IMSE-optimal number of bins satisfies that JAIMSE ≍ n
1

2p+3 .

Relying on the IMSE expansion in Theorem SA-3.4, one may design a data-driven procedure to

select the IMSE-optimal number of bins for nonlinear binscatter-based M-estimators.

Remark SA-3.5 (Improvements over literature). The results in this subsection are new to the

literature, even in the case of non-random partitioning and without covariate-adjustments, for both

nonlinear series estimators and binscatter (piecewise polynomials and splines) nonlinear series es-

timators in particular. Furthermore, our results allow for random partitioning schemes, formally

take into account the potential randomness of the partition, and account for the semi-linear regres-

sion estimation structure. We highlight the key conditions imposed on the partition (Assumption

SA-RP) for the approximate IMSE expansion. The “convergence” of the random partition (As-

sumption SA-RP(ii)) is needed to derive the non-random variance and bias constants Vn(p, s) and

Bn(p, s). ⌟
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SA-3.5 Uniform Inference

Recall that (an : n ≥ 1) is a sequence of non-vanishing constants. We will first show that the

(feasible) Studentized t-statistic processes Tµ(v),p(·), Tϑ,p(·) and Tζ,p(·) can be approximated by

Gaussian processes in a proper sense at certain rate.

Theorem SA-3.5 (Strong Approximation). Suppose that Assumptions SA-DGP, SA-SM, SA-HLE

and SA-RP(i) hold,

J(log n)2

n1−
2
ν

+
(J(log n)7

n

)1/2
+nJ−2p−3+

(log n)2

Jp+1
+nJ−1r2γ = o(a−2

n ) and
J

2ν
ν−1 (log n)

ν
ν−1

n
= o(1).

Then the following conclusions hold:

(i) On a properly enriched probability space, there exists some Kp,s-dimensional standard normal

random vector NKp,s such that for any ξ > 0,

P
(
sup
x∈X

|Tµ(v),p(x)− Z̄µ(v),p(x)| > ξa−1
n

)
= o(1), Z̄µ(v),p(x) =

b̂
(v)
p,0(x)

′T̂′
sQ̄

−1Σ̄1/2√
Ω̄µ(v)(x)

NKp,s .

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

P
(
sup
x∈X

|Tµ(v),p(x)− Zµ(v),p(x)| > ξa−1
n

)
= o(1), Zµ(v),p(x) =

b̂
(v)
p,0(x)

′T′
sQ

−1
0 Σ

1/2
0√

Ωµ(v)(x)
NKp,s .

(ii) If ∥ŵ − w∥ = oP(a
−1
n

√
J/n), then on a properly enriched probability space there exists some

Kp,s-dimensional standard normal random vector NKp,s such that for any ξ > 0,

P
(
sup
x∈X

|Tϑ,p(x)− Z̄ϑ,p(x)| > ξa−1
n

)
= o(1), Z̄ϑ,p(x) =

b̂p,0(x)
′T̂′

sη0,1(x,w)Q̄
−1√

Ω̄ϑ(x)
Σ̄1/2NKp,s .

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

P
(
sup
x∈X

|Tϑ,p(x)− Zϑ,p(x)| > ξa−1
n

)
= o(1), Zϑ,p(x) =

b̂p,0(x)
′T′

sη0,1(x,w)Q
−1
0√

Ωϑ(x)
Σ

1/2
0 NKp,s .

(iii) If ∥ŵ − w∥ = oP(a
−1
n (

√
J3/n + (log n)−1/2)), then on a properly enriched probability space
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there exists some Kp,s-dimensional standard normal random vector NKp,s such that for any

ξ > 0,

P
(
sup
x∈X

|Tζ,p(x)− Z̄ζ,p(x)| > ξa−1
n

)
= o(1), Z̄ζ,p(x) =

b̂
(1)
p,0(x)

′T̂′
sη0,1(x,w)Q̄

−1√
Ω̄ζ(x)

Σ̄1/2NKp,s .

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

P
(
sup
x∈X

|Tζ,p(x)− Zζ,p(x)| > ξa−1
n

)
= o(1), Zζ,p(x) =

b̂
(1)
p,0(x)

′T′
sη0,1(x,w)Q

−1
0√

Ωζ(x)
Σ

1/2
0 NKp,s .

The approximating processes Z̄µ(v),p(·), Z̄ϑ,p(·) and Z̄ζ,p(·) are Gaussian processes conditional

on X, W and ∆̂, and Zµ(v),p(·), Zϑ,p(·) and Zζ,p(·) are Gaussian processes conditional on ∆̂ by

construction. In practice, one can replace all unknowns in Z̄µ(v),p(·), Z̄ϑ,p(·) and Z̄ζ,p(·) (or Zµ(v),p(·),

Zϑ,p(·) and Zζ,p(·)) by their sample analogues, and then construct the following feasible (conditional)

Gaussian processes:

Ẑµ(v),p(x) =
b̂
(v)
p,0(x)

′T̂′
sQ̂

−1Σ̂1/2√
Ω̂µ(v)(x)

N⋆
Kp,s

=
b̂
(v)
p,s(x)′Q̂−1Σ̂1/2√

Ω̂µ(v)(x)
N⋆

Kp,s
,

Ẑϑ,p(x) =
b̂p,0(x)

′T̂′
sη̂0,1(x, ŵ)Q̂

−1Σ̂1/2√
Ω̂ϑ(x)

N⋆
Kp,s

=
b̂p,s(x)

′η̂0,1(x, ŵ)Q̂
−1Σ̂1/2√

Ω̂ϑ(x)
N⋆

Kp,s
,

Ẑζ,p(x) =
b̂
(1)
p,0(x)

′T̂′
sη̂0,1(x, ŵ)Q̂

−1Σ̂1/2√
Ω̂ζ(x)

N⋆
Kp,s

=
b̂
(1)
p,s(x)′η̂0,1(x, ŵ)Q̂

−1Σ̂1/2√
Ω̂ζ(x)

N⋆
Kp,s

,

where N⋆
Kp,s

denotes a Kp,s-dimensional standard normal vector independent of the data D and

the partition ∆̂.

For ease of presentation, we will always require a fast convergence rate of ŵ hereafter: ∥ŵ−w∥ =

oP(a
−1
n

√
J/n). Nevertheless, note that as shown in Theorem SA-3.5, such a rate restriction on ŵ

can be different for inference of ϑ0(x,w) and ζ0(x,w) and are unnecessary for inference of µ
(v)
0 (x).

Theorem SA-3.6 (Plug-in Approximation). Suppose that Assumptions SA-DGP, SA-SM, SA-

HLE and SA-RP(i) hold,

J(logn)2

n1− 2
ν

+
(
J(logn)7

n

)1/2
+ nJ−2p−3 + (logn)2

Jp+1 + nJ−1r2γ = o(a−2
n ),
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J
2ν
ν−1 (logn)

ν
ν−1

n = o(1), and ∥ŵ − w∥ = oP(a
−1
n

√
J/n).

Then on a properly enriched probability space, there exists a Kp,s-dimensional standard normal

random vector N⋆
Kp,s

independent of D and ∆̂ such that for any ξ > 0,

(i) P
(
supx∈X |Ẑµ(v),p(x)− Z̄µ(v),p(x)| > ξa−1

n

∣∣∣D, ∆̂)
= oP(1),

(ii) P
(
supx∈X |Ẑϑ,p(x)− Z̄ϑ,p(x)| > ξa−1

n

∣∣∣D, ∆̂)
= oP(1),

(iii) P
(
supx∈X |Ẑζ,p(x)− Z̄ζ,p(x)| > ξa−1

n

∣∣∣D, ∆̂)
= oP(1).

If Assumption SA-RP(ii) also holds with rRP = o(a−1
n (log n)−1/2), then

(iv) P
(
supx∈X |Ẑµ(v),p(x)− Zµ(v),p(x)| > ξa−1

n

∣∣∣D, ∆̂)
= oP(1),

(v) P
(
supx∈X |Ẑϑ,p(x)− Zϑ,p(x)| > ξa−1

n

∣∣∣D, ∆̂)
= oP(1),

(vi) P
(
supx∈X |Ẑζ,p(x)− Zζ,p(x)| > ξa−1

n

∣∣∣D, ∆̂)
= oP(1).

Remark SA-3.6 (Improvements over literature). Theorems SA-3.5 and SA-3.6 provide empirical

researchers with powerful tools for uniform inference based on binscatter methods. Importantly, we

allow for random partitioning schemes, formally take into account the potential randomness of the

partition, and construct a novel strong approximation of nonlinear binscatter-based M-estimators

under mild rate restrictions. For an =
√
log n and ν ≥ 4, we require J

8
3 /n = o(1), up to log n

terms. In the literature, similar results were only available in some special cases under stringent

rate restrictions. For instance, Belloni et al. (2019) considers strong approximations of more general

series-based quantile regression estimators. For the binscatter basis considered in this paper, their

Theorem 11 can be applied to construct strong approximation of the t-statistic process based on

pivotal coupling that achieves the approximation rate an = n−ε′ under J4/n1−ε = o(1) for some

constants ε, ε′ > 0, whereas their Theorem 12 can be used to construct strong approximation

based on Gaussian processes under J5/n1−ε = o(1). It should be noted that their notion of strong

approximation is stronger than ours in the sense that it holds uniformly over both the evaluation

point x ∈ X and the desired quantile u ∈ U for a compact set of quantile indices U ⊂ (0, 1).

On the other hand, our methods allow for other loss functions (e.g., Huber regression), a large
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class of random partitions, and semi-linear covariate adjustment, leading to new results that were

previously unavailable in the literature. ⌟

Theorems SA-3.5 and SA-3.6 offer a way to approximate the distribution of the whole t-statistic

process based on µ̂(v)(·), ϑ̂(·, ŵ) or ζ̂(·, ŵ). A direct application of these results is the distributional

approximations to the suprema of these t-statistic processes.

Theorem SA-3.7 (Supremum Approximation). Suppose that Assumptions SA-DGP, SA-SM, SA-

HLE and SA-RP (including SA-RP(ii)) hold,

J(logn)2

n1− 2
ν

+ nJ−2p−3 + nJ−1r2γ = o((log J)−1),

J
2ν
ν−1 (logn)

ν
ν−1

n = o(1), ∥ŵ − w∥ = oP

(√
J

n log J

)
, and rRP = o

(
1√

logn log J

)
.

Then,

sup
u∈R

∣∣∣P( sup
x∈X

|Tµ(v),p(x)| ≤ u
)
− P

(
sup
x∈X

|Ẑµ(v),p(x)| ≤ u
∣∣∣D, ∆̂)∣∣∣ = oP(1),

sup
u∈R

∣∣∣P( sup
x∈X

|Tϑ,p(x)| ≤ u
)
− P

(
sup
x∈X

|Ẑϑ,p(x)| ≤ u
∣∣∣D, ∆̂)∣∣∣ = oP(1), and

sup
u∈R

∣∣∣P( sup
x∈X

|Tζ,p(x)| ≤ u
)
− P

(
sup
x∈X

|Ẑζ,p(x)| ≤ u
∣∣∣D, ∆̂)∣∣∣ = oP(1).

SA-3.6 Confidence Bands

Let

Îµ(v),p(x) =
[
µ̂(v)(x)± cµ(v)

√
Ω̂µ(v)(x)/n

]
,

Îϑ,p(x,w) =
[
ϑ̂(x, ŵ)± cϑ

√
Ω̂ϑ(x)/n

]
and

Îζ,p(x,w) =
[
ζ̂(x, ŵ)± cζ

√
Ω̂ζ(x)/n

]

be confidence bands for µ
(v)
0 (·), ϑ0(·,w) and ζ0(·,w) respectively, where cµ(v) , cϑ and cζ are cor-

responding critical values to be specified. Recall that w here is taken as a fixed evaluation point

for the control variables, and these bands are constructed based on a certain choice of J and the

pth-order binscatter basis. Using the previous results, we have the following theorem.
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Theorem SA-3.8. Suppose that Assumptions SA-DGP, SA-SM, SA-HLE and SA-RP(i) hold,

J(logn)2

n1− 2
ν

+ nJ−2p−3 + nJ−1r2γ = o((log J)−1),

J
2ν
ν−1 (logn)

ν
ν−1

n = o(1), and ∥ŵ − w∥ = oP

(√
J

n log J

)
.

(i) If cµ(v) = inf
{
c ∈ R+ : P[supx∈X |Ẑµ(v),p(x)| ≤ c |D, ∆̂] ≥ 1− α

}
, then

P
[
µ
(v)
0 (x) ∈ Îµ(v),p(x), for all x ∈ X

]
= 1− α+ o(1).

(ii) If cϑ = inf
{
c ∈ R+ : P[supx∈X |Ẑϑ,p(x)| ≤ c |D, ∆̂] ≥ 1− α

}
, then

P
[
ϑ0(x,w) ∈ Îϑ,p(x,w), for all x ∈ X

]
= 1− α+ o(1).

(iii) If cζ = inf
{
c ∈ R+ : P[supx∈X |Ẑζ,p(x)| ≤ c |D, ∆̂] ≥ 1− α

}
, then

P
[
ζ0(x,w) ∈ Îζ,p(x,w), for all x ∈ X

]
= 1− α+ o(1).

Remark SA-3.7. The above results construct valid uniform confidence bands for nonlinear binscatter-

based M-estimators under mild rate restrictions. Specifically, when ν ≥ 4, we require J
8
3 /n = o(1),

up to log n terms. In contrast, Belloni et al. (2019) considers more general series-based quan-

tile regression estimators, and Theorem 15 therein can be used to construct confidence bands for

binscatter estimators via various resampling methods under J4/n1−ε = o(1) for some ε > 0. Fur-

thermore, our results allow for random partitioning schemes, formally taking its randomness and

generic structure. The key condition imposed on the partition for the validity of confidence bands

is Assumption SA-RP(i), but the “convergence” of the random partition (Assumption SA-RP(ii))

is not necessary. ⌟
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SA-3.7 Parametric Specification Tests

As another application, we can test parametric specifications of µ
(v)
0 (x), ϑ0(x,w) and ζ0(x,w). We

introduce the following tests:

Ḣµ(v)

0 : sup
x∈X

∣∣∣µ(v)0 (x)−m(v)(x;θ)
∣∣∣ = 0, for some θ, vs.

