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1 Introduction

First order autoregressive processes with an explosive root, i.i.d. Gaussian
innovations and zero initial condition were first analysed by White (1958)
who, using a moment generating function approach, derived a Cauchy limit
theory for the maximum likelihood estimator. Using martingale methods,
Anderson (1959) arrived to the same conclusion and showed that the Cauchy
limit theory is not invariant to deviations from Gaussianity and that, in
general, the limit distribution of the OLS estimator depends on the distri-
bution of the innovation sequence. Invariance of the Cauchy least squares
regression limit theory to the distribution of the innovations can be recovered
when the explosive root approaches unity as the sample size tends to infinity
at sufficiently slow rate. This invariance, first established by Phillips and
Magdalinos (2007a, hereafter PM2007a), allows for semiparametric inference
within the class of mildly explosive autoregressions: a property that has been
employed to construct inferential procedures for the detection and dating of
financial bubbles by Phillips, Wu and Yu (2011) and Phillips and Yu (2011)
among others.

The invariance result of PM2007 was extended in various directions to
include innovation sequences that are weakly dependent (Phillips and Mag-
dalinos (2007b)), strongly dependent (Magdalinos (2012)), conditionally het-
eroskedastic (Arvanitis and Magdalinos (2019)) and to a class of stationary
processes that includes long memory and antipersistence (Wang (2023)). Aue
and Horvath (2007) relaxed the moment conditions on the innovations by
considering an i.i.d. innovation sequence that belongs to the domain of at-
traction of a a-stable law and showed that, in general, the normalised and
centred OLS estimator converges to a ratio of two independent a-stable ran-
dom variables which is Cauchy distributed only when the innovation sequence
belongs to the Gaussian domain of attraction with a = 2.

All works listed above consider drifting sequences of autoregressive pa-
rameters that converge to unity from above at the mildly explosive rate.
Drifting sequences of autoregressive parameters have been employed as early
as Phillips (1987b) in the analysis of the discontinuity of inference in different
regions of the parameter space. More recent work considers certain distribu-
tional aspects of the innovation sequence of an autoregression as an infinite
dimensional nuisance parameter: from this viewpoint, an analysis of drift-
ing sequences of innovation processes provides information on the sensitivity
of autoregressive inference to the innovations’ distributional characteristics.



Andrews and Guggenberger (2012, 2014) consider the distribution function of
a stationary innovation sequence as part of the parameter space and derive an
OLS and GLS limit theory along drifting sequences of autoregressive parame-
ters on [—1 + d, 1] for some § > 0 and along drifting sequences of innovation
processes belonging to a class of (possibly conditionally heteroskedastic) mar-
tingale differences. Recent work by Magdalinos and Petrova (2023) proposes
an endogenously generated instrumental variable procedure for autoregres-
sion and predictive regression with uniform asymptotic size properties over an
autoregressive parameter space of the form [— M, M] for some M > 0 which,
in addition to (near) stationary and unit roots, includes explosive and mildly
explosive autoregressive roots. Any attempt to introduce aspects of the in-
novation sequence as a nuisance parameter in a parameter space containing
autoregressive roots in (—oo, —1] U [1, 00) would require the development of
limit distribution theory along drifting sequences of both (mildly) explosive
roots and innovation processes. Such limit theory is not available, even in
the simplest case of the OLS estimator and the current paper aims to fill this
gap in the literature.

Given a sample t € {1,...,n}, we consider a sequence of linear process
innovations u,; = Z;’io Cnj€ni—j Where (e,;) is a (possibly conditionally
heteroskedastic) martingale difference array and (c, ;) is an array of num-
bers satisfying a short memory array condition. A law of large numbers
is derived for sample variance and covariance of (e, ;) (Lemma 1). In the
mildly explosive case, |p,| — 1, the paper employs martingale approxima-
tion in the spirit of PM2007a (Lemma 2) and provides a direct extension
of the Cauchy limit distribution result of that paper. In the purely explo-
sive case, p, — p € (—o0,—1) U (1,00), the array structure of (e, ;) inval-
idates the martingale convergence theorem and raises significant challenges
in showing that the denominator of the ratio that arises as an approxima-
tion of the normalised and centred OLS estimator is a.s. non-zero. This
issue is dealt with by showing that (e, F,:) may be approximated by a
martingale difference sequence (e;, F;) by taking e; := liminf, . e,; and
Fi = o (liminf,_, F,). This approximation may be employed to show that
the denominator of the normalised and centred OLS estimator is non-zero
with probability tending to one (Lemma 3). Lemma 4 derives new limit the-
ory for (mildly) explosive processes with a negative root p, — p € (—o0, —1].
Theorems 1 and 2 provide the limit distribution theory for the OLS estimator
and the t-statistic respectively. All proofs are included in the Appendix.



2 Main Results

Consider a first order autoregressive process of the form
xn,t = U + Xn,t; Xn,t = ann,tfl + U/n,ta t - {1, ,n} (1)

where X, ; is initialised at X, o. The intercept is introduced in the model in a
way that it may contribute but does not dominate asymptotically in the form
of a deterministic trend when p,, is in a vicinity of unity; this specification
goes back to Andrews (1993) and has been employed by numerous papers that
wish to introduce an intercept to nonstationary models while maintaining
their stochastic nature. It is easy to see that upon recursive substitution, (1)
can be written as

Tnt = (1 —p,) + PpTni-1+ Unt, Tno = p+ Xno. (2)

As mentioned in the introduction, we consider a drifting sequence of inno-
vation processes (u,.) in order to provide the possibility of including some
of the distributional properties of (u,;) in a parameter space of an autore-
gression as a nuisance parameter. We do not consider drifting sequences of
intercepts since any critical region based on the OLS estimator

pn = Z?:l TntTnt—1 — ni;n,nj;n,n—l (3)

no 32 2
thl Tht—1 — Ny n-1

is exactly invariant to p.
We present a formal set of assumptions on the drifting sequences of pa-
rameters p,,, u,; and X, o in (1)-(2).

Assumption 1 (AR root). The sequence (p,),cy Satisfies p, — p €
(=00, 1] U [1, 00) and n(|p,| - 1) — o0

Assumption 2 (innovation sequence). For each n € N, the sequence
(Un,t)yey @0 (2) is a stationary linear process of the form

o o
Upt = Z Cn j€nt—; With sup Z |en.;] < 00 4)
=0 n>1 =0



where (c,, ;) s an array of numbers satisfying ¢, o = 1, lim,_ Z;’io cfw- > 0
and -
C(p)=1lim > pe,; #0 for p e (—o00,~1]U[1,00). (5)
=0

Given a sequence of filtrations (Fp.t),cy
a martingale difference array such that

the sequence (ent, Fni)ey ™ (2) is

lim inf li%n inf Bz, , | |ent >0 a.s., (6)
(eiﬁt)nemez is a uniformly integrable family, o2 = E (efm) — 02 >0 and

o, =Eg,, ., (e2,) satisfies the following: (me) is strictly stationary for

n,t
each n with o2, >0 a.s

tez
: 2

limsupsupo, ; < oo a.s., (7)
n—oo teN

and there exist b > 0 and sequences of positive numbers (V,,),,cn and (¢,)
satisfying 1,, — 0 and ¢, — 0 such that

neN

Stl>111) H]Efn’tflfm (afm - ai) HLI <b(,,+¢,) foralmn>1. (8)

In the special case of e,; being conditionally homoskedastic, o2, = o2

1z, s immediate and (7) and (8) hold
trivially, the former by convergence of (07), y and the latter since the left
side of (8) is equal to 0 by the tower property of conditional expectations.

for all ¢, so strict stationarity of (o2 ,)

Assumption 3 (initial condition).
() When |p,| =1, X0 = 0, [ (67— 1)*].
(ii) When |p,| — |p| > 1, Xno —a Xo where Xy is an Fy-measurable

random variable, where Fy 1= 0 (UpenFno) with (Fnt) defined in
Assumption 2.

teZ

We provide some discussion of Assumptions 1-3. Assumption 1 includes
explosive roots p, — p € (—oo0,—1) U (1,00) and mildly explosive roots
p, — 1 with n(p, —1) — oo and p, — —1 with n(p, +1) — oo0; when



|p,| — 1, the convergence to 1 or —1 takes place at rate strictly domi-
nated by the n~!: the local to unity rate of near nonstationary processes
(see Phillips (1987b)). Unlike much of the existing literature on mildly ex-
plosive processes (Phillips and Magdalinos (2007b), Magdalinos (2012), Ar-
vanitis and Magdalinos (2019)), the mildly explosive rate is not restricted
by a parametrisation and is allowed to be arbitrary only required to satisfy
n (lp,] — 1) = oc.

Assumption 2 is an array generalisation of a stationary short memory
linear process with respect to both the non-stochastic weights ¢, ; and the
innovation sequence e,; which is now an array of martingale differences.

Since ,
h=0 i=0

(4) implies that sup,>; > 5 | Vs, ()| < 00. The existence of the limits of
> ooy and 33 pIc,; is ensured on a subsequence (my),.y € N by
(4) and the Bolzano-Weierstrass (BW) theorem; this is usually enough to
establish the uniformity of asymptotic size of critical regions and confidence
intervals, the proof of which typically relies on subsequential arguments, see
Andrews, Cheng and Guggenberger (2020). The existence of such limits along
N when conducting asymptotics of estimators along drifting sequences is typ-
ically assumed for notational economy with a proper BW analysis conducted
when computing the asymptotic size of critical regions. The same holds for
the existence of the limit of o2, guaranteed subsequentially by stationarity
and boundedness of the sequence E (o2 ).

Condition (5) assumes away antipersistence: the usual requirement C' (1) #
0 needs to be extended over the entire range p € (—oo, —1] U [1, 00) in order

to avoid degeneracy in the long run variance. When p = —1, (5) requires
that
C (—1) = nh_)ngo Z (—1)_j Cn,j = nh_)l’lolo (Z Cn,25 — Z Cn,2j+1) 7é 0.
=0 =0 j=0

Conditions (6) and (7) are required for the proof of the local Marcinkiewicz-
Zygmund conditions for a martingale difference e; that approximates e, ; (see
Lemma 3 and its proof). A martingale difference sequence (7, H;),.y is said
to satisfy the local Marcinkiewicz-Zygmund (MZ) conditions if

Ii{ninfE(|nt||Ht_1) a.s. and supE (17| Hi—1) < o0 a.s. (10)
oo teN

6



see Lai and Wei (1983). The local MZ conditions are used in conjunction
with Corollary 2 of Lai and Wei (1983) to show that the denominator of the
ratio that approximates the centred and normalised OLS estimator in the
explosive case is a.s. non-zero; Lemma 3 extends this approach to arrays of
martingale differences to which the martingale convergence theorem and the
Lai and Wei (1983) result do not directly apply.

Assumption 2 accommodates a large class of stationary conditional het-
eroskedastic processes. Condition (8) is a slight generalisation of the L;-
mixingale array assumption of Andrews (1988). By using similar methods
to Example 1 of Arvanitis and Magdalinos (2019) and the results of Giraitis
et.al. (2000), we may show that (8) is satisfied by an array of stationary
ARCH(o0) processes. The L;-mixingale array condition (8) is useful for the
validity of a law of large numbers for (p; — 1) Y_)", p;**07, derived by Ar-
vanitis and Magdalinos (2019) and for deriving a law of large numbers for
n~' Y0 u?, in Lemma 1 below.

Under mild explosivity, Assumption 3(i) imposes the usual order of magni-
tude on the initial condition X, ¢ that guarantees its asymptotic negligibility
from OLS asymptotics. For explosive processes with |p| > 1, X,, o contributes
to the limit distribution of the OLS estimator; we denote by X its limit in
distribution, which, in line with the discussion for the existence of the limits
of "%y and 377 p~Ic, j, is ensured subsequentially by tightness of the
sequence (X ), oy, in other words by the condition X, 0 = O, (1).

Under Assumption 2, we may prove the following law of large numbers,

which is useful for deriving the asymptotic distribution of the t-statistic in
2

Theorem 2. Denoting by 7, (h) = E (un un—p) and w? = (Z;io cw) o2

n

the autocovariance function and long run variance of (u,.), (9), the identity

oo

wr=on Y Git2Y v, (h) (11)
=0 h=1
2

and the convergence of the sequences > ¢, j, 22 ¢i ; and o7, (the former

by (5)) imply that lim,, e > po; 7., (h) exists in R.

Lemma 1. Let Assumption 2 hold and K be a non-negative bounded func-
tion on [0, 1] satisfying K (0) = 1. Then:

— 0.
L

(i)

1\ 2 21 0o 2
w Dot Uy — 07 LMy oo Zj:o Cn.j

7



(ii) If, in addition,

supsup!cov (eit, € tth ’ < 00 (12)
n>1 h>1
holds, then
LM
ILICY D ORITIRES ) SENT] IR
h=1 t=h+1 Ly

whenever M — oo and M /n'/? — 0.

Note that the covariance condition (12) in part (ii) does not impose finite
fourth moment on e, ; (since h > 0) and that is it is automatically satisfied
under conditional homoskedasticity by the law of iterated expectations. The
above law of large numbers together with the law of large numbers estab-
lished by Lemma 1 of Arvanitis and Magdalinos (2019) will be sufficient for
the asymptotic development of the paper. We proceed by extending the as-
ymptotic approximations that lead to the Cauchy-distributed ratio to mildly
explosive arrays. In doing so, we will require a strengthening of the summa-
bility condition (4) to

Suij |cn,;] < oo for some § > 0. (13)

n>1

The reason for this is that, unlike the standard non-array case ¢, ; = ¢;, (4)
does not guarantee

Z |cn.j| = 0 when m,, — oo (14)
Jj=mn
which is very useful in establishing approximations With mildly explosive

processes. A counterexample to (14) is easy to construct: ¢? ; : (gb —1) i
where ¢, — 1 with n (¢, — 1) — oo satisfies (4) since ZFO ni — 1; tak-

ing (m,) to be any sequence satisfying m, — oo and my, (¢, —1) — 0 we
obtain 3 7" ! ¢y — 0and 377 ¢, — 1. On the other hand, since

> e |Cw| <m0y g |cw = O( 2%), (14) is satisfied under (13).

In order not to impose the summability condition (13) unnecessarily in the




non-array case ¢, ; = ¢;, we prove Lemma 2 under (13) or under the follow-
ing dominance condition: there exists (c;),, satisfying > 7% |¢;| < oo and
> =0 ¢j # 0 such that

lcn,;| < blej| for some b >0 (15)

where b is independent of n and j.
Consider the stochastic sequences

n

0= (02 =1)"">" prtuns (16)

t=1

and
X, = (=0 pann =6+ (02 =1 Xoo 4.0 (17)

Y, = (B2 -1 p Dy, (18)
t=1

When p,, — p > 1, denote C' (p) = lim,, o0 Y72 p~Jcp; (the existence of the
limit is ensured by Assumption 2) and

X)) = Clo) (02 —1)">" pitens (19)
Valp) = Cp) (2= 1) g e, (20)

t=1

Denote by C' (1) = lim,, oo ) 57~ ¢s; and by X, (1) and Y, (1) the sequences
in (19) and (20) with C (p) replaced by C (1).

Lemma 2. Let Assumption 1 with p, — 1 and Assumption 2 with either
(13) or (15) hold. Then ||¢, — X,, (1) Y, -V, (1)

— 0 and
Lo

Lo

X, Yol = [X(1),7 (1)] (21)

) and Y (1) are independent N (0,w?) random vari-
2

1
).

as n — oo, where X (
ables with w? = o2C' (1



It is worth noting that the martingale approximation of Y, by Y, (1)
is new and relaxes the summability condition > 7%, j|c;| < oo of Phillips
and Magdalinos (2007b) to (13) or the classical short memory condition
;2 lej| < oo in the non-array case.

The next result deals with martingale approximation of sample moments
of (purely) explosive arrays. This is more challenging than the mildly explo-
sive case since the development of the theory of explosive autoregressions is
based on the martingale convergence theorem which, unlike the weak con-
vergence arguments employed in the mildly explosive case, does not admit a
triangular array generalisation. In what follows, we approximate the martin-
gale difference array (e, ;, F,:) by a martingale difference sequence (e;, F;)
along a subsequence using Levy’s upward lemma for conditional expectations
(see 14.2 in Williams (1991)). The martingale difference sequence (e, F3) is
shown to satisfy the local MZ conditions (10), thus ensuring that the de-
nominator of the ratio that approximates the centred and normalised OLS
estimator is small with probability tending to 0; see Lemma 3(ii) below. The
theoretical development of Lemma 3 is new and is necessitated by the lack
of available martingale convergence theory for an array of martingale dif-
ferences e,,; resulting from considering drifting sequences of autoregressive
innovations ().

Lemma 3. Let Assumption 1 with p, — p € (1,00), and Assumption 2
with (13) or (15) hold. For each t € Z let e, := liminf,, . e, and

Gt = N2, Fiy and Fy = 0 (L2,Gny) = 0 <lim inf fn,t) C(22)

n—oo

(i) The sequence (ey, Fi),cq 95 a martingale difference satisfying the local
MZ conditions (10).