Ḣµ(v)

A : sup
x∈X

∣∣∣µ(v)0 (x)−m(v)(x;θ)
∣∣∣ > 0, for all θ.

where m(x;θ) is some known function depending on some finite dimensional parameter θ. This

testing problem can be viewed as a two-sided test where the equality between two functions holds

uniformly over x ∈ X . In this case, we introduce θ̃ and γ̃ as consistent estimators of θ and γ0

under Ḣµ(v)

0 . Then we rely on the following test statistic:

Ṫµ(v),p(x) :=
µ̂(v)(x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫµ(v),p(x)| > cµ(v) for some critical value cµ(v) .

Similarly, to test the specification of ϑ0(x,w), we introduce

Ḣϑ
0 : sup

x∈X

∣∣∣ϑ0(x,w)−M(x,w;θ,γ0)
∣∣∣ = 0, for some θ, vs.

Ḣϑ
A : sup

x∈X

∣∣∣ϑ0(x,w)−M(x,w;θ,γ0)
∣∣∣ > 0, for all θ.

where M(x,w;θ,γ0) = η(m(x;θ) + w′γ0). We rely on the following test statistic:

Ṫϑ,p(x) :=
ϑ̂(x, ŵ)−M(x, ŵ; θ̃, γ̃)√

Ω̂ϑ(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫϑ,p(x)| > cϑ for some critical value cϑ.

To test the specification of ζ0(x,w), we introduce

Ḣζ
0 : sup

x∈X

∣∣∣ζ0(x,w)−M (1)(x,w;θ,γ0)
∣∣∣ = 0, for some θ, vs.

Ḣζ
A : sup

x∈X

∣∣∣ζ0(x,w)−M (1)(x,w;θ,γ0)
∣∣∣ > 0, for all θ.
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where M (1)(x,w;θ,γ0) := η(1)(m(x;θ) + w′γ0)m
(1)(x;θ). We rely on the following test statistic:

Ṫζ,p(x) :=
ζ̂(x, ŵ)−M (1)(x, ŵ; θ̃, γ̃)√

Ω̂ζ(x)/n
.

The null hypothesis is rejected if supx∈X |Ṫζ,p(x)| > cζ for some critical value cζ .

Theorem SA-3.9 (Specification Tests). Suppose that the conditions in Theorem SA-3.8 hold.

(i) Let cµ(v) = inf{c ∈ R+ : P[supx∈X |Ẑµ(v),p(x)| ≤ c|D, ∆̂] ≥ 1− α}.

Under Ḣµ(v)

0 , if supx∈X |µ(v)(x)−m(v)(x; θ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
= α.

Under Ḣµ(v)

A , if there exist some fixed θ̄ such that supx∈X |m(v)(x; θ̃) − m(v)(x; θ̄)| = oP(1),

and Jv
(
J log J

n

)1/2
= o(1), then

lim
n→∞

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
= 1.

(ii) Let cϑ = inf{c ∈ R+ : P[supx∈X |Ẑϑ,p(x)| ≤ c|D, ∆̂] ≥ 1− α}.

Under Ḣϑ
0 , if supx∈X |ϑ0(x,w)−M(x, ŵ; θ̃, γ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[
sup
x∈X

|Ṫϑ,p(x)| > c
]
= α.

Under Ḣϑ
A, if there exist some fixed θ̄ and γ̄ such that supx∈X |M(x, ŵ; θ̃, γ̃)−M(x,w; θ̄, γ̄)| =

oP(1), and J
v
(
J log J

n

)1/2
= o(1), then

lim
n→∞

P
[
sup
x∈X

|Ṫϑ,p(x)| > c
]
= 1.

(iii) Let cζ = inf{c ∈ R+ : P[supx∈X |Ẑζ,p(x)| ≤ c|D, ∆̂] ≥ 1− α}.
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Under Ḣζ
0, if supx∈X |ζ0(x,w)−M (1)(x, ŵ; θ̃, γ̃)| = oP

(√
J1+2v

n log J

)
, then

lim
n→∞

P
[
sup
x∈X

|Ṫζ,p(x)| > c
]
= α.

Under Ḣζ
A, if there exist some fixed θ̄ and γ̄ such that supx∈X |M (1)(x, ŵ; θ̃, γ̃)−M (1)(x,w; θ̄, γ̄)| =

oP(1), and J
v
(
J log J

n

)1/2
= o(1), then

lim
n→∞

P
[
sup
x∈X

|Ṫζ,p(x)| > c
]
= 1.

SA-3.8 Shape Restriction Tests

The third application of our results is to test certain shape restrictions on µ
(v)
0 (x), ϑ0(x,w) and

ζ0(x,w). To be specific, consider the following problem:

Ḧµ(v)

0 : sup
x∈X

(µ(v)(x)−m(v)(x; θ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

Ḧµ(v)

A : sup
x∈X

(µ(v)(x)−m(v)(x; θ̄)) > 0 for θ̄ and γ̄.

This testing problem can be viewed as a one-sided test where the inequality holds uniformly over

x ∈ X . Importantly, it should be noted that under both Ḧµ(v)

0 and Ḧµ(v)

A , we fix θ̄ and γ̄ to be the

same values in the parameter space. In such a case, we introduce θ̃ and γ̃ as consistent estimators

of θ̄ and γ̄ under both Ḧµ(v)

0 and Ḧµ(v)

A . Then we will rely on the following test statistic:

T̈µ(v),p(x) :=
µ̂(v)(x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
.

The null hypothesis is rejected if supx∈X T̈µ(v),p(x) > cµ(v) for some critical value cµ(v) .

Similarly, define the test for the shape of ϑ0(x,w):

Ḧϑ
0 : sup

x∈X
(ϑ0(x,w)−M(x,w; θ̄, γ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

Ḧϑ
A : sup

x∈X
(ϑ0(x,w)−M(x,w; θ̄, γ̄)) > 0 for θ̄ and γ̄.
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We will rely on the following test statistic:

T̈ϑ,p(x) :=
ϑ̂(x, ŵ)−M(x, ŵ; θ̃, γ̃)√

Ω̂ϑ(x)/n
.

The null hypothesis is rejected if supx∈X T̈ϑ,p(x) > cϑ for some critical value cϑ.

Also, define the test for the shape of ζ0(x,w):

Ḧζ
0 : sup

x∈X
(ζ0(x,w)−M (1)(x,w; θ̄, γ̄)) ≤ 0 for certain θ̄ and γ̄ v.s.

Ḧζ
A : sup

x∈X
(ζ0(x,w)−M (1)(x,w; θ̄, γ̄)) > 0 for θ̄ and γ̄.

We will rely on the following test statistic:

T̈ζ,p(x) :=
ζ̂(x, ŵ)−M (1)(x, ŵ; θ̃, γ̃)√

Ω̂ζ(x)/n
.

The null hypothesis is rejected if supx∈X T̈ζ,p(x) > cζ for some critical value cζ .

The following theorem characterizes the size and power of such tests.

Theorem SA-3.10 (Shape Restriction Tests). Suppose that the conditions in Theorem SA-3.8

hold.

(i) Assume supx∈X |m(x; θ̃)−m(x; θ̄)| = oP

(√
J1+2v

n log J

)
. Let cµ(v) = inf{c ∈ R+ : P[supx∈X Ẑµ(v),p(x) ≤

c|D, ∆̂] ≥ 1− α}.

Under Ḧµ(v)

0 ,

lim
n→∞

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
≤ α.

Under Ḧµ(v)

A , if Jv
(
J log J

n

)1/2
= o(1),

lim
n→∞

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
= 1.

(ii) Assume supx∈X |M(x, ŵ; θ̃, γ̃) − M(x,w; θ̄, γ̄)| = oP

(√
J1+2v

n log J

)
. Let cϑ = inf{c ∈ R+ :

P[supx∈X Ẑϑ,p(x) ≤ c|D, ∆̂] ≥ 1− α}.
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Under Ḧϑ
0 ,

lim
n→∞

P
[
sup
x∈X

T̈ϑ,p(x) > cϑ

]
≤ α.

Under Ḧϑ
A, if J

v
(
J log J

n

)1/2
= o(1),

lim
n→∞

P
[
sup
x∈X

T̈ϑ,p(x) > cϑ

]
= 1.

(iii) Assume supx∈X |M (1)(x, ŵ; θ̃, γ̃) −M (1)(x,w; θ̄, γ̄)| = oP

(√
J1+2v

n log J

)
. Let cζ = inf{c ∈ R+ :

P[supx∈X Ẑζ,p(x) ≤ c|D, ∆̂] ≥ 1− α}.

Under Ḧζ
0,

lim
n→∞

P
[
sup
x∈X

T̈ζ,p(x) > cζ

]
≤ α.

Under Ḧζ
A, if J

v
(
J log J

n

)1/2
= o(1),

lim
n→∞

P
[
sup
x∈X

T̈ζ,p(x) > cζ

]
= 1.

Remark SA-3.8 (Improvements over literature). The results in Sections SA-3.6–SA-3.8 are new

to the literature, even in the case of non-random partitioning and without covariate-adjustments,

because they take advantage of the specific binscatter structure (i.e., locally bounded series ba-

sis). Furthermore, relative to prior work, our results allow for a large class of random partitioning

schemes, formally take into account the potential randomness of the partition, account for the gen-

eralized semi-linear structure, and consider an array of possibly nonlinear estimation and inference

problems. In particular, the approach taken in Theorems SA-3.5 and SA-3.7 to establish strong

approximation and related distributional approximations for nonlinear binscatter statistics may be

of independent interest. The key condition imposed on the partition for uniform inference (confi-

dence bands and hypothesis testing) is Assumption SA-RP(i), while “convergence” of the random

partition (Assumption SA-RP(ii)) is not required. ⌟
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SA-4 Implementation Details

SA-4.1 Standard Error Computation

In Section SA-3, we have given the variance formulas Ω̂µ(v)(x), Ω̂ϑ(x) and Ω̂ζ(x) that can be used to

obtain the standard errors of µ̂(v)(x), ϑ̂(x, ŵ) and ζ̂(x, ŵ). Recall that the formula for the estimator

Σ̂ of Σ0 is

Σ̂ = En

[
b̂p,s(xi)b̂p,s(xi)

′ψ(yi, η̂i)
2η(1)(µ̂(xi) +w′

iγ̂)
2
]
.

It only relies on known or estimable quantities such as the derivative of the loss function ψ(·), the

derivative of the inverse link function η(1)(·), the residual ϵ̂i and the binscatter estimates µ̂(·) and

γ̂. Thus, Σ̂ and other types of heteroskedasticity-robust “meat” matrix estimators can be easily

constructed using the data. Then, it remains to obtain an estimator Q̂ of Q̄ (or Q0), which in

general relies on an estimator Ψ̂1(·) of Ψ1(·) and can be constructed in a case-by-case basis. In the

following we discuss several examples.

Example 1 (Least Squares Regression). For least squares regression, the loss function ρ(y; η) =

1
2(y−η)

2 and the (inverse) link function η(θ) = θ. Therefore, ψ(yi, ηi) = −ϵi and ηi,1 = 1. Thus, the

formula for Q̂ given in Section SA-3 reduces to En[b̂p,s(xi)b̂p,s(xi)
′], which is immediately feasible

in practice.

Example 2 (Logistic Regression). For logistic regression, the loss function is given by the

corresponding likelihood function, i.e., −ρ(y; η) = y log η + (1 − y) log(1 − η), and the inverse link

is given by the logistic function η(θ) = eθ

1+eθ
. Accordingly, an estimator of Q0 is given by

Q̂ = En

[
b̂p,s(xi)b̂p,s(xi)

′η̂i(1− η̂i)
]
, η̂i = η(µ̂(xi) +w′

iγ̂).

Example 4 (Quantile Regression). For quantile regression, ρ(y; η) = (q − 1(y < η))(y − η) for

some q ∈ (0, 1) and η(θ) = θ. Accordingly, ψ(yi, ηi) = 1(ϵi < 0)− q, and one needs to estimate

Q0 = E
[
bp,s(xi)bp,s(xi)

′fY |XW (µ0(xi) +w′
iγ0|xi,wi)

]
.

The key is to estimate the conditional density fY |XW (·|xi,wi) evaluated at the conditional quantile

of interest (µ0(xi) +w′
iγ0), whose reciprocal is termed “sparsity function” in the literature. Many
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different methods have been proposed. For example, the sparsity function is simply the derivative of

the conditional quantile function with respect to the quantile, which can be estimated by using the

difference quotient of the estimated conditional quantile function. Alternatively, Q0 can be viewed

as a matrix-weighted density function, and one can construct a corresponding estimator based on

kernel density estimation ideas. In addition, one can use bootstrapping methods to estimate the

variance, avoiding the technical difficulty of estimating the sparsity function. See Section 3.4 and

Section 3.9 of Koenker (2005) for more discussion of variance estimation for quantile regression.

SA-4.2 Number of Bins Selector

We discuss the implementation details for data-driven selection of the number of bins, based on

the approximate integrated mean squared error expansion in Theorem SA-3.4.

We offer two procedures for estimating the bias and variance constants, and once these estimates

(B̂n(p, s, v) and V̂n(p, s, v)) are available, the estimated optimal J is

ĴIMSE =

⌈(
2(p− v + 1)B̂n(p, s, v)

(1 + 2v)V̂n(p, s, v)

) 1
2p+3

n
1

2p+3

⌉
.

We always let ω(x) = fX(x) as weighting function for concreteness.

SA-4.2.1 Rule-of-thumb Selector

A rule-of-thumb choice of J can be obtained based on Corollary SA-3.2 in Cattaneo et al. (2024b),

which gives an explicit characterization of the variance and bias constants for least squares bin-

scatter using piecewise polynomials (s = 0).

Specifically, the variance constant V (p, 0, v) is estimated by

V̂ (p, 0, v) = trace
{(∫ 1

0
φ(z)φ(z)′dz

)−1
∫ 1

0
φ(v)(z)φ(v)(z)′dz

}
× 1

n

n∑
i=1

σ̂2(xi,wi)f̂X(xi)
2v

where φ(z) = (1, z, . . . , zp)′, σ̂2(xi,wi) is some estimate of the conditional variance V[yi|xi,wi] and

f̂X(xi) is some estimate of the density fX(xi). On the other hand, the bias constant B(p, 0, v) is

estimated by

B̂(p, 0, v) =

∫ 1
0 [Bp+1−v(z)]

2dz

((p+ 1− v)!)2
× 1

n

n∑
i=1

[µ̂(p+1)(xi)]
2

f̂X(xi)2p+2−2v
.
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where Bp(z) = (−1)p
∑p

k=0

(
p
k

)(
p+k
k

)
(−z)k/

(
2p
p

)
for each p ∈ Z+ and µ̂(p+1)(xi) is some preliminary

estimate of µ
(p+1)
0 (xi). The details about getting the estimates σ̂2(xi,wi), f̂X(xi) and µ̂(p+1)(xi)

can be found in Section SA-4.1 in Cattaneo et al. (2024b).