(ii) For any subsequence of (Xy),cy there exists a further subsequence
that converges in distribution. If Xy —4 X for some subsequence
(X )nen of (Xn),en: then P(Xo =0) = 0.

(iii) lims_olimsup, P (|X,| <) =0 and |Y,|/|X,| =0, (1).

The next result extends the approximation results for the numerator and
denominator, (23) and (24) respectively, of the centred and normalised OLS
estimator. While (24) is a straightforward extension, the proof of (23) con-
tains new theory even for the non-array case ¢, ; = ¢; when p,"n - 0: this

10



may only occur for roots p,, that lie logarithmically close to the local to unity
region: p, —1 = O (logn/n) see (74) in the Appendix. Such rates are as-
sumed away by the polynomial parametrisation p, = 1+ ¢/n® for ¢ > 0 and
a € (0,1) employed by Magdalinos (2012) and Arvanitis and Magdalinos
(2019) but are allowed by Assumption 1 which postulates mildly explosive
and explosive roots in full generality.

Lemma 4. Let Assumption 1 with p, — p > 1, and Assumption 2 with
(18) or (15) hold. Then, as n — oo,

(pi - 1) Pn Z?:l Tpp1lng = XnYy+0,(1) (23)
2 _ n n
(pi - 1) Pn2 Zt:l xi,t—l = X721 +0p (1) (24)
where X,, and Y,, are given in (17) and (18).

Lemmata 2, 3 and 4 provide the essential elements for the approximation
of (p2 — 1)~ or (p, — pp) When p, — p € [1,00). The limit theory for p,, —
p € (—oo,—1] may be derived as a mirror image of the p € [1,00) case by
employing the transformation z, — (—1)"" z,. Denoting

j:n,t == (_1)_t Tt Xn,t = (_1)_t Xn,t; an,t = <_1>_t Un,t, (25)
it is easy to see that Xn,t satisfies the recursion
Xn,t - |Pn| Xn,t—l + ﬁn,t- (26)

As long as we establish that the innovation sequence (1, ;) satisfies Assump-
tion 2, Lemma 4 will imply that

(Pi - 1) ol " 2oty Eng—1ling = XY + 0, (1) (27)
2 _ n n -~ 7
(pi - 1) pn2 Zt:l xi,t—l = ng op (1) (28)

where En = (p?2 — 1)1/2 D |Pn|ﬂf Ui, and

(X0, Y] = €, + (02— 1) X0, (02 = 1) ol " | (29)
t=1

The fact that

[e.9]

an,t = Z én,tén,t—ja with én,t = (_1)7t Enty én,t = (_1)7t Cn,t (30)

=0

11



satisfies Assumption 2 is established in the proof of Theorem 1. Hence,
Lemma 2 and Lemma 3 continue to apply with [Xn,f(n (p)] replaced by

[X,., X, (p)] and [Yn,ffn (p)} replaced by [Y,,Y, (p)] where

(X (0), Yo ()] = C(Ip]) (02 — 1) [Dpn én,t,2|pn|<““>én,t].
t=1

(31)
Combining Lemmata 2-4 and using (27)-(31), we arrive to the following result
for the OLS estimator in (3). Denote Cy,; = > oo, p~"cpjte-

Theorem 1. Consider the process x,+ in (1)-(2) under Assumption 1, As-
sumption 2 with either (13) or (15) and Assumption 3. The following limit
theory applies to the OLS estimator in (3) as n — oo:

(i) When [p, | — 1

-1 .
where C denotes a standard Cauchy random variable.

(ii) When |p,| — [p| > 1,

~.

-1 n /A Yn Yn
(P2 = 1) |pal" (P — pn) = < Ho>1} - % ! {p<—1} 40, (1)

n

(32)
where X, = &, + (3 — )1/2Xn0, X, =&, + (02— 1)1/2Xn0, the
elements of {f &y Yo, } have the same variance for each n and
satisfy lim,, o B (£,Y ) and lim,, ., E (ﬁnY ) = 0. In particular,

If (ent)yey, 18 Gaussian, v (p) = lim, .o Y22, Cr; exists and X, con-
verges in distribution jointly with Z;io Chjén,—j, then

¢
£+Xo{0 (=1 +v(p)}

(p721 - 1)71 |pn|n (lbn - pn) —1/2

(34)
where ¢ and & are independent N (0,0%) random variables; if X = 0
a.s. the right side of (34) follows a Cauchy distribution.

12



Having characterised the limit distribution of the OLS estimator, we pro-
ceed to discussing the limit distribution of the resulting t-statistic

n — 1/2
Z — (xn,t—l - xn,n—l)g
Tn (Ion) = ( = (1) )

(P = Pn) (35)

~ ~ _ M ~ ~ . .
where @2 =67, +2n7 ' Y0 K (4) Y01 Gntling—p i an estimator of the
long run variance w?, with K a kernel function satisfying the usual conditions,
~2 00 2

SR o N S B - 2 _ 2 N
O =N D4y Uy, is an estimator of Bug , = o7 > = i ; and i, denote

the OLS residuals from (2).

Theorem 2. Consider the process x, ¢ in (1)-(2) under Assumption 1, As-
sumption 2 with either (13) or (15) and Assumption 3. If K satisfies the as-
sumptions of Lemma 1, M — oo, M/n'/? — 0 and (12) holds, the t-statistic
in (35) satisfies T,, (p,) —a N (0,1) under each of the following conditions:

(i) [pn| —1

(ii) |pu| — ol > 1, (enyi),ey i Gaussian and cnj; =0 for all j > 1.

Remarks. Theorems 1 and 2 extend the scope of available limit theory on
the right side of unity to general drifting sequences of autoregressive parame-
ters, innovation sequences and initial conditions. A summary of the different
directions of this extension follows.

1. The mildly explosive specification of Assumption 1 includes neighbour-
hoods of unity that may approach the boundary with local to unity
processes: for such neighbourhoods p!! is no longer guaranteed to have
an exponential rate as in the case with a polynomial root parametrisa-
tion of the form p, = 1+ ¢/n® with ¢ > 0 and « € (0, 1) frequently as-
sumed in the literature. Assumption 1 also includes drifting sequences
of explosive autoregressions with roots on (—oo,—1) U (1,00) as well
as drifting sequences of mildly explosive roots converging to —1. As
far as we are aware, this work is the first to provide a full development
of OLS limit theory for mildly explosive processes at —1, even in the
standard case of non-array autoregressive innovations.

2. Assumption 2 extends the standard specification of a short memory
linear process for the autoregressive innovations to a triangular array

13



formulation both for the deterministic weights and for the primitive
innovations of the linear process. The triangular arrays of primitive
innovations are assumed to be possibly conditionally heteroskedastic
martingale differences satisfying an L;-mixingale condition. To our
knowledge, our work is the first to introduce a triangular array for-
mulation of (short memory) linear correlation, with existing work by
Andrews and Guggenberger (2012) introducing an array framework to a
conditionally heteroskedastic (but uncorrelated) martingale difference
sequence.

. We show that the OLS estimator generated by mildly explosive au-
toregression continues to conform to central limit theory under drifting
sequences of autoregressive roots to {1, —1} and drifting sequences of
short memory autoregressive innovations. The Cauchy limit distribu-
tion for the OLS estimator and the standard normal distribution for
the corresponding t-statistic continue to hold under drifting sequences
of autoregressive roots and innovations. A direct extension is possible
since mildly explosive limit theory employs weak convergence methods
(essentially the martingale central limit theorem) which are well-known
to accommodate easily sample moments of triangular arrays of random
variables. On the other hand, the asymptotic analysis of explosive au-
toregressions with root in (—oo, —1)U(1, 0o) depends on the martingale
convergence theorem which does not extend to sums of martingale dif-
ference arrays. For this reason, we are only able to obtain the exact
rate of convergence of the OLS estimator and the approximation in
(32) under the full generality of Assumption 2. As in the standard
non-array case, asymptotic normality of the t-statistic is only achieved
under independent, Gaussian innovation errors u,, ;.

. Theorems 1 and 2 provide limit distribution theory along drifting se-
quences of parameters that may be used for interval estimation. Phillips,
Wu and Yu (2011) and Phillips and Yu (2011) apply the construction
of Cauchy confidence intervals for the detection of financial bubbles.
The results of Theorems 1 and 2 could be used in order to assess the
uniformity properties of the asymptotic coverage of these confidence
intervals, with the autoregressive innovation sequence viewed as an in-
finite dimensional nuisance parameter.

14



3 Conclusion

The paper provides generic limit theory for the OLS estimator and the asso-
ciated t-statistic for a first order autoregression on the explosive side of unity
under drifting sequences of parameters. A general (mildly) explosive autore-
gressive root is considered that may approach the boundary with processes
that are local to 1 and —1 at arbitrary rate. Drifting sequences for the inno-
vation processes in the autoregression are also considered that take the form
of triangular arrays of short memory linear processes with primitive errors
that are (possibly conditionally heteroskedastic) martingale difference arrays.
The asymptotic development of the paper provides the necessary apparatus
for considering autoregressive innovation processes as part of the statistical
model (in the form of an infinite dimensional nuisance parameter) and for
assessing their effect on the asymptotic size of OLS-based procedures in the
explosive and mildly explosive region.

4 Proofs

This section contains the proofs of mathematical statements in the paper.
We begin by proving an extension of Proposition A1(b) of Phillips and Mag-
dalinos (2007).

Lemma Al. Under Assumption 1, for any p > 0 the following hold:

(©) [n(lpul = D) 1o — 0
(i) When |p,| — 1, (Ip| = 1) 320, #[p,| ™ = T (p+1).

Proof. For part (i), write

|—’VL

|p,| " = exp{—nlog|p,|} = exp{—nlog (1 +|p,| —1)}.

When |p,| = [p| > 1, n|p,|™ = nexp{—nlog|p| (1+0(1))} = o(1) since
log |p| > 0; when |p,| — 1, log (1 +2) = 2 + O (z) as © — 0 implies that

ol = exp {=n(lp,| = 1) (L +0(1)} = o (In(lp,| = 1))

for any p > 0 as required, since n (|p,| — 1) — oo and limy; ., MPe "™ =0
for any v > 0. For part (ii), the case p = 0 is just a geometric progression. For

15



p > 0, employing an Euler summation argument and the change of variables
s = (lpn| — 1)1

n+1
(1on] — 1+1"Z#’|pn|_t = (|pn|—1)1+”/ [t |p, |~ dt
1

(n+1)(lp,|—-1) -1 p
(lpnl_l) s -1 _18
B /| <L<pn‘—1>1j> on|L s G

pn|_1

Since |p,| =1 — 0, n (1 —|p,|) — oo and

e R () L
= exp {[(loal =)' 5] log (1 + |p,| = )}
= e {[(Inal = 1" s] (Ioal = DL+ 0 (loal = 1)1}

RN e

the dominated convergence theorem implies that the integral on the right
side of (36) converges to [~ sPe *ds =T (p+ 1), completing the proof.

Proof of Lemma 1. Writing

n oo j—1
-1 § : 2 _ -1 § : § : -1 2 : E ' 2 :
n un,t = n Cn] ent i —|—277, CTL_]CTL’L ent ]ent %
t=1 7=0 =0

= A, + QBn

in order of appearance, we obtain

oo j—1 1 n
”BnHL1 S ZZ|an||an ﬁzen,t—jen,t—i
j=0 i=0 t=1 Ly
oo j—1 n 9 5
= > > |an| il || = Z Cn,t—j (1 {enyt—j < Zn} +1 {en,t—j > ln}) En,t—i
j=0i=0 =1 L
oo j—1
S Z |an||cnz Z”ent jl{ent]>l }ent ZHL
7=0 =0
oo j—1 1 n
+2_ 2 lensllenl |3 ene-it{ehiy < In} enims (37)
j=0 i=0 n t=1 Lo

16



where the last line follows by the Lyapounov inequality and ([,), .y is a
sequence satisfying I, — oo and [,,/n — 0. The summand inside the above
Ly norm is an F,,;—;,-martingale difference array (since i < j) so

§ 1/2
1
— (ﬁ Z E (ei,t—j]‘ {6%7,5_]‘ < ln} ei,t—i)>
t=1

I 1/2
‘(5
n

so the second term on the right of (37) is bounded by

1 n
- D eni—il{lens—jl <ln} e
t=1

Lo

- 2
supZ|cn7j\ on\/ln/n — 0
n>1 =0

since [,,/n — 0. For the first term on the right of (37), the CS inequality
gives

leneil {2, ;> ln} enosi,, < (B2, 1{2, ;> 1.})"" (B2, )"

so the first term on the right of (37) is bounded by

oo 2 1/2
(supz |cw»|> On (sup Eefml {efw- > ln}) —0
jez

n>1 =0

since (efw-) is a UI family. We conclude that

I 2 I o

2 e ™ 2 Oy D s
t=1 7=0 t=1

Let (An),ey and (ky), oy be integer-valued sequences satisfying

— 0. (38)

Ly

Ap — 00, ky — 00, Apkn/v/1 — 0. (39)

Using the identity

kn—1 n

n
Zeit_jl {ei,t—j < )‘n} = Z M, . +ZE~Fn,t—j—kn (ei,t—jl {ei,t—j < )‘n})
t=1 1=0 t=1

17



where

n

My 50 = Z (B oy (i {eniy S Mn}) =B,y (e {eni; < An}))

t=1

is a martingale array, we may write

1 ¢ 1 & 1 ¢
n D ey = Z Cra—jL{ €y S Mnf + Z ent—i (i > An}
t=1
kn—l

= —ZMn]l‘i‘ ZEFthn En,t— jl{entj<)\})
—|——Zei7tﬂ-1 {e, >N}

kn—l

1
= _ZMnJl+ ZEEJ o (€nis) + —Nuj (40)

where Nn:j = Z?:l [ nt Jl{ent J > )‘ } E]:t kn ( nt ]1{ent -J > )‘ })]
By the triangle inequality and the Jensen inequality for conditional expecta-

tions,

1
=N,

- < ZSupE( i1 {efw» > b)) (41)

Ly JEZ

By the Lyapounov inequality and the martingale property of M, ;

kn—l
ZMW
Ly
kn 1
< _ZH nJl||L2

k

ko (A20)" = ku Ao/ v/,

IN

18

1 kn—1 1/2
- 5;0{;(Eﬂm<ml{em]9}> B (a1 e, <0

1

n

(42)



Since the bounds in (41) and (42) are independent of j,

00 kn—1 0o
S <1ZMM[+ Nm) Z@(

j=0 L §=0

1 kn—1
- My j,
'

=0

IN

1
R )
L L

koA >
< (2supE (2 .1{e. >\, r
< (2swB (> D ﬁ)supjzc,

= o(1)
by (39) and UT of (ei,j)jez‘ Hence, (38) and (40) imply that
0. (43)

n [e.9] n
1 1
- 2 2 - ( 2 )
n Z un’t Z Cn’-y n Z E:Ft_j_kn en’t_]
t=1 j=0 t=1 I

Note that E}‘t_j_kn (ei,t—j) = E]-‘t_j_knE].‘t_j_l (61217t_j) E}‘t —j—kn by the
tower property. (43) implies that the lemma will follow from

LR SCNEEC] R ()
-0 t=1 Ly
Using the mixingale property (8),

1 n
2 § 2 2
cna.?ﬁ (Eft—j—kn O-nvt_j - O-n)
=0 t=1

1
2 2 2
§ :Cn,jﬁ § : H (Eft—j—kn Tnt—j — Un) HL1
§=0 t=1

Ly
o0
< b (dp, Ta)sup Y e =o(1)
n>1 =0
as required, since k, — oo by (39).
For part (ii), write
1< = 1
E Z UntUnt—h = Z cn,jcn,iﬁ Z €n,t—jCn,t—(i+h)
t=h+1 7,4=0 t=h
n
chz Z Cn,j Z €n,t—jCn,t—(i+h)
j#it+h t h+1

E 1 E_ 2
+ Cn,’icn,iJrhE en,tfi'
i=0 t=1
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When j # i+ h, the martingale difference property of (e, ;) gives

n 2

1 1 &
il A . - Ee? 2
n En,t—jCn,t—(i+h) = - Cnt—jCn,t—(i+h)

t=h+1 . 5
L —
o2 Z Ee;, ;—; (en,t—(i—f—h) - on) + 70”
l= h+1
n—nh
- _Z% (i+h—j)+—50b
n
t=h+1
< —sup |7,z (h)‘ + ot =0 (_> .
n th n,t n n

Since sup,.¢(o 1) K (r) < 0o, the above implies that

ZK (h/M) Z|cm| > leasl | = Z €nt—j€nt—(i+h)

:o(%) = 0(1)

j#i+h t h+1 L
by the choice of M. Hence
1 n—h ) M
Z K h/M Z Un tUnt—h — Z K h/M ch’icn’i""hg Z en,t—z‘ =0 m .
t=h+1 t=1 L1
Using the same argument employed to show (43) and (44),
n—h
1
K (h/M)Y  cpiCnivn— 2 O 0. 45
Z / Zz;c 4C ,-‘rhn;(en,t—z O-n) . - ( )

It remains to determine the limit of the sequence

l hY & h
Wy, = i K (—) Cn,iCni (1 — —) .