This procedure still yields a choice of J with the correct rate, though the constant approximations

are inconsistent for general loss.

SA-4.2.2 Direct-plug-in Selector

The direct-plug-in selector is implemented based on nonlinear binscatter estimators, which applies

to any user-specified p, s and v. It requires a preliminary choice of J , for which the rule-of-thumb

selector previously described can be used.

More generally, suppose that a preliminary choice Jpre is given, and then a binscatter basis

b̂p,s(x) (of order p) can be constructed immediately on the preliminary partition. Implementing

a nonlinear binscatter estimation using this basis and partitioning, we can obtain the variance

constant estimate using the variance matrix estimators discussed in Section SA-4.1.

Regarding the bias constant, the key unknown in the expression of the leading approximation

error r⋆0,v(x) in Theorem SA-3.4 is µ
(p+1)
0 (x), which can be estimated by implementing a nonlinear

binscatter estimation of order p+1 (with the preliminary partition unchanged). Also, an estimate

of fX(xi)
−1 in r⋆0,v(x) is Jĥxi where ĥxi denotes the length of the interval in ∆̂ containing xi. All

other quantities in the expression of B(p, s, v) can be replaced by their sample analogues. Then, a

bias constant estimate is available.

By this construction, the direct-plug-in selector employs the correct rate and consistent constant

approximations for any nonlinear binscatter with any choice of p, s and v.

SA-4.3 Fixed J and choice of polynomial order

Our main theory treats J as diverging with the sample size. This reflects the standard approach

wherein a researcher selects p and s in advance (often s = p = 0 or s = p = 3) and then selects

J given the data. The partition must get finer to remove the nonparametric smoothing bias in

estimating the function µ0(x) (and along with it, ϑ0(x,w) or ζ0(x,w)). Correct recovery (either for

estimation or visualization) of these functions is the primary use of binscatter. However, researchers
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sometimes prefer to pre-specify a fixed J = J, and we also discuss implementation and interpretation

of binscatter in this case.

Instead of modeling J as diverging and searching for the optimal choice, a researcher may desire

a fixed (often small and round) number of J , which we denote by J. This is done either to make the

estimate more visually appealing or because the results can be directly interpreted. In this case,

instead of recovering the functions µ
(v)
0 (x), ϑ0(x,w), and ζ0(x,w), the binscatter is interpreted as

estimating their coarsened versions: the distribution of yi conditional on xi lying in a (fixed) bin,

rather than at a single point. For some J, this remains interpretable and all our inference results

apply to this case. For example, in our application we can take J = 10 and study the distribution of

uninsured rate for each decile of income. The confidence bands then become pointwise confidence

intervals that are simultaneously valid. For example, this could be used to examine inequality in

health care access by asking if median uninsured rates are statistically different between the top

and bottom decile.

A fixed J is also interpretable, and applicable, if xi is discrete. Then each mass point is given

its own bin and the results apply to the conditional distribution of yi given xi = x. Again, our

theoretical results apply directly to this case and one obtains simultaneous inference over the set

of points. Cattaneo et al. (2024b) give further discussion and examples.

As a practical compromise between the visual appeal and interpretation of a small, fixed J and the

demand for consistent estimation, we propose a novel, albeit ad-hoc, adjustment to the estimator

aimed at addressing the smoothing bias left by fixing J by adjusting the choice of polynomial order

p. The standard approach fixes p in advance and selects J based on the data, but we can invert

this and search for the value of p for which the fixed J would be IMSE-optimal. That is, we solve

for

pIMSE(J, v) = argmin
p∈P

∣∣∣JIMSE(p, v)− J
∣∣∣, (SA-4.1)

where in principle the set P is all nonnegative integers, but in practice P = {pmin, pmin+1, . . . , pmax−

1, pmax}, for some integers 0 ≤ pmin ≤ pmax. The (in)flexibility of fixed J = J is offset by changing

the polynomial approximation. This may have some practical appeal, but our theoretical results

in the next section continue in the standard case of fixed p and diverging J .
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To implement the data-driven choice pIMSE(J, v), users needs to specify the desired (often small)

number of bins J, the derivative order v of interest, and a (finite) set P of acceptable polynomial

orders. The size of P is usually small since in practice p = 3 or 4 often suffices to yield a small

IMSE-optimal number of bins. Then, for each value of p in P, we can implement the rule-of-thumb

or direct plug-in procedure as described in Section SA-4.2 to obtain JIMSE(p, v). The “optimal”

choice pIMSE(J, v) is the value of p with the resulting JIMSE(p, v) closest to J.
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SA-5 Proofs

We begin with a subsection collecting some technical lemmas used in the proofs of our main results.

We then collect all the proof of the results presented in this supplemental appendix, which are in

several cases more general than those discussed in the main text. Some of our technical results may

be of more broad independent interest in the nonlinear series estimation literature.

SA-5.1 Technical Lemmas

We first give several simple facts about ∆̂ in the following lemma, which are immediate from

Assumption SA-RP(ii).

Lemma SA-5.1 (Quasi-Uniformity). Suppose that Assumption SA-RP(ii) holds. Then, (i) J−1 ≲

min1≤j≤J hj ≤ max1≤j≤J hj ≲ J−1, (ii) max1≤j≤J |τ̂j − τj | ≲P rRP, and (iii) ∆̂ ∈ Π3cQU w.p.a. 1.

Proof. By Assumption SA-RP(ii), len(X ) =
∑J

j=1 hj ≥ J min1≤j≤J hj ≥ c−1
QU J max1≤j≤J hj where

len(X ) denotes the length of X (which is a fixed number). On the other hand, len(X ) ≤ J max1≤j≤J hj

≤ cQUJ min1≤j≤J hj . Therefore, c
−1
QU J

−1len(X ) ≤ min1≤j≤J hj ≤ max1≤j≤J hj ≤ cQUJ
−1len(X ).

Next, by Assumption SA-RP(ii), max1≤j≤J |τ̂j−τj | = max1≤j≤J |
∑j

l=1(ĥl−hl)| ≤ J max1≤l≤J |ĥl−

hl| ≲ rRP. In addition, max1≤j≤J |ĥj − hj | ≤ 1
2c

−1
QU J

−1len(X ) ≤ 1
2 min1≤j≤J hj w.p.a. 1, and thus

max1≤j≤J ĥj

min1≤j≤J ĥj
=

max1≤j≤J hj +max1≤j≤J |ĥj − hj |
min1≤j≤J hj −max1≤j≤J |ĥj − hj |

≤ 3cQU, w.p.a.1.

Then, the proof is complete.

The next lemma then verifies Assumption SA-RP(ii) for the special case of quantile-spaced

partitions. The proof is available in the supplemental appendix of Cattaneo et al. (2024b) (see

Section SA-3.1 therein) and thus omitted here.

Lemma SA-5.2 (Quasi-Uniformity of Quantile-Spaced Partitions). Suppose that Assumption SA-

DGP(i) and SA-DGP(ii) holds and ∆̂ is generated by sample quantiles, i.e., τ̂j = F̂−1
X (j/J). If

J log J
n = o(1) and logn

J = o(1), then Assumption SA-RP(ii) holds with τj = F−1
X (j/J) and rRP =(

J log J
n

)1/2
.
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The next three lemmas SA-5.3–SA-5.5 concern the properties of binscatter basis functions. Their

proofs are the same as those for quantile-based partitions that are available in the supplemental

appendix of Cattaneo et al. (2024b) (see Section SA-3.1 therein) and are omitted here to conserve

space.

Lemma SA-5.3 (Transformation Matrix). Suppose that Assumption SA-RP(i) holds. Then b̂p,s(x) =

T̂sb̂p,0(x) with ∥T̂s∥∞ ≲P 1 and ∥T̂s∥ ≲P 1. If, in addition, Assumption SA-RP(ii) holds, then

∥T̂s −Ts∥∞ ≲P rRP and ∥T̂s −Ts∥ ≲P rRP.

Lemma SA-5.4 (Local Basis). Suppose that Assumption SA-RP(i) holds. Then supx∈X ∥b̂(v)
p,s(x)∥0 ≤

(p+ 1)2 and supx∈X ∥b̂(v)
p,s(x)∥ ≲P J

1
2
+v.

The following lemma provides a particular way to define β0(∆) and β̂0 so that the required

approximation rate is achieved. We define

βLS
0 (∆) := argmin

β∈RKp,s

E[(µ0(xi)− bp,s(xi; ∆)′β)2], β̂LS
0 = βLS

0 (∆̂).

Lemma SA-5.5 (Approximation Error). Suppose that Assumptions SA-DGP(i)(ii), SA-SM(v)

and SA-RP(i) hold. Then

sup
∆∈Π

sup
x∈X

|b(v)
p,s(x; ∆)′βLS

0 (∆)− µ
(v)
0 (x)| ≲ J−p−1+v and sup

x∈X
|b̂(v)

p,s(x)
′β̂LS

0 − µ
(v)
0 (x)| ≲P J

−p−1+v.

Next, the following maximal inequality is useful in our analysis. Its proof is available in Cattaneo

et al. (2024c) and thus omitted here.

Lemma SA-5.6 (Maximal Inequality). Let Z1, · · · , Zn be independent but not necessarily iden-

tically distributed random variables taking values in a measurable space (S;S ). Denote the joint

distribution of Z1, · · · , Zn by P and the marginal distribution of Zi by Pi, and let P̄ = 1
n

∑n
i=1 Pi.

Let F be a class of Borel measurable functions from S to R which is pointwise measurable. Let

F̄ be a measurable envelope function for F . Suppose that ∥F̄∥L2(P̄) < ∞. Let σ̄ > 0 satisfy

supf∈F ∥f∥L2(P̄) ≤ σ̄ ≤ ∥F̄∥L2(P̄) and define ¯̄F = max1≤i≤n F̄ (Zi). Then, with δ = σ̄/∥F̄∥L2(P̄),

E
[
sup
f∈F

∣∣∣ 1√
n

n∑
i=1

(
f(Zi)− E[f(Zi)]

)∣∣∣] ≲ ∥F̄∥L2(P̄)J(δ,F , F̄ ) +
∥ ¯̄F∥L2(P)J(δ,F , F̄ )2

δ2
√
n

,
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where

J(δ,F , F̄ ) =
∫ δ

0

√
1 + sup

Q
logN(F , L2(Q), ε∥F̄∥L2(Q))dε.

SA-5.2 Proof of Lemma SA-3.1

Proof. We write Ψi,1 := Ψ1(xi,wi; ηi).

(i) We first prove a convergence result for Q̄. In view of Lemma SA-5.3, it suffices to show the

convergence for s = 0. Let An denote the event on which ∆̂ ∈ Π. By Assumption SA-RP(i),

P(Ac
n) = o(1). On An,

∥∥∥En[b̂p,0(xi)b̂p,0(xi)
′Ψi,1η

2
i,1]− E

∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]

∥∥∥
≤ sup

∆∈Π
∥En[bp,0(xi; ∆)bp,0(xi; ∆)′Ψi,1η

2
i ]− E[bp,0(xi; ∆)bp,0(xi; ∆)′Ψi,1η

2
i ]∥∞.

Let akl be a generic (k, l)th entry of the matrix inside the norm, i.e.,

|akl| =
∣∣∣En[bp,0,k(xi; ∆)bp,0,l(xi; ∆)′Ψi,1η

2
i,1]− E[bp,0,k(xi; ∆)bp,0,l(xi; ∆)′Ψi,1η

2
i,1]

∣∣∣.
Clearly, if bp,0,k(· ; ∆) and bp,0,l(· ; ∆) are basis functions with different supports, akl is zero. Now

define the following function class

G =
{
(x1,w1) 7→ bp,0,k(x1; ∆)bp,0,l(x1; ∆)Ψiη

2
i,1 : 1 ≤ k, l ≤ J(p+ 1),∆ ∈ Π

}
.

We have supg∈G |g|∞ ≲ J and supg∈G V[g] ≤ supg∈G E[g2] ≲ J, by Assumption SA-SM. Also, by

Proposition 3.6.12 of Giné and Nickl (2016), the collection G is of VC type with a bounded index.

Then, by Lemma SA-5.6,

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi)− E[g(xi)]
∣∣∣ ≲P

√
J log J/n,

which implies ∥En[b̂p,0(xi)b̂p,0(xi)
′Ψi,1η

2
i,1]− E

∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]∥ ≲P

√
J log J/n.

Then, the lower bound on the minimum eigenvalue of Q̄ follows by Theorem 4.42 of Schumaker

(2007) and Assumption SA-RP(i). The upper bound immediately follows by Assumption SA-RP(i)

and Lemmas SA-5.3 and SA-5.4.
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Given the above fact, it follows that ∥Q̄−1∥ ≲P 1. Notice that Q̄ is a banded matrix with a

finite band width. Then, the bounds on the elements of Q̄−1 and ∥Q̄−1∥∞ hold by Theorem 2.2 of

Demko (1977).

(ii) By Assumption SA-DGP and SA-SM, Ψi,1η
2
i,1 is bounded and bounded away from zero

uniformly over 1 ≤ i ≤ n. Then, E[bp,s(xi)bp,s(xi)
′] ≲ Q0 ≲ E[bp,s(xi)bp,s(xi)

′]. The desired

bounds on the minimum and maximum eigenvalues of Q0 follow from Lemma SA-3.5 of Cattaneo

et al. (2024b).

Next, we show the convergence of Q̄ to Q0. Let αkl be a generic (k, l)th entry of

E
∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]/J − E[bp,0(xi)bp,0(xi)

′Ψi,1η
2
i,1]/J.