Recalling that v, (h) = o2 SYLK (L) 3% CniCnisn for b > 0 and that
K is bounded and K (0) = 1, write

w, = ZK( ) Ve, h)+0(%)
= ;%n (B)+ > Y, (B) +§: ~—) = D, (h)+0(%)-(46)

h>M h=1
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Since 37 vy [Yu, (W] < 07 3250 lenil Dot arsa lennl = O (M%) by (13),
the second term of (46) tends to 0 as M — oo; for the third term, since
sup,.cjo1] | K ()| < 00, we obtain

< )-1‘1%” (h)] < (sup IK(T)|+1> iggg;!%n (h)] < o0

rel0,1]

h=

so the fact that K (0) = 1 and the dominated convergence theorem imply

that y
nlggozn< ( )—1)%"(@:0‘

Finally, from the dlscuss1on precedmg Lemma 1, the convergence of the se-
quences Y 2 ¢y 2o Coj and o2 by Assumptlon 2 imply that limy, oo D po g Va, (R)
exists in R; hence w,, — lim,,_, Z et Vu, (R) and completes the proof.

Proof of Lemma 2. Write

& o= (-1 1/22 _tzcnaem i+ (-1 1/22 _tzcmem »
= (p2-1)" Z P’ Cn g Z P en + Z Chj€n,—j (47)
=0 =1 =0

where C,, ; := (p2 — 1)"? Y i1 Pnlen jre. For the second term on the right of
(47),

2

’I’L,je’anj

o0 n 2
- Z ,0 — 1 Z (Z pntcn,j+t>
=0 \t=1

o0 n
< Ui P — ZZ|Pn |Cn,j+t‘Z’pan‘Cn,j+s‘
1 s=1

7=0 t=

0
oo n 9]
o2 > leas| (o2 = 1) Z a7 lensl
s=1 = j=t
mp—1

S el (7 (z o z|cw|+z|pn tz|cn,j|)
s=1 j=t

t=mn

Lo

IA

- bln + b2n
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in order of appearance, where (m,,) is a sequence chosen to satisfy m,, — oo

and m,, (p,, — 1) — 0. Now
2
by, < o2 | su Cns| mn —1 — 0
and
b2n S O%Z’Cn,s| Z <TTL_) ‘an| _1 Z |pn| !

t=mn

% (sngy \cng\) (supZ\cns> (on = 1) Z ol ™

t=mn
1
- O(m—z)'

We conclude that the second term on the right of (47) tends to 0 in L,. For
the first term

IN

(Pi 1)1/22 _]an Z Pn ent

7=0 t=n—j+1

n
§ —t
pn e'l’L,t

t=n—j+1

n—1
< (21" g fewyl
j=0

LQ L2

n—1 n 1/2
= (pi—l)lpoan;jlanI( > p;2t>
=0 t=n—j+1

n—1 j 1/2
= Tupp" Y lenl ((ﬂi —1) Zp;%)
7=0

t=1
= 0(m")
so (47) implies that

n—1 n
"= (Z p;jcn,j> (02— 1) prtens

=0

Lo

2
(pn - 1)1/2 Zt 1Pn e'flt L
2
0 will follow from (48) if

n—1 oo
. _] - . )
lim E Pnlcn = lim E Cnj-
n—oo n—oo

Jj=0 Jj=0

22
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Choosing again m,, — oo and m,, (p,, — 1) — 0, write

(o0}
—j
Cn,j — E :Cn,j
j=0

n

n—1
< > 1ot =1 fenyl
j=0

mp—1 n—1
< D0 1o =1 lenl +2 ) fenl

j=0 J=mn

my—1
< 1—p n n
< 00 bl 5 e
2

< 1- = 0
< (ogsklgnn( pat) + n) ililifzj [nil -

Since m? — oo, it is enough to show that SUDg<k<m,, (1 — P k) — 0. Apply

the mean value theorem to the function x +— p;* around (0, k): there exists
ko € (0,k) such that 1 — p ¥ = kp, " log p,, i.e.

sup  (1—p,*) < mylogp, =mylog(1+p, —1) =m,0(p, — 1) =o0(1)

0§k‘<mn

from the choice of (m,,), where we used the fact that log(1+z) = O (z)
.= X, (1)HL — 0, which, by

2

Assumption 3(i) and (17), implies that X,, = X,, (1) 4 o0, (1).
For the approximation for Y,,, write

as * — 0. This completes the proof of

0o n
1/2 . 1/2 4
Yn = - 1 E Pn unn t+1 = \Pp, — 1) E Cn,j E Prn €nn—t—j+1
j=0 =1
/ Z Z"ﬂ
1/2
= _1 chng Pn enn t+1
t=j+1

= (p2 - 1/2 (an ennHlZp]Cw-i-an Enn—t+1 ijcw>

j=t—m
= (p121 - 1)1/2 (Z p;ten,nftJrl [ Cn n,J + Z Cn,j Zé i€n,— —(t— 1)
t=1 7=0 t=0
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in order of appearance, Where Cni = (p2 — 1)1/ 2y ] oo =), j+t- Since
277& pn ") = ZJ L Pp7s it is easy to see ) ° C7; has the same upper
bound as > 72 C7; so that that ||Y3n||L — 0. For an, note that p, — 1

implies that log pn — 05 choosing a sequence m,, — oo and m,, log @,, — 0
and using the inequality

ph— 1< jpllogp, (49)

obtained by applying the mean value theorem to the increasing function
x +— pZ around (0, j), we can write

n—1 t—1 2
Yanl?, = o2 (p2—1)> p,* (Z Cn,g>
t=1

j=0

n—1
< o2 (ph — 1) (logp,) an <ZM Icn,ﬂ>
t—1
= o2 (p2 1) (logp,) an%zy# |Cn i wacn,i\
= ai(logpnfszz;|cn,j|Zz'p:;|cn,z~|( Z it
7=0 =0 t=(jVi)+1
—(jvi)—1
= logpn ij] |Cn,j|zlpnycnz|,0n (Vi) p _1 Z pnt
n—2 2
< |logp, > iny’ Icn,jl) O (1)
j=0
My, n—2 1 pj 2
og 108 P,
< (mosnSewts 5 ) 0
j=0 j=mnp+1 '0”
n—2 2
< [ O(mynlogp,) + Z \Cm!) O(1)=o(1)
Jj=mn+1
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from the inequality logz < z for x > 1. Finally,

s n—1 n—1 2 n—1 n—1 2
Yio— (02 = 1) ey Y ontennina| = 2 (02 -1)Y p* (Z Cw’)
=0 =1

Lo

< (Srl) om0 (i)

= o(1)

:

2
1 n—1 — n—1
by writing 31 0 (S5 en) = (S, + i) o (57 e

with k,, — oo and k, (p2 — 1) — 0. We conclude that

n—1 n—1
~ 1/2 _
HYn Y, (1)] < -3 ey — )Y prten | +o(1) =o(1)
j=0 t=1 Lo

since Z;:Ol ¢nj — C (1) by Assumption 2.
To show (21), write

RAUR A Zcm

where (,,, == C (1) (p; — 1)1/ [pn ,pn(n Hl)} eny is a F, -martingale dif-

ference array. We apply a standard martingale central limit theorem (e.g.
Corollary 3.1 of Hall and Heyde (1980)):

g (2 )Zt1p_2t o (p? —1)P"12t10
tZ; - ( ! ’t) (pn - 1) Pn ! Zt 1 Unt ( Pn — 1) t 1Pn (-t )On,t
= C(1)°0%,+ o, (1) (50)
since [[(p2 = 1) p" Py 0%, < (02— 1) pp" tnmaxicic, Be?, — 0

and the law of large numbers in Lemma 1(ii) of Arvanitis and Magdalinos
with an; = (pp — 1) p,* and y, = 02, — Eo?. | gives

_1 ZP_% it: _1)ZP;%EU$L¢+OP(1):U2+0p<1)

t=1
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2(n—t+1)

and the same result with a,; = (p2 — 1) p, ) implies that

)Y, = (1) 3 VB 0, () = o, 1),

t=1

For the Lindeberg condition,

1Caell” = C Q) (2 —1) (2 + 2 4D) 2,
< C*(p2—1) (p 2 +p, 2 0) (Ao +1{el, > A })

and we may write

€@ = 3B (Gl 1 {16l > 4})

< max AP (¢l > 6) + B (€1 {en, > A} 20 ()7 (0] = 1) Y 0"

1<t<n
t=1

1<t<n 1<t<n

< 20(1)2{5 An max B [[C,,,||* + max B (¢2,1 {e2, > A, })}

1
< 2001y {5_20 (1 (92— 1) A i Be, + muax B (¢2,1 {3, > /\n})} |
Choosing A, — oo and (p? — 1)\, — 0, the first term tends to 0 by the
choice of \,, and the second term tends to 0 by the uniform integrability of
the sequence {ei,t teZ,neN } Having proved the Lindeberg condition
L, (0) — 0 for all 6 > 0, (21) follows by (50) and Corollary 3.1 of Hall and
Heyde (1980) (since the limit in (50) is non-random, the martingale CLT
holds without the requirement that F,; is increasing in n).

Proof of Lemma 3. We show that

e = hm infe,; = hm ek, exists a.s.in R and in L, for each t € Z (51)

for some subsequence (k,), .y of N. Almost sure convergence of (e, ¢),cn
in [—o00,00] for each t along a subsequence (), .y follows since the limit
inferior of (e,,), oy is an accumulation point. By the Fatou lemma,

Elel < 11m1nfE|ent| <supE|e,;| < o0
neN
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which implies that P (|e;| < co) = 1, showing that e; in (51) exists a.s. in R.
For L, convergence,

E (ekn,t - €km,t)2 < E [(ekn,t - €km,t)2 1 {(ekn,t - €km,t)2 < )\}]
+E [(ekmt — ekm,t)2 1 {(ekn,t — ek”“t)z > )\}}
< E(ep,t — ernt) 1 {(enns — ernt) < A +2sup Elel 1{e:, > A\/2}].
n,teN

Since lim,, . E [(ekmt — ekm,t)z 1 {(ekmt — ekm,t)z < )\}] =0forall A\ > 0and
t € Z by the bounded convergence theorem and
limsupE (ex, ; — ex,,+)° < 2limsupsupsup B [eivtl {eivt >\/2}] =0
n— oo A—oo neN tezZ

by the uniform integrability of the {eiyt :neN,te Z} in Assumption 2.
Convergence in Ly of (e, ),y follows and implies that Ee} < oo, com-
pleting the proof of (51). Recall the definitions in (22) and the fact that
A € liminf, . F,; if and only if A € F,; for all but finitely many n
for any A C €. Since ey, ; is Fy, -measurable for each ¢ and there exists
no € N such that 7, , C F; for all n > ng, ey, ; is Fi-measurable for for
all n > ny which implies that e; = lim,,_, ex, ; is F;-measurable for each ¢.
Since sup,;, Be? < 00, (er, Ft),cz Will be a martingale difference sequence if
E (e Fi—1) = 0 a.s. for each t. To prove this, we use the fact that G, ; is an in-
creasing sequence of g-algebras in n so that the sequence M,, = E (e;| G, 1—1)
is a uniformly integrable martingale with respect to G, ;1 for each ¢ and
employ Levy’s upward theorem (see 14.2 in Williams (1991)) which, in our
context, states that: for each t € Z

E (et Gni-1) = E(e] Fio1) (n — 00) a.s. and in Ly (52)

with G,,; and F; defined in (22). While e,,; is not a G, ;-martingale difference
(it is not G, ;~adapted), G,;—1 C F, -1 so the tower property of conditional
expectations implies that

E (en,t| gn,tq) =E ( [E (en,t| fn,tﬂ)” gn,tfl) =0. (53)
We conclude that for each t € Z

1B (ed Frll, < N Cer Gropr) = Bler Fe)llp, + 1B (er] Grr-a)l,
= B (e| Groi) =B (e Foor)ll, + 1B (er = enpitl Gru-1)ll,
< B (er] Gro i) = B (e Fra)lly, + llern: — el (54)
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where the equality follows from E (e, | Gr,+—1) = 0 in (53) and the last
inequality by the Jensen inequality and the law of iterated expectations.
Taking limits as n — oo, the first term on the right of (54) tends to 0 by
(52) ((kn),cy is a subsequence of N) and the second term tends to 0 by (51);
hence, the right side of (54) tends to 0 as n — oo pointwise for each t € Z
which implies that || (e;| F;-1)||,, = 0 for each ¢t. Hence, E (e;| F;—1) = 0
a.s. for each t as required.

We now show that the martingale difference sequence (e;, F;) satisfies the
local MZ conditions (10). To this end, we first prove that {02, : n € N,t € Z}
is a uniformly integrable sequence. Denote

v (z) =supsupE (ez,1{e;, > z}).
neN teZ

The F,, ;+—1-measurability of Ui,t implies that

B (o2,1{02%, >A\}) = B(B(2,1{02, >} Fui1)) =B (2,1{02, >}
B (21 {2, <A} 102, > \}) +B (2,1 {e2, > "}
(02> A) +v (A?)

A V2supE (O‘?L’l) +wv ()\1/2>

neN

A IA
>
=l

IN

by the Markov inequality. Since the right side is independent of n and ¢ and
limy v ()\1/2> = 0 by the uniform integrability of {afl’t neNte Z}
taking A — oo shows that {ai’t neNte Z} is a Ul sequence. Next we
show that

< oo for each t € N. (55)
Ly

: 2
limsup o, ,

n—oo

Since lim sup,,_, o, afw is an accumulation point of { afw :neN }, there exists
a subsequence (my,),, .y € N such that limsup,, ., 07 , = lim,,_. 02, ,; using

Mn,t)
the uniform integrability of the sequence {ai’t :neN } to interchange limit
and expectation, we may write

2 1 2 _ 2
mntll, = Jim oy, =0

Ly

- 2
limsup o, ,

n—oo

= lim Ha

n—oo

: 2
lim o,
n—o0 L1

showing (55).
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We now show the second part of (10) for (e;, F;). Since e? is integrable
and G,,,—1 T Fi—1 as m — oo, Levy’s upward theorem and the Fatou lemma
give

B (ef‘ .7-},1) = lim B (6?‘ gm,tfl) = lim E (lim inf ei,t

m—00 m—0o0 n—oo

G 1)

< lim liminfE (eiﬂ gm,t—l)

m—0o0 N—00

= lim liminfE (E (e ,| Fri-1)| Gmi-1) (56)

m—0o0 N—00

for all n > m, by the tower property of conditional expectations since
Omi—1 € Gni—1 C Fni—1 whenn > m. The uniform integrability of {‘7721,:: in € N}
and the reverse Fatou lemma ensure that

gm,t—l)

Qm,t_l) . (57)

liminf B (E (2| Fri1)| Gni-1) <E (lim supl (€ ;| Fi-1)

n—oo n—oo

for each m, so (56) gives

E(ef| Fio1) < nllli{l)oE (lim sup & (efut| Fi-1)

n—o0

The integrability in (55) implies that Levy’s upward theorem applies to the
right side of (57) and gives
gm,tl) ft1>

= limsupE (e ,| Fri-1) as. (58)
because F,, ;-1 C F;— for all but finitely many n. Combining (57) and (58),
we obtain

lim E <lim sup E (eit‘ fmt,l)

m—oo n—o0

E (lim sup E (ei}t| Fot-1)

n—oo

E (ef| Fio1) < limsupE (ei’t‘ Fui-1) a.s.

n—oo

for each t € N. We conclude that

sup (eﬂ Fi-1) < limsupsupE (eivt| Fri-1) @.5.

teN n—oo teN

and (7) implies that sup,.yE (€?| Fi_1) < oo a.s., showing the second part
of (10).
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Next, we show the first part of (10) for (e;, ;). Levy’s upward theorem,
the fact that liminf, .. |e,,| is the limit of a subsequence (e,, ), .y and the
dominated convergence theorem imply that for some subsequence (ry),, oy of
N,

E (el Fi) = lm E(Jer]| o) = lim B (lminf e

n—

gm,tfl)
= lim E ( lim |e,, 4|

Go-1) = Jim_ lim B (Je, il| Goi-1)
m—o0 n—o0 m—00 N—00

= lim lim E(E (|ey, || Frot=1)| Gme-1) (59)

m—00 N—00

for all r, > m, by the tower property. Now for each m, the monotone
convergence theorem implies that
gm,tl)

gm,tl)

Gni1)
G 1)

i BB (e | Froa)|Goicr) = Jin B fnf Bl 5300

n—oo n—oo

= E ( lim inf E (|ej|| Fji—1)

n—00 j>Ty

_ E (hm nfE (|es, || Fo 1)

v

E (hm inf B (|en]| Froet)

since (1,),,cy 18 @ subsequence of N. Substituting into (59) and using the inte-
grability of iminf,, o E (|e, || Fni—1) (guaranteed by (55)), Levy’s upward
theorem gives

E(le| Fioy) > limE<1iminfE(|en7t||fn7t_1)‘Qm,t_1>

m—o0 n—oo
Fia)

= liminfE (|e,s|| Fni-1) a.s.