By definition, it is either equal to zero or

αkl =

∫
B̂j

(x− τ̂j

ĥj

)ℓ
φ(xi)fX(x)dx−

∫
Bj

(x− τj
hj

)ℓ
φ(xi)fX(x)dx

=ĥj

∫ 1

0
zℓφ(zĥj + τ̂j)fX(zĥj + τ̂j)dz − hj

∫ 1

0
zℓφ(zhj + τj)fX(zhj + τj)dz

=(ĥj − hj)

∫ 1

0
zℓφ(zĥj + τ̂j)fX(zĥj + τ̂j)dz

+ hj

∫ 1

0
zℓ
(
φ(zĥj + τ̂j)fX(zĥj + τ̂j)− φ(zhj + τj)fX(zhj + τj)

)
dz

for some 1 ≤ j ≤ J and 0 ≤ ℓ ≤ 2p and φ(xi) = E[κ(xi,wi)|xi]. By Assumptions SA-DGP and

SA-SM and the argument in the proof of Lemma SA-3.5 of Cattaneo et al. (2024b),

∥E
∆̂
[b̂p,0(xi)b̂p,0(xi)

′Ψi,1η
2
i,1]−Q0∥ ≲P rRP.

Since Q̄ and Q0 are banded matrices with finite band widths. Then, the bound ∥Q̄−1 −Q−1
0 ∥∞

hold by Theorem 2.2 of Demko (1977). This completes the proof.

SA-5.3 Proof of Lemma SA-3.2

Proof. Since E[ψ(yi, ηi)2|xi = x,wi = w] and (η(1)(µ0(x) +w′γ0))
2 is bounded and bounded away

from zero uniformly over x ∈ X and w ∈ W, En[b̂p,s(xi)b̂p,s(xi)
′] ≲ Σ̄ ≲ En[b̂p,s(xi)b̂p,s(xi)

′]. By
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the same argument in the proof of Lemma SA-3.1 (we can simply drop the additional term Ψi,1η
2
i,1

in Q̄), the eigenvalues of En[b̂p,s(xi)b̂p,s(xi)
′] and thus Σ̄ are bounded and bounded away from zero.

Then, the desired results follow from Lemma SA-3.1 and the fact that infx∈X ∥b̂(v)
p,s(x)∥ ≳ J1/2+v

w.p.a. 1 (it was shown in the proof of Lemma SA-3.6 of Cattaneo et al. (2024b)).

SA-5.4 Proof of Lemma SA-3.3

Proof. By Lemmas SA-5.3, SA-5.4 and SA-3.1, supx∈X ∥b̂(v)
p,s(x)∥1 ≲P J

1/2+v, ∥Q̄−1∥∞ ≲P 1 and

∥T̂s∥∞ ≲P 1. Recall that by Assumption SA-SM, ψ(yi, ηi) = ψ†(yi − ηi)ψ
‡(ηi) = ψ†(ϵi)ψ

‡(ηi).

Define the following function class

G =
{
(x1,w1, ϵ1) 7→ bp,0,l(x1; ∆)η(1)(µ0(x1) +w′

1γ0)ψ
†(ϵ1)ψ

‡(η1) : 1 ≤ l ≤ J(p+ 1),∆ ∈ Π
}
.

Then, supg∈G |g| ≲
√
J |ψ†(ϵ1)|, and hence take an envelop Ḡ = C

√
J |ψ†(ϵ1)| for some C large

enough. Moreover, supg∈G V[g] ≲ 1 and G is of VC type with a bounded index. By Proposition 6.1

of Belloni et al. (2015),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

g(xi, ϵi)
∣∣∣ ≲P

√
log J

n
+
J

ν
2(ν−2) log J

n
≲

√
log J

n
,

and the desired result follows.

SA-5.5 Proof of Lemma SA-3.4

Proof. Let ẑi = b̂p,s(xi)
′β̂0+w′

iγ0 and r(xi,wi, yi) := r(xi,wi, yi; ∆̂) := ηi,1ψ(yi, ηi)−η(1)(ẑi)ψ(yi, η(ẑi))

= A1(xi,wi, yi) +A2(xi,wi, yi) where

A1(xi,wi, yi) := A1(xi,wi, yi; ∆̂) := [ηi,1ψ
‡(ηi)− η(1)(ẑi)ψ

‡(η(ẑi))]ψ
†(yi, ηi) and

A2(xi,wi, yi) := A2(xi,wi, yi; ∆̂) := η(1)(ẑi)ψ
‡(η(ẑi))[ψ

†(yi, ηi)− ψ†(yi, η(ẑi))].

First, by Assumption SA-SM and Lemma SA-5.5, supx∈X ,w∈W |ηi,1ψ‡(ηi) − η(1)(ẑi)ψ
‡(η(ẑi))| ≲
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J−p−1 w.p.a. 1. Also, for every 1 ≤ l ≤ Kp,s and ∆ ∈ Π,

bp,s,l(x; ∆)
(
ηi,1ψ

‡(ηi)− η(1)(bp,s(x; ∆)′β0(∆) +w′γ0)ψ
‡(bp,s(x; ∆)′β0(∆) +w′γ0)

)
= bp,s,l(x; ∆)ηi,1ψ

‡(ηi)−

bp,s,l(x; ∆)η(1)
( kl+p∑

k=kl

bp,s,k(x; ∆)β0,k(∆) +w′γ0

)
ψ‡

( kl+p∑
k=kl

bp,s,k(x; ∆)β0,k(∆) +w′γ0

)

for some integer kl ∈ [1,Kp,s] where β0,k(∆) denotes the kth element in β0(∆). Then, the function

class G = {(x,w, y) 7→ bp,s,l(x; ∆)A1(x,w, y; ∆) : 1 ≤ l ≤ Kp,s,∆ ∈ Π} is of VC type with a

bounded index. By the same argument given in the proof of Lemma SA-3.3,

∥En[b̂p,s(xi)A1(xi,wi, yi)]∥∞ ≲P J
−p−1

( log J
n

)1/2
.

Next, let FXW∆ be the σ-field generated by {(xi,wi)}ni=1 and ∆̂. Note that

En[b̂p,s(xi)A2(xi,wi, yi)] = En[E[b̂p,s(xi)A2(xi,wi, yi)|FXW∆]]+

En

[
b̂p,s(xi)A2(xi,wi, yi)− E[b̂p,s(xi)A2(xi,wi, yi)|FXW∆]

]
.

By Assumption SA-SM(iii) and Lemma SA-5.5,

max
1≤i≤n

|E[A2(xi,wi, yi)|FXW∆]|

= max
1≤i≤n

|η(1)(b̂p,s(xi)
′β̂0 +w′

iγ0)Ψ(xi,wi; η(ẑi))| ≲P J
−p−1.

Then, ∥En[E[b̂p,s(xi)A2(xi,wi, yi)|FXW∆]]∥∞ ≲P J
−p−1−1/2 by the same argument in the proof of

Lemma SA-3.1. On the other hand, define the following function class

G :=
{
(x,w, y) 7→ bp,s,l(x; ∆)A2(x,w, y; ∆) : 1 ≤ l ≤ Kp,s,∆ ∈ Π

}
.

By Assumption SA-SM, supg∈G ∥g∥∞ ≲ J1/2, and supg∈G V[g(xi,wi, yi)] ≲ J−p−1. By a similar

argument given before, this function class is of VC type with a bounded index. Then, as in the

42



proof of Lemma SA-3.3, by Proposition 6.1 of Belloni et al. (2019),

sup
g∈G

∣∣∣ 1
n

n∑
i=1

(g(xi,wi, yi)− E[g(xi,wi, yi)])
∣∣∣ ≲P J

− p+1
2

√
log J

n
+
J1/2 log J

n
.

Collecting these results, we conclude that

b̂(v)
p,s(x)

′Q̄−1E[b̂p,s(xi)r(xi,wi, yi)] ≲P J
−p−1+v + J

2v−p−1
2

(J log J

n

)1/2
+
J1+v log J

n
.

The proof is complete.

SA-5.6 Proof of Lemma SA-3.5

Proof. By convexity of ρ(y; η(·)), we only need to consider β = β̂0 + εα/
√
J for any sufficiently

small fixed ε > 0 and α ∈ RKp,s such that ∥α∥ = 1. For notational simplicity, let b̂i := b̂p,s(xi).

For this choice of β and γ ∈ Rd,

δi(β,γ) = ρ(yi; η(b̂
′
iβ +w′

iγ))− ρ(yi; η(b̂
′
iβ̂0 +w′

iγ))

=

∫ εb̂′
iα/

√
J

0
ψ
(
yi, η(b̂

′
iβ̂0 +w′

iγ + t)
)
η(1)(b̂′

iβ̂0 +w′
iγ + t)dt.

Let FXW∆ be the σ-field generated by {(xi,wi)}ni=1 and ∆̂. We have

En[δi(β, γ̂)] =
1√
n
Gn[δi(β, γ̂)] + En

[
E[δi(β, γ̂)|FXW∆]

]
,

where Gn[·] denotes
√
n(En[·]−E[·|FXW∆]), and E[δi(β, γ̂)|FXW∆] := E[δi(β,γ)|FXW∆]|γ=γ̂ , i.e.,

the conditional expectation with γ̂ viewed as fixed. By Assumption SA-SM,

E[δi(β, γ̂)|FXW∆] =

∫ εb̂′
iα/

√
J

0
Ψ
(
xi,wi; η(b̂

′
iβ̂0 +w′

iγ̂ + t)
)
η(1)(b̂′

iβ̂0 +w′
iγ̂ + t)dt

=

∫ εb̂′
iα/

√
J

0
Ψ1(xi,wi; ξi,t)(η(b̂

′
iβ̂0 +w′

iγ̂ + t)− ηi)η
(1)(b̂′

iβ̂0 +w′
iγ̂ + t)dt,

where ξi,t is between η(b̂
′
iβ̂0+w′

iγ̂+t) and η(µ0(xi)+w′
iγ0) and we use the fact that Ψ(x,wi; ηi) = 0.

By Lemma SA-5.5, the fact that η(·) is strictly monotonic and γ̂ − γ0 = oP(
√
J/n + J−p−1) and

the rate condition imposed, we have En[E[δi(β, γ̂)|FXW∆]] ≳P ε
2α′En[b̂ib̂

′
i]α/J ≳P J

−1ε2.
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On the other hand, let H := {γ : ∥γ − γ0∥ ≤ Crγ} and define the following function class

G :=
{
(xi,wi, yi) 7→ δi(β,γ) : α ∈ SKp,s ,γ ∈ H

}
.

Note that

δi(β,γ) =

∫ εb̂′
iα/

√
J

0

(
ψ(yi, η(b̂

′
iβ̂0 +w′

iγ + t))− ψ(yi, ηi)
)
η(1)(b̂′

iβ̂0 +w′
iγ + t)dt +∫ εb̂′

iα/
√
J

0
ψ(yi, ηi)η

(1)(b̂′
iβ̂0 +w′

iγ + t)dt.

By Assumption SA-SM, we have supg∈G |g| ≲ ε(1 + |ψ(yi, ηi)|), ∥max1≤i≤n |ψ(yi, ηi)|∥L2(P) ≲ n1/ν ,

supg∈G En[E[g2|FXW∆]] ≲P J
−1ε2, and the VC-index of G is bounded by C ′Kp,s for an absolute

constant C ′ > 0. Therefore, by Lemma SA-5.6 and the rate restriction,

sup
g∈G

∣∣∣ 1√
n
Gn[δi(β,γ)]

∣∣∣ ≲P J
−1

(J2 log J

n

)1/2
ε+ J−1J

2 log J

n1−
1
ν

ε = o(ε/J).

Thus, for any fixed (sufficiently small) ε > 0, En[δi(β, γ̂)] > 0 when n is sufficiently large. Thus,

∥β̂ − β̂0∥ = oP(J
−1/2), implying ∥β̂ − β̂0∥∞ = oP(J

−1/2) immediately.

SA-5.7 Proof of Theorem SA-3.1

Proof. The proof is long. We divide it into several steps.

Step 0: We first prepare some notation and useful facts. To simplify the presentation, in this

proof we drop the scaling factor
√
J in the basis by defining

b̆i := b̂p,s(xi)/
√
J = (̂bp,s,1(xi), · · · , b̂p,s,Kp,s(xi))

′/
√
J and β̆0 =

√
Jβ̂0.

Throughout the proof, C, c, C1, c1, C2, c2, · · · denote (strictly positive) absolute constants, FXW∆

denotes the σ-field generated by {(xi,wi)}ni=1 and ∆̂, and supp(g(·)) denotes the support of a

generic function g(·). Moreover, define

V = {(v1, · · · , vKp,s)
′ : ∃k ∈ {1, · · · ,Kp,s}, |vℓ| ≤ ϱ|k−ℓ|εn for |ℓ− k| ≤Mn and vℓ = 0 otherwise},

Hl = {v ∈ RKp,s : ∥v∥∞ ≤ rl,n} for l = 1, 2, and H3 = {v ∈ Rd : ∥v∥ ≤ r3,n},
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where ϱ ∈ (0, 1) is the constant given in Lemma SA-3.1, r1,n = C1[(J log n/n)1/2 + J−p−1], r2,n =

zr2,n for z > 0, εn = z′r2,n for z′ > 0, r2,n = [(J logn
n )3/4 log n+J− p+1

2

√
J
n log n+J−2p−2+ rγ ], r3,n =

Crγ , and Mn = c1 log n. In the last step of the proof, we will consider z = 2ℓ, ℓ = L,L + 1, · · · , L̄

where L̄ is the smallest number such that 2L̄r2n ≥ c for some sufficiently small constant c > 0,

and εn is a quantity that we can choose. By Assumption SA-HLE, γ̂ − γ0 ∈ H3 with probability

approaching one for C large enough, and by Lemma SA-3.5,
√
Jβ̂ − β̆0 ≤ c with probability

approaching one.

For any β1 ∈ H1,β2 ∈ H2, υ ∈ V and γ := γ0 + γ1 with γ1 ∈ H3, define

δi(β1,β2,υ,γ) = ρ
(
yi; η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ)
)
− ρ

(
yi; η(b̆

′
i(β̆0 + β1 + β2 − υ) +w′

iγ)
)

−
[
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ)− η(b̆′

i(β̆0 + β1 + β2 − υ) +w′
iγ)

]
× ψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))

=

∫ 0

−b̆′
iυ

[
ψ
(
yi, η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ + t)
)
− ψ

(
yi, η(b̆

′
iβ̆0 +w′

iγ0)
)]

× η(1)
(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt.

Note that δi(β1,β2,υ,γ) ̸= 0 only if b̆′
iυ ̸= 0. For each υ ∈ V, let Jυ = {j : υj ̸= 0}. By

construction, the cardinality of Jυ is bounded by 2Mn + 1. We have δi(β1,β2,υ,γ) ̸= 0 only if

b̆j(xi) ̸= 0 for some j ∈ Jυ, which happens only when xi ∈ supp(b̆j(·)) for some j ∈ Jυ. Let

Iυ = ∪j∈Jυ supp(b̆j(·)). Since the basis functions are locally supported, Iυ includes at most c2Mn

(connected) intervals for all υ ∈ V. Moreover, at most c3Mn basis functions in b̆(·) have supports

overlapping with Iυ. Denote the set of indices for such basis functions by J̄υ. Let β̆0,j , β1,j and

β2,j be the jth entries of β̆0, β1, and β2 respectively, and υj be the jth entry of υ. Based on the

above observations, we have δi(β1,β2,υ,γ) ≡ δi(β1,J̄υ
,β2,J̄υ

,υ,γ) where

δi(β1,J̄υ
,β2,J̄υ

,υ,γ) :=

∫ 0

−
∑

j∈Jυ

b̆i,jυj

[
ψ
(
yi, η

( ∑
l∈J̄υ

b̆i,l(β̆0,l + β1,l + β2,l) +w′
iγ + t

))

−ψ
(
yi, η

( ∑
l∈J̄υ

b̆i,lβ̆0,l +w′
iγ0

))]
× η(1)

( ∑
l∈J̄υ

b̆i,l(β̆0,l + β1,l + β2,l) +w′
iγ + t

)
dt1i,υ,

1i,υ = 1(xi ∈ Iυ), and β1,J̄υ
and β2,J̄υ

respectively denote the subvectors of β1 and β2 whose
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indices belong to J̄υ. Accordingly, define the following function class

G =
{
(xi,wi, yi) 7→ δi(β̃1, β̃2,υ,γ) : υ ∈ V, β̃1 ∈ Rc3Mn , β̃2 ∈ Rc3Mn ,

∥β̃1∥∞ ≤ r1,n, ∥β̃2∥∞ ≤ r2,n,γ − γ0 ∈ H3

}
.

Step 1: We bound supg∈G |En[g(xi,wi, yi)] − E[g(xi,wi, yi)|FXW∆]| in this step. Let ai(t) :=

η(
∑

l∈J̄υ
b̆′i,lβ̆0,l +w′

iγ0 + t). Define

ai = min
{
ai(0), ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1

)
, ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1 +

∑
j∈Jυ

b̆i,jυj

)}
and

āi = max
{
ai(0), ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1

)
, ai

( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ1 +

∑
j∈Jυ

b̆i,jυj

)}
.

Consider the following two cases.

First, suppose that (yi − āi, yi − ai) does not contain any discontinuity points. By Assumption

SA-SM, for all t in the interval of integration [−
∑

j∈Jυ
b̆i,jυj , 0] (or [0,−

∑
j∈Jυ

b̆i,jυj ]),

∣∣∣ψ(yi, ai( ∑
l∈J̄υ

b̆i,l(β1,l + β2,l) +w′
iγ + t

))
− ψ(yi, ai(0))

∣∣∣ ≲ r1,n + r2,n + εn + r3,n.

Second, if (yi − āi, yi − ai) contains at least one discontinuity point, say ȷ. For any t in the interval

of integration, by Assumption SA-SM,

∣∣∣ψ(yi, ai( ∑
l∈J̄υ

b̆i,l(β1,l+β2,l)+w′
iγ+t

))
−ψ(yi, ai(0))

∣∣∣ ≲ 1+r3,n+(1+|ψ(yi, ηi)|)(r1,n+r2,n+εn+r3,n)

for any (xi,wi, yi), and in this case yi ∈ (ȷ+ ai, ȷ+ āi). By Assumption SA-SM,

|āi − ai| ≲ (r1,n + r2,n + r3,n + εn)(|ηi,1|+ r1,n + r2,n + r3,n + εn).

By construction, for each υ ∈ V, there exists some kυ such that |υℓ| ≤ ϱ|ℓ−kυ |εn for |ℓ− kυ| ≤Mn.

Therefore, we can further write 1i,υ =
∑

j:B̂j⊂Iυ 1i,υ,j where each 1i,υ,j is an indicator of the
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subinterval involved in Iυ, and the above facts imply that for any xi ∈ B̂l for some B̂l ⊂ Iυ,

V[δi(β1,β2,υ,γ)|FXW∆] ≲ ϱ2|(p−s+1)l−kυ |ε2n(r1,n + r2,n + εn + r3,n)(|ηi,1|+ r1,n + r2,n + εn + r3,n).

In addition, since δi(β1,β2,υ,γ) ̸= 0 only if xi ∈ Iυ, for all g ∈ G (each corresponds to a particular

υ),

En[V[g(xi,wi, yi)|FXW∆]] ≲ ε2n(r1,n + r2,n + εn + r3,n)
∑

l:B̂l⊂Iυ

En[1i,υ,l]ϱ
2|(p−s+1)l−kυ |.

This inequality holds for any event in FXW∆. Define an event A1 on which sup1≤j≤J En[1i,j ] ≤

C2J
−1 for some large enough C2 > 0 where 1i,j = 1(xi ∈ B̂j). By the argument in Lemma SA-3.1,

P(Ac
1) → 0. On A1,

σ̄2 := sup
g∈G

En[V[g(xi,wi, yi)|FXW∆]] ≲ ε2nJ
−1(r1,n + r2,n + εn + r3,n).

On the other hand,

Ḡ := sup
g∈G

|g(xi,wi, yi)| ≲ εn(1+r3,n+ |ψ(yi, ηi)|(r1,n+r2,n+εn+r3,n))(|ηi,1|+r1,n+r2,n+εn+r3,n).

Also, for any g, g̃ ∈ G, denote the corresponding parameters defining g and g̃ by (β1,β2,υ,γ) and

(β̃1, β̃2, υ̃, γ̃). We have

g̃(xi,wi, yi)− g(xi,wi, yi) =

∫ Λ1

0

[
ψ(yi, η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ + t))

− ψ(yi, η(b̆
′
iβ̆0 +w′

iγ0))
]
× η(1)(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t)dt

−
∫ Λ2

0

[
ψ(yi, η(b̆

′
i(β̆0 + β1 + β2 − υ) +w′

iγ + t))

− ψ(yi, η(b̆
′
iβ̆0 +w′

iγ0))
]
× η(1)(b̆′

i(β̆0 + β1 + β2 − υ) +w′
iγ + t)dt

≲ (1 + Λ1 + Λ2)(|ηi,1|+ r1,n + r2,n + Λ1 + Λ2 + r3,n)

× (∥(β̃1 − β1∥∞ + ∥β̃2 − β2)∥∞ + ∥υ̃ − υ∥∞ + ∥γ̃ − γ∥),
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where Λ1 = b̆′
i(β̃1+β̃2−β1−β2)+w′

i(γ̃−γ) and Λ2 = Λ1−b̆′
i(υ̃−υ). Based on these observations,

∥Ḡ∥P̄,2
∫ σ̄

∥Ḡ∥P̄,2

0

√
1 + sup

Q
logN(G, L2(Q), t∥Ḡ∥Q,2)dt ≲ σ̄

(√
log J +

√
log n log

1

σ̄

)
≲ σ̄ log n,

where the supremum is taken over all finite discrete probability measures Q. Then, by Lemma

SA-5.6,

E
[
sup
g∈G

∣∣∣Gn[g(xi,wi, yi)]
∣∣∣∣∣∣∣FXW∆

]
≲ σ̄ log n+

√
E[ ¯̄G2] log2 n

√
n

,

where ¯̄G = max1≤i≤n Ḡ(xi,wi, yi). Note that (E[ ¯̄G2])1/2 ≲ εn(1 + n1/ν(r1,n + r2,n + r3,n + εn)).

Therefore, on A1 (whose probability approaches one),

sup
β1∈H1,β2∈H2,υ∈V,γ1∈H3

∣∣∣En

[
δi(β1,β2,υ,γ)

]
− En

[
E[δi(β1,β2,υ,γ)|FXW∆]

]∣∣∣
≲

(
J−1εn

√
Ln

√
J

n
log n+

εn(1 + n1/νLn)(log n)
2

n

)

for Ln = r1,n + r2,n + r3,n + εn.

Step 2: For Q̃ := En[b̆ib̆
′
iΨ1(xi,wi; η(b̆

′
iβ̆0 +w′

iγ0))(η
(1)(b̆iβ̆0 +w′

iγ0))
2], by Assumption SA-

SM and the same argument in the proof of Lemma SA-3.1, ∥Q̄ − Q̃∥∞ ∨ ∥Q̄ − Q̃∥ ≲ J−p−1J−1.

Therefore,

sup
β1∈H1,β2∈H2,υ∈V

|υ′(Q̃− Q̄)(β1 + β2)| ≲ J−p−2εn(r1,n + r2,n).

In addition, by Lemmas SA-3.3 and SA-3.4, ∥β̄∥∞ ≤ r1,n with probability approaching one for C1

large enough, where

β̄ := −Q̄−1En

[
b̆iη

(1)(b̆′
iβ̆0 +w′

iγ0)ψ
(
yi, η(b̆

′
iβ̆0 +w′

iγ0)
)]
.

Step 3: By Taylor expansion, we have

En

[
E[δi(β1,β2,υ,γ)|FXW∆]

]
= En

[ ∫ 0

−b̆′
iυ

{
Ψ(xi,wi; η(b̆

′
i(β̆0 + β1 + β2) +w′

iγ + t))

−Ψ(xi,wi; η(b̆
′
iβ̆0 +w′

iγ0))
}
× η(1)

(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt

]
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= En

[ ∫ 0

−b̆′
iυ

{
Ψ1(xi,wi; η(b̆

′
iβ̆0 +w′

iγ0))
(
η(1)(b̆′

iβ̆0 +w′
iγ0)(b̆

′
i(β1 + β2) +w′

iγ1 + t)

+
1

2
η(2)(ξi,t)(b̆

′
i(β1 + β2) +w′

iγ1 + t)2
)

+
1

2
Ψ2(xi,wi; ξ̃i,t)

(
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t)− η(b̆′

iβ̆0 +w′
iγ0)

)2}
×
(
η(1)(b̆′

iβ̆0 +w′
iγ0) + η(2)(ξ̌i,t)(b̆

′
i(β1 + β2) +w′

iγ1 + t)
)
dt

]
= υ′Q̃(β1 + β2) + υ′En[biκ̃iw

′
i]γ1 −

1

2
υQ̃υ + I + II + III,

where ξi,t and ξ̌i,t are between b̆′
iβ̆0+w′

iγ0 and b̆′
i(β̆0+β1+β2)+w′

iγ+ t, ξ̃i,t is between η(b̆
′
iβ̆0+

w′
iγ0) and η(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t), Ψ2(x,w; τ) = ∂2

∂τ2
Ψ(x,w; τ), κ̃i = Ψ1(xi,wi; η(b̆

′
iβ̆0 +

w′
iγ0))(η

(1)(b̆′
iβ̆0 + w′

iγ0))
2, υ′En[biκ̃iw

′
i]γ1 ≲ εnr3,n/J , −1

2υQ̃υ ≲ ε2n/J , and I, II, and III are

defined and bounded as follows:

I = En

[ ∫ 0

−b̆′
iυ

Ψ1(xi; η(b̆
′
iβ̆0 +w′

iγ0))η
(1)(b̆′

iβ̆0 +w′
iγ0)

× η(2)(ξ̌i,t)(b̆
′
i(β1 + β2) +w′

iγ1 + t)2dt1i,υ

]
≲ εnJ

−1(r1,n + r2,n + εn + r3,n)
2,

II = En

[ ∫ 0

−b̆′
iυ

Ψ1(xi; η(b̆
′
iβ̆0 +w′

iγ0))×
1

2
η(2)(ξi,t)(b̆

′
i(β1 + β2) +w′

iγ1 + t)2

× η(1)
(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt1i,υ

]
≲ εnJ

−1(r1,n + r2,n + εn + r3,n)
2,

III = En

[ ∫ 0

−b̆′
iυ

1

2
Ψ2(ξ̃i,t)

(
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ + t)− η(b̆′

iβ̆0 +w′
iγ0)

)2

× η(1)
(
b̆′
i(β̆0 + β1 + β2) +w′

iγ + t
)
dt1i,υ

]
≲ εnJ

−1(r1,n + r2,n + εn + r3,n)
2.

These bounds hold uniformly for υ ∈ V, β1 ∈ H1, β2 ∈ H2 and γ1 ∈ H3 (that is, uniformly over

the function class G), and on an event A1 ∩ A2 where A2 = {λmax(Q̃) ≤ c4J
−1} for some large

enough c4 > 0. Note that P(A1 ∩ A2) → 1 by Lemma SA-3.1.

Step 4: By Assumption SA-SM and Taylor’s expansion,

IV = En

[(
η(b̆′

i(β̆0 + β1 + β2) +w′
iγ)− η(b̆′

i(β̆0 + β1 + β2 − υ) +w′
iγ)

)
ψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))

]
− En

[
υ′b̆iψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))η
(1)(b̆′

iβ̆0 +w′
iγ0)

]
= En

[
υ′b̆iψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))
(
η(2)(ξi)(b̆

′
i(β1 + β2 − υ) +w′

iγ1) +
1

2
η(2)(ξ̃i)υ

′b̆i

)]

49



≲ J−1((J log n/n)1/2 + J−p−1)(εn + r1,n + r2,n + r3,n)εn,

where ξi is between b̆′
iβ̆0+w′

iγ0 and b̆′
i(β̆0+β1+β2−υ)+w′

iγ and ξ̃i is between b̆′
i(β̆0+β1+β2)+w′

iγ

and b̆′
i(β̆0 + β1 + β2 − υ) +w′

iγ. The last line holds on the event

A3 =

{
sup

(∥∥∥En

[
b̆ib̆

′
iψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))η
(2)(ϖi)

]∥∥∥
∞
+∥∥∥En

[
b̆iψ(yi, η(b̆

′
iβ̆0 +w′

iγ0))η
(2)(ϖi)wi

]∥∥∥
∞

)
≲ J−1

((J log n

n

)1/2
+ J−p−1

)}
,

where the supremum is taken over β1 ∈ H1,β2 ∈ H2,υ ∈ V,γ1 ∈ H3 and ϖi within the range

of ξi or ξ̃i. Note that E[ψ(yi, ηi)|FXW∆] = 0 and b̆′
iβ̆0 − µ0(xi) ≲ J−p−1. Then, we can use the

argument in the proof of Lemmas SA-3.3 and SA-3.4 to obtain P(A3) → 1 by choosing C3 > 0

sufficiently large.