- E(nmme(|en,t||fn,t_1)

for each ¢, which implies that

litm inf B (|e;|| Fi—1) > liminf li%n inf B (|ep|| Fri-1) > 0 a.s.

by (6). This shows that (e, F;),c; is a martingale difference sequence that
satisfies the local MZ condition (10) and completes the proof of part (i).
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For part (ii), we begin by showing that for each t € N

kn kn

Z Pi;fekn,t - Z p_tet —a.s 0 (60)

t=1 t=1

as n — oo along the same subsequence (k) for which convergence in (51)
obtains. We first show that

Ry =325 |p) —p7?| =0 (61)

We apply the mean value theorem to the function z +— z77: p7 — p7 =
—(p,, — p) jo,? " for some ¢, — p; hence, we may choose n € (0,p — 1) and
no (n) € N such that for all n > ng (n): ¢,, > p —n which implies that

St on? = o7 = o = Pl 25 P S o — I 2 (=) T = 0

1

since p—n > 1 from the choice n € (0, p — 1) implies that > 2, PBlo-nT"<

oo. Having established (61), write

kn

kn

—t —t
g Pknekn,t—g p €t
t=1

t=1

kn

kn
—t —t
Z lokn ekn,t - Z p ekn,t
t=1

t=1

kn kn

< +

t=1 t=1
(o)

Zt ’Pl;f - pit‘ lekl;—““ + ;Pt |kt — €4

t=1

00 2 1/2 o)
Chn t _
we (3% S
t=1

t=1

IN

IN

Since »_,°, t7? < oo, dominated convergence implies that ) . ¢ %ef , —
Yoot e < 0o a.s. since Y oo, t2Ee? < 00, so the first term of (62) tends
to 0 a.s. by (61). The second term of (62) tends to 0 a.s. since Y .=, p~" < 00
by (51) and dominated convergence. This completes the proof of (60).
Using (61) we have ) &, — (p* — 1)1/2 S p‘tun,tH — 0 when p > 1;
L

1
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also,

Z p_tun,t = Z P Z Cn,jCnt—j T Z P Z Cn,jCn,t—j

t=1 j=0 Jj=t
= E :Cw Ep entj""i ::0 E :Cwent]
t=j5+1
n—1
_ —j —t —t
7=0 t=1 t=1 j=t

n—1 n n—1 J n 00
2: —j 2: —t —nE: 2: —t 2: —t§:
=0 t=1 §=0 t=1 t=1 =0

n—1

and Hp_” >i=0 Cnj S p e L= O (p~") imply that

1

X =X (p) + Gno(p) +0p (1) (63)

where
o= (70" (S S nsmencs 4 50)
t=1 =0

is an JF,, o-measurable random variable. Consider an arbitrary subsequence

(X )neny € (Xn),en- Let & := liminf, .o €, ; by part (i) applied to

the martingale difference array (e, +, Fim, ) and F; := o (liminf,, oo Frn, 1),

<ét, ]:"t> is a martingale difference sequence satisfying the local MZ con-
teN

ditions (10). Also, there exists a subsequence (ky), .y € (17n),,cn Such that
(60) applies with e; replaced by é;, so that

Ko (0) =an Yomi, 7= Clp) (=)0 (69)
t=1

by the martingale convergence theorem. Since (X ), . converges in distri-
bution and

E ,0 E Cn,]then —7

sup

1
<
neN p—

ne

o0
[ Sup lenoll L, supz |en.j| < o0,
neN N =0

Ly
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{Gro(p) : n € N} is a tight sequence; since tightness extends to the subse-
quence {Gy,0(p) : n € N} with (k,), oy satisfying (65), there exists a sub-
sequence (75,),cn S (Fn),ey such that Gy, o (p) —a Go(p) where Gy (p) is
Fo-measurable, since each G,, o (p) is F,, o-measurable and F, o C F, for
all but finitely many n. Since (65) obtains along the subsequence (r,), .y
we conclude from (63) that: for any subsequence (m,,), . € N there exists
a further subsequence (), .y € (My),,cy sSuch that

neN
neN

X, —q4X Z T8+ Go (p) and P (X =0) =0 (66)

where the distribution of X, may depend on the subsequence (r,), . The
fact that X, # 0 a.s. follows by by Corollary 2 of Lai and Wei (1983)

since <ét, .7:}) is a martingale difference sequence satisfying the local MZ
teN

conditions (10), 7, # 0 for all t and Gy (p) is Fop-measurable. Since (X, ),,cn
is an arbitrary subsequence of (Xy,), .y, part (ii) follows.

Since the limit superior is an accumulation point of the real sequence
{P(|X,| < 0) : n € N}, there exists a subsequence (my,), .y € N such that

limsup P (1X,| < 8) = lim P(|X,, | <6). (67)

n—o0

By (66), there exists a subsequence (7,),cy € (My),,cy such that

neN

lim P(|X,,| <z)=P(|X,| <x) = Fy ()

at all continuity points z of the distribution function Fi, (-) of |[X|. Since
P(Xe=0) =0, Fi () = 0 for all x < 0 so Fy is left-continuous (and
hence continuous) at x = 0; since 0 is a continuity point of F,, and F, has
countably many points of discontinuity, there exists dg > 0 such that

lim P(]X,,| <0) =P (|Xw| <6) forall 6 < do. (68)
Since {P(|X,,| <d):n € N} is a subsequence of the convergent sequence
{P(|Xn,| <0):n e N}, (67) and (68) imply that
limsupP (|X,]| <0) =P (|Xw| <0) forall 6 < dg

n—oo

so the continuity of F, at 0 implies that
hmhmsupIP’(|X | <) =P(|X| <0)=P(|Xs| =0)=0

n—oo
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as required.
For the last part, |Y,|/|X,| = O, (1) is equivalent to

/\lim limsupP (|Y,| /X, > ) =0. (69)

To prove this fix o € (0,1) and write

P(IYo/Xul 2 X) = P([Y0/Xn| 2 X [X0| > A7) + P ([¥0/X0] 2 A [Xp| < 27°)

IN

P <|:{—’ZJ > )\) +P (X, <279
= P([Y,| > A" +P(IX,| <A™

IN

1—«

SupE [Y,| + P (|X,.| < A7°).
neN

Since lim) o limsup,, oo P (|X,,| < A7) =0, € (0,1) and sup,, oy B [Y,| <
00, (69) follows.

Proof of Lemma 4. Recursing (2) we obtain

t t—j

Tpt = b+ Xn,op;, + &t S = Zj:l P Un,j (70)

where §,, , is the restriction of z,,; when = X, o = 0 and satisfies

(2 =" pr€n = £

in (16). We first prove (23). Using (70), we obtain

(pi - 1) Pn Z Tnt—1Unt = (9121 - 1) Pn" Zgn,t—lun,t"i‘Xn,O (pi - 1)1/2 Y, 4o, (1)
t=1 t=1 (71)

: [P n 1/2
since (42 = 1) 02" Sy s = Oy (02 (52 = 1) 5i7) = 0, (72— M) by
Lemma Al. By Assumption 3, the second term of (71) will be o, (1) when
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p,, — 1 but will contribute asymptotically when p,, — p > 1. Writing

an,t—lumt = Z <Z pt - Z )un,t
t=1

- n—1 A

_ E —1 E t—1 E —1 2 t—1

- Pn un,i Pn un,t - Pn un,i Pn un,ta
i=1 t=1 i=1 t=1

showing that

n—1 %
No= (2= 1) p," Y ppitni Yy ph M ng = 0, (1) (72)
i=1 t=1
will imply that

—1)p," Z Ena—1Unt = &, Yn +0p (1) (73)
t=1

and (23) will follow by combining (71) and (73) and using the definition of
X, in (17). It remains to prove (72). When p,,"n — 0, the proof is easy:

n—1 A
INall, < (o= 1) " Y o0 > ol B it
n—1 %
< (=1 p" Z Pu’ Z Pt (B2 )" (B2 )
S ijE%Eu - 1 pn an Zp

= max EUi,]ZZ—_ P (n - an ) O (np,")
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showing (72) when p,"n — 0. When p,"n 4 0 we show that, for all but

finitely many n

po—1< Clogn

for all ¢ > 1. (74)

To see this, write

- 7n(pn71)
np," =n {(1 + Pp — 1)(p"_1) 1} ~ ne Pl

as n — oo so that np, " is a decreasing function of p,, — 1 for all but finitely
many n. When p,, — 1 = clogn/n for some ¢ > 0, np;" ~ ne~¢18" = pl=¢ —
0 for all ¢ > 1; since np, " eventually decreases as p,, — 1 increases, np, "
whenever p,, — 1 > clogn/n eventually for some ¢ > 1, which proves (74).