Step 5: Let ῡ = c5εnJ
−1[Q̄−1]k· for some k such that |β2,k| = ∥β2∥∞ for some c5 > 0 where

[Q̄−1]k· denotes the kth row of Q̄−1. Note that υ′Q̄β2 = β2,k. Take υ = (υ1, · · · , υKp,s) where

υj = ῡj for |j − k| ≤ Mn and zero otherwise. Clearly, υ ∈ V on an event A4 with P(A4) → 1. On

A2 ∩ A4,

|(υ − ῡ)′Q̄β2| ≲ εnJ
−1r2,nn

−c6

for some large c6 > 0 if we let c1 be sufficiently large.

Step 6: Finally, partition the whole parameter space into shells: O = ∪L̄
ℓ=−∞Oℓ where Oℓ =

{β ∈ RKp,s : 2ℓ−1r2,n ≤ ∥β − β̆0 − β̄∥∞ ≤ 2ℓr2,n} for the smallest L̄ such that 2L̄r2,n ≥ c, and

Q̄β̄ = −En[b̆iη
(1)(b̆′

iβ̆0+w′
iγ0)ψ(yi, η(b̆

′
iβ̆0+w′

iγ0))]. DefineA = ∩4
j=1Aj . Then, for some constant

L ≤ L̄, we have by Lemma SA-3.5 and the results given in the previous steps,

P(∥β̆ − β̆0 − β̄∥∞ ≥ 2Lr2,n|FXW∆)

≤ P
( L̄⋃

ℓ=L

{
inf

β∈Oℓ

sup
υ∈V

En[ρ(yi; η(b̆
′
iβ +w′

iγ̂))− ρ(yi; η(b̆
′
i(β − υ) +w′

iγ̂))] < 0
}∣∣∣FXW∆

)
+ oP(1)

= P
( L̄⋃

ℓ=L

{
inf

β∈Oℓ

sup
υ∈V

{
E
[
ρ(yi; η(b̆

′
iβ +w′

iγ̂))− ρ(yi; η(b̆
′
i(β − υ) +w′

iγ̂))

− [η(b̆′
iβ +w′

iγ̂)− η(b̆′
i(β − υ) +w′

iγ̂)]ψ(yi, η(b̆
′
iβ̆0 +w′

iγ̂))|FXW∆

]
+
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En

[
(η(b̆′

iβ +w′
iγ̂)− η(b̆′

i(β − υ) +w′
iγ̂))ψ(yi, η(b̆

′
iβ̆0 +w′

iγ̂))
]
+

1√
n
Gn

[
ρ(yi; η(b̆

′
iβ +w′

iγ̂))− ρ(yi; η(b̆
′
i(β − υ) +w′

iγ̂))−

[η(b̆′
iβ +w′

iγ̂)− η(b̆′
i(β − υ) +w′

iγ̂)]ψ(yi, η(b̆
′
iβ̆0 +w′

iγ̂))
]}

< 0
}∣∣∣FXW∆

)
+ oP(1)

≤ P
( L̄⋃

ℓ=L

{
sup

β1∈H1

sup
β2∈H2,ℓ

sup
γ1∈H3

sup
υ∈V

1√
n

∣∣∣(1(A1) + 1(Ac
1))Gn[δi(β1,β2,υ,γ)]

∣∣∣ >
C4J

−12ℓr2,nεn

}
∩ A

∣∣∣FXW∆

)
+ oP(1)

≤
L̄∑

ℓ=L

(C6J
−12ℓr2,nεn)

−11(A1)E
[

sup
β1∈H1

sup
β2∈H2,ℓ

sup
γ1∈H3

sup
υ∈V

1√
n
Gn[δi(β1,β2,υ,γ)]

∣∣∣FXW∆

]
+ oP(1),

where Gn[·] is understood as
√
n(En[·]− E[·|FXW ]) in the above, we let εn = 2Lr2,n, and 1(A1) is

an indicator of the event A1. Using the result in Step 1 and the rate condition, the first term in

the last line can be made arbitrarily small by choosing L large enough, when n is sufficiently large.

Then, the proof for part (i) is complete.

Step 7: To show part (ii) and part (iii), by Taylor expansion and the result in part (i),

η(µ̂(x) + ŵ′γ̂)− η(µ0(x) + w′γ0)

= η(1)(µ0(x) + w′γ0)
(
b̂p,s(x)

′β̂ − µ0(x)
)

+OP

(
∥ŵ − w∥+ ∥γ̂ − γ0∥+

J log n

n
+ J−2p−2 + r22,n

)
= − η(1)(µ0(x) + w′γ0)b̂p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(yi, ηi)]

+OP

(
J−p−1 +

(J log n

n

)3/4
log n+ J− p+1

2

(J log2 n

n

)1/2
+ rγ + ∥ŵ − w∥

)
,

and

η(1)(µ̂(x) + ŵ′γ̂)µ̂(1)(x)− η(1)(µ0(x) + w′γ0)µ
(1)
0 (x)

= η(1)(µ0(x) + w′γ0)
(
µ̂(1)(x)− µ

(1)
0 (x)

)
+OP

((J log n

n

)1/2
+ J−p−1 + ∥ŵ − w∥+ r2,n

)
OP

(
1 + J

((J log n

n

)1/2
+ J−p−1 + r2,n

))
= − η(1)(µ0(x) + w′γ0)b̂

(1)
p,s(x)

′Q̄−1En[b̂p,s(xi)ηi,1ψ(yi, ηi)]+

OP

((J log n

n

)1/2
+ J−p + J

(J log n

n

)3/4
log n+ J− p−1

2

(J log2 n

n

)1/2
+ Jrγ

51



+ ∥ŵ − w∥
(
1 +

(J3 log n

n

)1/2))
.

In the above derivation the probability bound holds uniformly over x ∈ X as well. Then the proof

is complete.

SA-5.8 Proof of Theorem SA-3.2

Proof. Since ϵ̂i := ϵi + ηi − η̂i =: ϵi + ui, we can write

En[b̂p,s(xi)b̂p,s(xi)
′η̂2i,1ψ

‡(η̂i)
2ψ†(ϵ̂i)

2]− E[bp,s(xi)bp,s(xi)
′η2i,1σ

2(xi,wi)]

= En

[
b̂p,s(xi)b̂p,s(xi)

′η̂2i,1ψ
‡(η̂i)

2
(
ψ†(ϵi + ui)

2 − ψ†(ϵi)
2
)]

+ En

[
b̂p,s(xi)b̂p,s(xi)

′
(
η̂2i,1ψ

‡(η̂i)
2 − η2i,1ψ

‡(ηi)
2
)
ψ†(ϵi)

2
]

+ En[b̂p,s(xi)b̂p,s(xi)
′η2i,1(ψ(yi, ηi)

2 − σ2(xi,wi))]

+
(
En[b̂p,s(xi)b̂p,s(xi)

′η2i,1σ
2(xi,wi)]− E[bp,s(xi)bp,s(xi)

′η2i,1σ
2(xi,wi)]

)
=:V1 +V2 +V3 +V4.

We bound each term in the following. The first part of the theorem only concerns V1 +V2 +V3,

and the second part needs a bound on V4 as well where the additional Assumption SA-RP(ii) is

used.

Step 1: For V1, we further write V1 = V11 +V12 where

V11 := En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2
(
ψ†(ϵi + ui)

2 − ψ†(ϵi)
2
)]
,

V12 := En

[
b̂p,s(xi)b̂p,s(xi)

′
(
η̂2i,1ψ

‡(η̂i)
2 − η2i,1ψ

‡(ηi)
2
)(
ψ†(ϵi + ui)

2 − ψ†(ϵi)
2
)]
.

Let r1,n = C1(J log n/n)1/2 + J−p−1 for a constant C1 > 0. By Assumption SA-SM and Corollary

SA-3.1, max1≤i≤n |ui| ≤ r1,n with arbitrarily large probability for C1 sufficiently large. For V11,

let J be the set of all discontinuity points of ψ(·). Define 1i,D := 1(ϵi ∈ D) and 1i,Dc := (1− 1i,D)

where D := {a : |a− ȷ| ≤ r1,n for some ȷ ∈ J }. Define

V111 := En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2
(
ψ†(ϵi + ui)

2 − ψ†(ϵi)
2
)
1i,D

]
,
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V112 := En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2
(
ψ†(ϵi + ui)

2 − ψ†(ϵi)
2
)
1i,Dc

]
.

By definition of D and Assumption SA-SM,

∥V111∥ ≲ ∥En[b̂p,s(xi)b̂p,s(xi)
′E[1i,D|FXW∆]]∥+ ∥En[b̂p,s(xi)b̂p,s(xi)

′(1i,D − E[1i,D|FXW∆])]∥.

By Assumption SA-SM and Lemma SA-3.5 of Cattaneo et al. (2024b), the first term on the right

hand side is OP(r1,n). For the second term, conditional on FXW∆, it is an independent sequence

with mean zero. Thus, we can apply the argument given in Step 3 below and conclude that the

second term is OP(
√
r1,nJ log J/n+ J log J/n). In this case, the indicator 1i,D is trivially bounded

uniformly.

On the other hand, by Assumption SA-SM,

∥V112∥ ≲ r1,n∥En[b̂p,s(xi)b̂p,s(xi)
′η2i,1ψ

‡(ηi)
2|ψ†(ϵi + ui) + ψ†(ϵi)|]∥.

Since |c| ≤ 1
2(1 + c2) for any scalar c, we have

En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2|ψ†(ϵi)|
]
≤ 1

2
En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2(1 + ψ†(ϵi)
2)
]
≲P 1,

by Lemma SA-3.1 and the result in Step 3. In addition, we further write

En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2|ψ†(ϵi + ui)|
]

=En

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ
‡(ηi)

2|ψ†(ϵi) + (ψ†(ϵi + ui)− ψ†(ϵi))|
]
.

Repeat the previous argument to bound this term. We conclude that ∥V11∥ ≲P r1,n.

V12 can be treated using the previous argument combined with the argument given in Step 2

and the result in Step 3. It leads to ∥V12∥ ≲P r1,n.

Step 2: For V2, by Assumption SA-SM, Corollary SA-3.1 and the argument given later in Step

3, we have

∥V2∥ ≤ max
1≤i≤n

|η̂2i,1ψ‡(η̂i)
2 − η2i,1ψ

‡(ηi)
2|∥En[b̂p,s(xi)b̂p,s(xi)

′ψ†(ϵi)
2]∥ ≲P (J log n/n)1/2 + J−p−1.
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Step 3: For V3, in view of Lemmas SA-5.2 and SA-5.3, it suffices to show that

sup
∆∈Π

∥∥∥En[bp,0(xi; ∆)bp,0(xi; ∆)′η2i,1(ψ(yi, ηi)
2 − σ2(xi,wi))]

∥∥∥ ≲P

(J log J

n
ν−2
ν

)1/2
.

For notational simplicity, we write φi = ψ(yi, ηi)
2−σ2(xi,wi), φ

−
i = φi1(|φi| ≤M)−E[φi1(|φi| ≤

M)|xi,wi], φ
+
i = φi1(|φi| > M) − E[φi1(|φi| > M)|xi,wi] for some M > 0 to be specified later.

Since E[φi|xi,wi] = 0, φi = φ−
i + φ+

i . Then, define a function class

G =
{
(x1,w1, φ1) 7→ bp,0,l(x1; ∆)bp,0,k(x1; ∆)η2i,1φ1 : 1 ≤ l ≤ J(p+ 1), 1 ≤ k ≤ J(p+ 1),∆ ∈ Π

}
.

For g ∈ G,
∑n

i=1 g(xi,wi, φi) =
∑n

i=1 g(xi,wi, φ
+
i ) +

∑n
i=1 g(xi,wi, φ

−
i ).

For the truncated piece, we have supg∈G |g(xi,wi, φ
−
i )| ≲ JM , and

sup
g∈G

V[g(x1,w1, φ
−
1 )] ≲ sup

x∈X ,w∈W
E[(φ−

i )
2|xi = x,wi = w] sup

∆∈Π
sup

1≤l,k≤J(p+1)
E[b2p,0,l(xi; ∆)b2p,0,k(xi; ∆)η4i,1]

≲ JM sup
x∈X ,w∈W

E
[
|φ1|

∣∣∣xi = x
]
≲ JM.

The VC condition holds by the same argument given in the proof of Lemma SA-3.1. Then, by

Lemma SA-5.6,

E
[
sup
g∈G

∣∣∣En[g(xi,wi, φ
−
i )]

∣∣∣] ≲ √
JM log(JM)

n
+
JM log(JM)

n
.

Regarding the tail, we apply Theorem 2.14.1 of van der Vaart and Wellner (1996) and obtain

E
[
sup
g∈G

∣∣∣En[g(xi,wi, φ
+
i )]

∣∣∣] ≲
1√
n
JE

[√
En[|φ+

i |2]
]

≤ 1√
n
J(E[ max

1≤i≤n
|φ+

i |])
1/2(E[En[|φ+

i |])
1/2

≲
J√
n
· n

1
ν

M (ν−2)/4
,

where the second line follows from Cauchy-Schwarz inequality and the third line uses the fact that

E[ max
1≤i≤n

|φ+
i |] ≲ E[ max

1≤i≤n
ψ(yi, ηi)

2] ≲ n2/ν and E[En[|φ+
i |]] ≤ E[|φ1|+|] ≲

E[|ψ(y1, η1)|ν ]
M (ν−2)/2

.
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Then the desired result follows simply by setting M = J
2

ν−2 and the sparsity of the basis.

Step 4: For V4, since by Assumption SA-SM, supx∈X ,w∈W E[ψ(yi, ηi)2|xi = x] ≲ 1. Then, by

the same argument given in the proof of Lemma SA-3.1,

sup
∆∈Π

∥∥∥ 1√
n
Gn[bp,s(xi; ∆)bp,s(xi; ∆)′η2i,1σ

2(xi,wi)]
∥∥∥ ≲P

√
J log J/n and∥∥∥E∆̂

[
b̂p,s(xi)b̂p,s(xi)

′η2i,1ψ(yi, ηi)
2
]
− E

[
bp,s(xi)bp,s(xi)

′η2i,1ψ(yi, ηi)
2
]∥∥∥ ≲P

√
J log J/n+ rRP.

The proof for the first conclusion is complete.

Step 5: The results about Ω̂µ(v)(x), Ω̂ϑ(x) and Ω̂ζ(x) follow by Assumptions SA-SM and SA-

HLE, Lemmas SA-5.4 and SA-3.1, and Corollary SA-3.1. The proof is complete.

SA-5.9 Proof of Theorem SA-3.3

Proof. We first show that for each fixed x ∈ X ,

Ω̄µ(v)(x)−1/2b̂(v)
p,s(x)

′Q̄−1Gn[b̂p,s(xi)ηi,1ψ(yi, ηi)] =: Gn[aiψ(yi, ηi)]

is asymptotically normal. Conditional on FXW∆, the σ-field generated by {(xi,wi)}ni=1 and ∆̂,

it is an independent mean-zero sequence over i with variance equal to 1. Then by Berry-Esseen

inequality,

sup
u∈R

∣∣∣P(Gn[aiψ(yi, ηi)] ≤ u|)− Φ(u)
∣∣∣ ≤ min

(
1,

∑n
i=1 E[|aiψ(yi, ηi)|3|FXW∆]

n3/2

)
.

By Lemmas SA-5.4, SA-3.1 and SA-3.2,

1

n3/2

n∑
i=1

E
[
|aiψ(yi, ηi)|3

∣∣∣FXW∆

]
≲ Ω̄µ(v)(x)−3/2 1

n3/2

n∑
i=1

E
[
|b̂(v)

p,s(x)
′Q̄−1b̂p,s(xi)ηi,1ψ(yi, ηi)|3

∣∣∣FXW∆

]
≲ Ω̄µ(v)(x)−3/2 1

n3/2

n∑
i=1

|b̂(v)
p,s(x)

′Q̄−1b̂p,s(xi)|3

55



≤ Ω̄µ(v)(x)−3/2 supx∈X supz∈X |b̂(v)
p,s(x)′Q̄−1b̂p,s(z)|

n3/2

n∑
i=1

|b̂(v)
p,s(x)

′Q̄−1b̂p,s(xi)|2

≲P
1

J3/2+3v
· J

1+v

√
n

· J1+2v → 0

since J/n = o(1). By Theorem SA-3.2, the above weak convergence still holds if Ω̄µ(v)(x) is replaced

by Ω̂µ(v)(x). Then, the desired results follow by Theorem SA-3.1.

SA-5.10 Proof of Theorem SA-3.4

Proof. We let β̂0 and r̂0,v be defined as in Lemma SA-5.5. By Lemmas SA-5.5 and SA-3.1, Theorem

SA-3.1 and the results given in the proof of Lemma SA-3.4, we have

µ̂(v)(x)− µ
(v)
0 (x) = b̂p,s(xi)

′(β̂ − β̂0)− r̂0,v(x)

=− b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1ψ(yi, ηi)]− b̂(v)

p,s(x)
′Q−1

0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)]

− r̂0,v(x) +OP

(
Jv

{(J log n

n

)3/4√
log n+ J− p+1

2

(J log2 n

n

)1/2
+ rγ

})
,

where η̌i = η(b̂p,s(xi)
′β̂0+w′

iγ0). Recall that the OP(·) in the last line holds uniformly over x ∈ X ,

and thus the integral of the squared remainder is oP(J
1+2v/n + J−2(p+1−v)) by the rate condition

imposed. Then,

AISEµ(v) =

∫
X

(
b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1ψ(yi, ηi)]

+ b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)] + r̂0,v(x)

)2
ω(x)dx.

Next, taking conditional expectation given X, W and ∆̂ and using the argument in the proof of

Lemma SA-3.1 again, we have

E[AISEµ(v) |X,W, ∆̂] =
1

n
trace

(
Q−1

0 Σ0Q
−1
0

∫
X
b(v)
p,s(x)b

(v)
p,s(x)

′ω(x)dx
)
+ oP(J

2v+1/n)

+

∫
X

(
b̂(v)
p,s(x)

′β̂0 − µ
(v)
0 (x)

)2
ω(x)dx

+

∫
X

(
b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)]

)2
ω(x)dx

+ 2

∫
X
b̂(v)
p,s(x)

′Q−1
0 En[b̂p,s(xi)ηi,1Ψ(xi,wi; η̌i)]r̂0,v(x)ω(x)dx.
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By Assumption SA-SM, Ψ(xi,wi; η̌i) = −Ψ1(xi,wi; ηi,0)ηi,1r̂0(xi) +OP(J
−2p−2) where OP(·) holds

uniformly over i. The terms in the last three lines correspond to the integrated squared bias.

Also, using the same argument in the proof of Lemma SA-3.1, En[·] in the last two lines can

be safely replaced by E
∆̂
[·], which only introduces some additional approximation error of order

oP(J
−2p−2+2v).

The proof of Theorem SA-3.4 in Cattaneo et al. (2024b) shows that

r̂0,v(x) = µ
(v)
0 (x)− b̂(v)

p,s(x)
′β̂0

=
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v
Ep+1−v

(x− τ̂Lx

ĥx

)
− J−p−1b̂(v)

p,s(x)
′Q−1

0 TsE∆̂

[
b̂p,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τ̂Lxi

ĥxi

)]
+ oP(J

−p−1+v),

where τ̂Lx is the start of the (random) interval in ∆̂ containing x and ĥx denotes its length. Then,

using the same argument as in the proof of Theorem SA-3.4 in Cattaneo et al. (2024b), we can

approximate the integrated squared bias by the analogue based on the non-random partition ∆0,

i.e.,
∫
X (r

†
0,v(x)− b

(v)
p,s(x)′Q

−1
0 E[bp,s(xi)κ(xi,wi)r

†
0,0(xi)])

2ω(x)dx where

r†0,v(x) =
J−p−1+vµ

(p+1)
0 (x)

(p+ 1− v)!fX(x)p+1−v
Ep+1−v

(x− τLx
hx

)
− J−p−1b̂(v)

p,s(x)
′Q−1

0 TsE
[
bp,0(xi)

µ
(p+1)
0 (xi)

(p+ 1)!fX(xi)p+1
Ep+1

(xi − τLxi

hxi

)]
.

The expression of the bias term can be further simplified. For both Rv(x) = r†0,v(x) and Rv(x) =

r⋆0,v(x), there exists some vector β such that supx∈X |µ0(x)−bp,s(xi)
′β−Rv(x)| = o(J−p−1+v) (see

Lemma SA-5.5 and Lemma SA-6.1 of Cattaneo et al. (2020)). Define

rP0,v(x) = µ
(v)
0 (x)− b(v)

p,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)µ0(xi)].

Then, it follows that rP0,v(x) = Rv(x)−bp,s(x)
′Q−1

0 E[bp,s(xi)κ(xi,wi)R0(xi)] + o(J−p−1+v). Thus,

{r†0,v(x)− b(v)
p,s(x)

′Q−1
0 E[bp,s(xi)κ(xi,wi)r

†
0,0(xi)]}

−{[r⋆0,v(x)− b(v)
p,s(x)

′Q−1
0 E[bp,s(xi)κ(xi,wi)r

⋆
0,0(xi)]]} = o(J−p−1+v).

57



Therefore, the expression of Bn(p, s, v) given in the theorem holds.

Finally, the desired results in part (ii) and part (iii) follow by Theorem SA-3.1, the rate condition

imposed and the same argument for part (i).

SA-5.11 Proof of Theorem SA-3.5

Proof. The proof is divided into several steps.

Step 1: Note that

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ
(v)
0 (x)√

Ω̂µ(v)(x)/n
− µ̂(v)(x)− µ

(v)
0 (x)√

Ω̄µ(v)(x)/n

∣∣∣∣
≤ sup

x∈X

∣∣∣∣ µ̂(v)(x)− µ
(v)
0 (x)√

Ω̄µ(v)(x)/n

∣∣∣∣ sup
x∈X

∣∣∣∣ Ω̂µ(v)(x)1/2 − Ω̄µ(v)(x)1/2

Ω̂µ(v)(x)1/2

∣∣∣∣
≲P

(√
log n+

√
nJ−p−1−1/2

)(
J−p−1 +

√
J log n

n1−
2
ν

)

where the last step uses Lemma SA-3.2 and Corollary SA-3.1. Then, in view of Lemmas SA-5.5,

SA-3.4, Theorems SA-3.1, SA-3.2 and the rate restriction given in the lemma, we have

sup
x∈X

∣∣∣∣ µ̂(v)(x)− µ
(v)
0 (x)√

Ω̂µ(v)(x)/n
+

b̂
(v)
p,s(x)′Q̄−1√
Ω̄µ(v)(x)

Gn[b̂p,s(xi)ηi,1ψ(yi, ηi)]

∣∣∣∣ = oP(a
−1
n ).

Step 2: Let us write K (x, xi) = Ωµ(v)(x)−1/2b̂
(v)
p,s(x)′Q̄−1b̂p,s(xi) (the dependence of b̂

(v)
p,s(x), Q̄

and Ω̄µ(v)(x) on X, W and ∆̂ is omitted for simplicity), and σ̃2(xi,wi) = E[ψ†(ϵi)
2|xi,wi]. Now

we rearrange {xi}ni=1 as a sequence of order statistics {x(i)}ni=1, i.e., x(1) ≤ · · · ≤ x(n). Accordingly,

{ϵi}ni=1, {wi}ni=1 and {σ̃2(xi,wi)}ni=1 are ordered as concomitants {ϵ[i]}ni=1, {w[i]} and {σ̃2[i]}
n
i=1

where σ̃2[i] = σ̃2(x(i),w[i]). Clearly, conditional on FXW∆ (the σ-field generated by {(xi,wi)} and

∆̂), {ψ†(ϵ[i])}ni=1 is still an independent mean-zero sequence. Then by Assumptions SA-DGP, SA-

SM and the result of Sakhanenko (1991), there exists a sequence of i.i.d. standard normal random

variables {ζ[i]}ni=1 such that

max
1≤ℓ≤n

|Sℓ| := max
1≤ℓ≤n

∣∣∣∣ ℓ∑
i=1

η(1)(µ0(x(i)) +w′
[i]γ0)ψ

‡(η(µ0(x(i)) +w′
[i]γ0))ψ

†(ϵ[i])
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−
ℓ∑

i=1

η(1)(µ0(x(i)) +w′
[i]γ0)ψ

‡(η(µ0(x(i)) +w′
[i]γ0))σ̃[i]ζ[i]

∣∣∣ ≲P n
1
ν .

Then, using summation by parts,

sup
x∈X

∣∣∣∣∣
n∑

i=1

K (x, x(i))η
(1)(µ0(x(i)) +w′

[i]γ0)ψ
‡(η(µ0(x(i)) +w′

[i]γ0))(ψ
†(ϵ[i])− σ̃[i]ζ[i])

∣∣∣∣∣
= sup

x∈X

∣∣∣∣∣K (x, x(n))Sn −
n−1∑
i=1

Si
(
K (x, x(i+1))− K (x, x(i))

)∣∣∣∣∣
≤ sup

x∈X
max
1≤i≤n

|K (x, xi)||Sn|+ sup
x∈X

∣∣∣∣∣∣ b̂
(v)
p,s(x)′Q̄−1√
Ω̄µ(v)(x)

n−1∑
i=1

Si

(
b̂p,s(x(i+1))− b̂p,s(x(i))

)∣∣∣∣∣∣
≤ sup

x∈X
max
1≤i≤n

|K (x, xi)||Sn|+ sup
x∈X

∥∥∥∥∥Q̄−1b̂
(v)
p,s(x)√

Ω̄µ(v)(x)

∥∥∥∥∥
1

∥∥∥∥∥
n−1∑
i=1

Si

(
b̂p,s(x(i+1))− b̂p,s(x(i))

)∥∥∥∥∥
∞

.

By Lemmas SA-5.4, SA-3.1 and SA-3.2, supx∈X supxi∈X |K (x, xi)| ≲P
√
J , and

sup
x∈X

∥∥∥∥∥Q̄−1b̂
(v)
p,s(x)√

Ω̄µ(v)(x)

∥∥∥∥∥
1

≲P 1.

Then, notice that

max
1≤l≤Kp,s

∣∣∣∣ n−1∑
i=1

(
b̂p,s,l(x(i+1))− b̂p,s,l(x(i))

)
Sl

∣∣∣∣ ≤ max
1≤l≤Kp,s

n−1∑
i=1

∣∣∣̂bp,s,l(x(i+1))− b̂p,s,l(x(i))
∣∣∣ max
1≤ℓ≤n

∣∣∣Sℓ∣∣∣.
By construction of the ordering, max1≤l≤Kp,s

∑n−1
i=1

∣∣∣̂bp,s,l(x(i+1)) − b̂p,s,l(x(i))
∣∣∣ ≲ √

J . Under the

rate restriction in the theorem, this suffices to show that for any ξ > 0,

P
(
sup
x∈X

∣∣∣Gn[K (x, xi)η
(1)(µ0(xi) +w′

iγ0)(ψ(yi, ηi)− σ(xi,wi)ζi)]
∣∣∣ > ξa−1

n

∣∣∣FXW∆

)
= oP(1),

where we recover the original ordering. Since Gn[b̂p,s(xi)ζiσ(xi,wi)ηi,1] =d|FXW∆
N(0, Σ̄) (=d|FXW

denotes “equal in distribution conditional on FXW∆”), the above steps construct the following

approximating process:

Z̄µ(v),p(x) :=
b̂
(v)
p,s(x)′Q̄−1√
Ω̄µ(v)(x)

Σ̄1/2NKp,s .
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Step 3: Suppose that Assumption SA-RP(ii) also holds. Note that

sup
x∈X

|Z̄µ(v),p(x)− Zµ(v),p(x)|

≤ sup
x∈X

∣∣∣∣ b̂(v)(x)′(Q̄−1 −Q−1
0 )√

Ωµ(v)(x)
Σ̄1/2NKp,s

∣∣∣∣+ sup
x∈X

∣∣∣∣ b̂(v)(x)′Q−1
0√

Ωµ(v)(x)

(
Σ̄1/2 −Σ

1/2
0

)
NKp,s

∣∣∣∣+
sup
x∈X

∣∣∣∣ b̂(v)
p,0(x)

′(T̂s −Ts)Q
−1
0√

Ωµ(v)(x)
Σ

1/2
0 NKp,s

∣∣∣∣+ sup
x∈X

∣∣∣∣( 1√
Ω̄µ(v)(x)

− 1√
Ωµ(v)(x)

)
b̂
(v)
p,0(x)

′T̂sQ̄
−1Σ̄1/2NKp,s

∣∣∣∣
= I + II + III + IV,

where each term on the right-hand side is a mean-zero Gaussian process conditional on FXW∆. By

Theorem SA-3.2 (see Step 4 of its proof), supx∈X |Ω̄µ(v)(x)−Ωµ(v)(x)| ≲P J
1+2v(

√
J log n/n+ rRP).

By a similar calculation given in Step 1 and the rate condition imposed, the last term is oP(a
−1
n ).

By Lemmas SA-5.3 and SA-3.1, ∥Q̄−1 − Q−1
0 ∥ ≲P

√
J log J/n and ∥T̂s − Ts∥ ≲P

√
J log J/n.

Also, using the argument in the proof of Lemma SA-5.4 and Theorem X.3.8 of Bhatia (2013),

∥Σ̄1/2−Σ
1/2
0 ∥ ≲P

√
J log J/n. By Gaussian Maximal Inequality (van der Vaart and Wellner, 1996,

Corollary 2.2.8),

E
[
I + II + III

∣∣∣FXW∆

]
≲P

√
log J

(
∥Σ̄1/2 −Σ

1/2
0 ∥+ ∥Q̄−1 −Q−1

0 ∥+ ∥T̂s −Ts∥
)
= oP(a

−1
n )

where the last line follows from the imposed rate restriction. Then the proof for part (i) is complete.

The results in parts (ii) and (iii) immediately follow by Theorem SA-3.1 and the fact that the

leading variance term in the Bahadur representation for ϑ̂(x, ŵ) or ζ̂(x, ŵ) differs from that for µ̂(x)

or µ̂(1)(x) up to a sign only.

SA-5.12 Proof of Theorem SA-3.6

Proof. This conclusion follows from Lemmas SA-5.4, SA-3.1, Theorem SA-3.2 and Gaussian Max-

imal Inequality as applied in Step 3 in the proof of Theorem SA-3.5.
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SA-5.13 Proof of Theorem SA-3.7

Proof. We first show that

sup
u∈R

∣∣∣P( sup
x∈X

|Tµ(v),p(x)| ≤ u
)
− P

(
sup
x∈X

|Zµ(v),p(x)| ≤ u
)∣∣∣ = o(1).

By Theorem SA-3.5, there exists a sequence of constants ξn such that ξn = o(1) and

P
(∣∣∣ sup

x∈X
|Tµ(v),p(x)| − sup

x∈X
|Zµ(v),p(x)|

∣∣∣ > ξn/an

)
= o(1).

Then,

P
(
sup
x∈X

|Tµ(v),p(x)| ≤ u
)
≤ P

({
sup
x∈X

|Tµ(v),p(x)| ≤ u
}
∩
{∣∣∣ sup

x∈X
|Tµ(v),p(x)| − sup

x∈X
|Zµ(v),p(x)|

∣∣∣ ≤ ξn/an

})
+ o(1)

≤ P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u+ ξn/an

)
+ o(1)

≤ P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
)
+ sup

u∈R
E
[
P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)]
≤ P

(
sup
x∈X

|Zµ(v),p(x)| ≤ u
)
+ E

[
sup
u∈R

P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)]
+ o(1).

Apply the Anti-Concentration Inequality conditional on ∆̂ (Chernozhukov et al., 2014) to the

second term:

sup
u∈R

P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)
≤ 4ξna

−1
n E

[
sup
x∈X

|Zµ(v),p(x)|
∣∣∣∆̂]

+ o(1)

≲P ξna
−1
n

√
log J + o(1) → 0

where the last step uses Gaussian Maximal Inequality (see van der Vaart and Wellner, 1996, Corol-

lary 2.2.8). By Dominated Convergence Theorem,

E
[
sup
u∈R

P
(∣∣∣ sup

x∈X
|Zµ(v),p(x)| − u

∣∣∣ ≤ ξn/an

∣∣∣∆̂)]
= o(1).

The other side of the inequality follows similarly.
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By similar argument, using Theorem SA-3.6, we have

sup
u∈R

∣∣∣P( sup
x∈X

|Ẑµ(v),p(x)| ≤ u
∣∣∣D, ∆̂)

− P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
∣∣∣∆̂)∣∣∣ = oP(1).

Then, it remains to show that

sup
u∈R

∣∣∣P( sup
x∈X

|Zµ(v),p(x)| ≤ u
)
− P

(
sup
x∈X

|Zµ(v),p(x)| ≤ u|∆̂
)∣∣∣ = oP(1). (SA-5.1)

We can write

Zµ(v),p(x) =
b̂
(v)
p,0(x)

′√
b̂
(v)
p,0(x)

′V0b̂
(v)
p,0(x)

N̆Kp,0

where V0 = T′
sQ

−1
0 Σ0Q

−1
0 Ts and N̆Kp,0 := T′

sQ
−1
0 Σ

1/2
0 NKp,s is a Kp,0-dimensional Gaussian

random vector. Importantly, by this construction, N̆Kp,0 and V0 do not depend on ∆̂ and x, and

they are only determined by the deterministic partition ∆0.

First consider v = 0. For any two partitions ∆1,∆2 ∈ Π, for any x ∈ X , there exists x̌ ∈ X such

that

b
(0)
p,0(x; ∆1) = b

(0)
p,0(x̌; ∆2),

and vice versa. Therefore, the following two events are equivalent: {ω : supx∈X |Zp(x; ∆1)| ≤ u} =

{ω : supx∈X |Zp(x; ∆2)| ≤ u} for any u. Thus,

E
[
P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
∣∣∣∆̂)]

= P
(
sup
x∈X

|Zµ(v),p(x)| ≤ u
∣∣∣∆̂)

+ oP(1).

Then for v = 0, the desired result follows.

For v > 0, simply notice that b̂
(v)
p,0(x) = T̂vb̂p,0(x) for some transformation matrix T̂v. Clearly, T̂v

takes a similar structure as T̂s: each row and each column only have a finite number of nonzeros.

Each nonzero element is simply ĥ−v
j up to some constants. By Lemma SA-5.2, it can be shown that

∥T̂v − Tv∥ ≲ Jv
√
J log J/n where Tv is the population analogue (ĥj replaced by hj). Repeating

the argument given in the proof of Theorems SA-3.5 and SA-3.6, we can replace T̂v in Zµ(v),p(x)

by Tv without affecting the approximation rate. Then the desired result for Tµ(v),p(x) follows by

repeating the argument given for v = 0 above.
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Finally, the result for Tϑ,p(x) (Tζ,p(x)) follows by the fact that Zϑ,p(x) and Ẑϑ,p(x) (Zζ,p(x) and

Ẑζ,p(x)) differ from Zµ(v),p(x) and Ẑµ(v),p(x) up to a sign only.

SA-5.14 Proof of Theorem SA-3.8

Proof. We only consider Îµ(v),p(x). The results in part (ii) and part (iii) follow similarly.

Let ξ1,n = o(1), ξ2,n = o(1) and ξ3,n = o(1). Then,

P
[
sup
x∈X

|Tµ(v),p(x)| ≤ cµ(v)

]
≤ P

[
sup
x∈X

|Z̄µ(v),p(x)| ≤ cµ(v),p + ξ1,n/an

]
+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| ≤ c0(1− α+ ξ3,n) + (ξ1,n + ξ2,n)/an

]
+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| ≤ c0(1− α+ ξ3,n)

]
+ o(1) → 1− α,

where c0(1−α+ξ3,n) denotes the (1−α+ξ3,n)-quantile of supx∈X |Z̄µ(v),p(x)| conditional on FXW∆

(the σ-field generated by X, W and the partition ∆̂), the first inequality holds by Theorem SA-3.5,

the second by Lemma A.1 of Belloni et al. (2015), and the third by Anti-Concentration Inequality

in Chernozhukov et al. (2014). The other side of the bound follows similarly.

SA-5.15 Proof of Theorem SA-3.9

Proof. We only consider the proof for part (i). The results in part (ii) and part (iii) follow similarly.

Throughout this proof, we let ξ1,n = o(1), ξ2,n = o(1) and ξ3,n = o(1) be sequences of vanishing

constants. Moreover, let An be a sequence of diverging constants such that
√
log JAn ≲

√
n

J1+2v .

Note that

sup
x∈X

|Ṫµ(v),p(x)| ≤ sup
x∈X

∣∣∣∣ µ̂(x)− µ
(v)
0 (x)√

Ω̂µ(v)(x)/n

∣∣∣∣+ sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣.
Therefore, under Ḣµ(v)

0 ,

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
≤ P

[
sup
x∈X

|Tµ(v),p(x)| > cµ(v) − sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣]

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| > cµ(v) − ξ1,n/an − sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣]+ o(1)

63



≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| > c0(1− α− ξ3,n)− (ξ1,n + ξ2,n)/an−

sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̃)√
Ω̂µ(v)(x)/n

∣∣∣∣]+ o(1)

≤ P
[
sup
x∈X

|Z̄µ(v),p(x)| > c0(1− α− ξ3,n)
]
+ o(1)

= α+ o(1)

where c0(1−α−ξ3,n) denotes the (1−α−ξ3,n)-quantile of supx∈X |Z̄µ(v),p(x)| conditional on FXW∆

(the σ-field generated byX, W and ∆̂), the second inequality holds by Theorem SA-3.5, the third by

Lemma A.1 of Belloni et al. (2015), the fourth by the fact that supx∈X
∣∣µ(v)

0 (x)−m(v)(x;θ̃)√
Ω̂

µ(v)
(x)/n

∣∣ = oP(
1√
log J

)

and Anti-Concentration Inequality in Chernozhukov et al. (2014). The other side of the bound

follows similarly.

On the other hand, under Ḣµ(v)

A ,

P
[
sup
x∈X

|Ṫµ(v),p(x)| > cµ(v)

]
=P

[
sup
x∈X

∣∣∣Tµ(v),p(x) +
µ
(v)
0 (x)−m(v)(x; θ̄)√

Ω̂µ(v)(x)/n
+
m(v)(x; θ̄)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n

∣∣∣ > cµ(v)

]

≥P
[
sup
x∈X

|Tµ(v),p(x)| < sup
x∈X

∣∣∣∣µ(v)0 (x)−m(v)(x; θ̄)√
Ω̂µ(v)(x)/n

+
m(v)(x; θ̄)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n

∣∣∣∣− cµ(v)

]

≥P
[
sup
x∈X

|Z̄µ(v),p(x)| ≤
√
log JAn − ξ1,n/an

]
− o(1)

≥ 1− o(1).

where the fourth line holds by Lemma SA-3.2, Theorem SA-3.2, Theorem SA-3.5, the condition

that Jv
√
J log J/n = o(1) and the definition of An, and the last by the Talagrand-Samorodnitsky

Concentration Inequality (van der Vaart and Wellner, 1996, Proposition A.2.7).

SA-5.16 Proof of Theorem SA-3.10

Proof. We only consider the proof for part (i). The results in part (ii) and part (iii) follow similarly.

Throughout this proof, the definitions of An, ξ1,n, ξ2,n and ξ3,n are the same as in the proof of
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Theorem SA-3.9. Under Ḧµ(v)

0 ,

sup
x∈X

T̈µ(v),p(x) ≤ sup
x∈X

Tµ(v),p(x) + sup
x∈X

|m(v)(x; θ̄)−m(v)(x; θ̃)|√
Ω̂µ(v)(x)/n

.

Then,

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
≤ P

[
sup
x∈X

Tµ(v),p(x) > cµ(v) − sup
x∈X

|m(v)(x; θ̄)−m(v)(x; θ̃)|√
Ω̂µ(v)(x)/n

]

≤ P
[
sup
x∈X

Z̄µ(v),p(x) > cµ(v) − ξ1,n/an

]
+ o(1)

≤ P
[
sup
x∈X

Z̄µ(v),p(x) > c0(1− α− ξ3,n)− (ξ1,n + ξ2,n)/an

]
+ o(1)

≤ P
[
sup
x∈X

Z̄µ(v),p(x) > c0(1− α− ξ3,n)
]
+ o(1)

= α+ o(1)

where c0(1−α− ξ3,n) denotes the (1−α− ξ3,n)-quantile of supx∈X Z̄µ(v),p(x) conditional on FXW∆

(the σ-field generated by X, W and ∆̂), the second line holds by Theorem SA-3.5, the third by

Lemma A.1 of Belloni et al. (2015), the fourth by Anti-Concentration Inequality in Chernozhukov

et al. (2014).

On the other hand, under Ḧµ(v)

A ,

P
[
sup
x∈X

T̈µ(v),p(x) > cµ(v)

]
= P

[
sup
x∈X

(
Tµ(v),p(x) +

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
− cµ(v)

)
> 0

]

≥ P
[
sup
x∈X

|Tµ(v),p(x)| < sup
x∈X

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
− cµ(v) ,

sup
x∈X

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
> cµ(v)

]

≥ P
[
sup
x∈X

|Tµ(v),p(x)| < sup
x∈X

µ
(v)
0 (x)−m(v)(x; θ̃)√

Ω̂µ(v)(x)/n
− cµ(v)

]
− o(1)

≥ P
[
sup
x∈X

|Tµ(v),p(x)| <
√
log JAn

]
− o(1)

≥ P
[
sup
x∈X

|Z̄µ(v),p(x)| <
√

log JAn − ξ1,n/an

]
− o(1)
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≥ 1− o(1)

where the third line holds by Lemma SA-3.2, Theorem SA-3.2, Lemma A.1 of Belloni et al. (2015),

the assumption that supx∈X |m(v)(x; θ̃)−m(v)(x; θ̄)| = oP(1) and J
v
√
J log J/n = o(1), the fourth

by definition of An, and the fifth by Theorem SA-3.5, and the last by Proposition A.2.7 in van der

Vaart and Wellner (1996).
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