Hence, when p,"n /4 0,

— 0

logn logn

(on =) p" < 20, — = =— 0 [(n(p, —1)77]
logn 9
= Tgl o[(logn)™] :O(nISgn>

since p,™ = o [(n (p, — 1))_k] for all £ € N by Lemma Al. Therefore in
order to prove (72) when p,"n / 0, it is sufficient to show that

nlOngjE:ﬁ%/ nsz:/) Un,t = Op 1) (75)

Letting S, = Z;:l un; and using the summation by parts formula in the
spirit of Phillips (1987b), we can write

‘AZ = nlogTLEE:p" unzjz:ff 1[&5%t
n—1

1
B nlogn ZU"ZS”’ B nlogn an Un,i Z Sniplhy !

The first term on the right is O, ((log n)fl) since

n—1

n—1 n—1
;;:g;qﬁxiS%J _>;;:g; '+ }::U%z n,i— 1‘* (1>

=1
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by Lemma 1 and the standard result n=' > """ S, ;i 1un; —4 fo )dB (1)

(Phillips (1987a)) where is a Brownian motion Wlth variance C (1)* o2 arising

from the FCLT ot
nt

n~ 12 Z Un; = B(t) on DJ0,1] (77)

(see e.g. Jacod and Shiryaev (2003) for the triangular array formulation).
For the second term of (76), (74) implies that it is enough to show that

an unzZSntpn - ( ) (78)

Denoting 7, := (p, — 1) for brevity, write
1 n—1 n—1
i=1 = i=1
1 i) -
= Pn Uni—1 S 1t P dt + O ( )
[ 0
T —i—1 (=D [Tnt] 1
— E P S Lnt]Pr ntdt ASm,l =+ Op (n )
i=2 0

n |_ro;1
Tn ir i B
N n'2/ g "H/ Sulrat o " dtdS,, ) + O (n7)
1 0

2

TS N
= EIn + O, (n 1)

where the weak convergence theory of Kurtz and Protter (1991) gives

TLT;l \_T,LTJT;]' S S
—|Tpr n,|Tnt Tn N, | TnT
o [ e[ o ()
TT_L 0 Tn Tn
. / e < / ¢B (1) dt) dB (r).
0 0

It is easy to see that the limit stochastic integral has zero mean and finite
variance, so I,, = O, (1) and N} = O, (™% (p,, — 1)72) = 0, (1) as required.
This completes the proof of (72) and (23).
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The argument for (24) is standard: the recursion in (1) gives the identity

(pgz - 1) Z gi,t—l = gi,n —2p, Zgn,tflun,t - Zui,t
t=1 t=1 t=1

= (-1 E+0, [ + 0, )

by (23) and Lemma 1. Since &2 = O, (1) exactly and n(p:—1)p," — 0 by
Lemma A1, we conclude that (p2 —1)% p-2" Sr & =& +0,(1). Now
(70) gives

2o S a2, = (- 1) {QXn,o D bl X0 pp" }+Op (Pn")
t=1 t=1

since Z?:l gn,t—l = (1 + Op (1)) (pn - 1)_1 gn,n - OP <(p$L - 1)_2 p?L) . Now

n n n—1

Zgnt 1pn Zzpnt b= unz ZP an Unz+Zant - Unz
t=1 =

t=1 =1 t=1 i=t

—o2n n—1 2(t—-1
and (p2 — 1)% p, 2" || S0, S0 Y

= O (p,") implies that
Ly

2[%:271233%,1:—1 = 5721—1-2(931_1)1/2 Xn0&n +( _1)X72LO+O( )

2
= &+ (21" Xao| +0,()

and (24) follows by (17).

Proof of Theorem 1.

(a) Let p,, — p € [1,00).
By (17),

(P2 = 1) 0w =X =&+ (02 = 1) Koo +0,(1). (1)
We begin by proving
( 3/2 7n ant 1 — X + Op (1) ) jn,nfl = Op <n71 (pn - 1) i PZ) .

(80)
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Summing (2) over t € {1,...,n} gives

( 3/2 P Z%zt 1 = (pi — 1)1/2 Pn" {wn,n — Tp,o — NU (1 - pn) o Zu"’t

= (22 =1 2+ O, [pi 0 (9 — 1)]
= X, +0,(1)

showing the first part; the second part follows from the first since X, =
O, (1). Next, we show that

2 _on - _
(P2 — 1) p>"nz = 0,(1) and (p2 —1) p,"NTppn-1ln = 0, (1). (81)

For the first part, (80) implies that (p2 — 1) p;>*nz%,_, = O, (n" (p, — 1)7");

nnl

for the second part, @, = O, (nil/ 2) by the CLT, so (??) implies that

(02 = 1) " attn = Oy ((p, = 1)) 10 = O, (072 (p, = 1)772)

For the OLS estimator, we may write

(pi B 1) pr—Ln (Z?:l 'Tn,tflun,t - ni’n,nflfan)
2 _on n _
(p% - 1) pn2 (Zt 1 %t 1 n‘ri,nfl)
(pn B 1) ﬂnnzt 1 Tnt—1Unt

(02 =) 8 (P — pu) =

= + o0, (1)
(pn - ) pn2n Zt:l n7t—1 :
XYy Y,
= X +0,(1) = X, +0,(1) (82)

where the second line follows by (81) and the third line by Lemma 4.
When p, — 1, (p2 — 1)"* X,.9 —, 0, so Lemma 2 implies that

2 “1 Y, Y, (1)
(b= 1) =) = - Hop ()= O
where convergence in distribution follows by (21). This proves part (i) when
p=1
In the explosive case p, — p > 1, (82) and Lemma 3(iii) imply that
|Pn — Pnl = Op (p;,). To prove that &, and Y,, are asymptotically uncorre-
lated, letting

Gn,O = Gn,O - (P2 - 1)1/2 Xn,O = (p2 - 1)1/2 Z p_t Z Cn,j+t€n,—j,
j=

+0, (1) =4 C
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(63) and (17) imply that

§n = X/()+Gn0+0p(1)
[n/2]

X;L(p) - p -1 1/22107307”2)0 En,t

because HZ 0p anZt>Ln/2Jp ent|

Yn = (p2 - 1)1/2 Z Cn,j Z piten,nftfjJrl
j=0 t=1

Ln/4] Ln/4]

= (0" - 1)1/2 > g > p  enmoi—ji+ 0y (1)

§=0 t=1

=0 (p’L"/%); also
1

= O (p_\.n/4j) and

1

[e8) —t
because szzo Cnj Dot nja) P Enm—t—j+1 .

Ln/4]

1
Z anzp En,n—t—j+1 SHen,lHLQm Z |Cn gl = O

j>|n/4| Ly j>|n/4|

(83)

(84)

(n™).

Comparing (83) and (84), we conclude that £, = ¢/, +0,(1) and Y, =Y/ +
0, (1), where E (¢Y) = 0 so &, and Y,, are asymptotically uncorrelated.
Finally, denoting by v, (h) = E (uy un¢—p) the autocovariance function of

(unt), it is easy to see that

var (Y,) = <pi — 1) Z Z p;(nftﬂ)*(nfsﬂ)fyun (t—s)

t=1 s=1

= (=)D > v (s 1)
t=1 s=1

= wvar(§,)

so that the zero mean random variables Y, and &, have the same variance

for all n.

(b) Let p, — p € (—o0, —1].
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We first prove that the sequence (,,) in (30) satisfies Assumption 2.

Note that (&, Fnt) +cz 18 a martingale difference sequence with the same
conditional variance Eg, , , (¢2,) = 02, as e,; in particular, (8) holds for

€nt. Since the requirements on uniform integrability of the squared process,
(6) and (4) are the same for é,; and e, ;, Assumption 2 is satisfied with e,

replaced by €. Since |én ;| = |¢n | and & ; = ¢}

n7] )

the only thing left to

prove is (5), namely that the limit of the sequence {Z;io lp| 7 én,in € N}

exists and is non-zero. Since |p| = —p,

o0

Dol e =3 (=p)”

J=0

(1) eng =Y pen; — C Y
=0

p) # 0

by the original condition (5) of Assumption 2. This completes the proof that
Uiy = (—1)""u,, satisfies Assumption 2. Hence, (27) and (28) hold by (26)

and Lemma 4.
Since

Fog = Xt + 10n] Xno + (=1 11
the sample mean n~! 2?21 Zp¢—1 has the same order of magnitude as Z,, ;1
in (80) with p,, replaced by |p,| and

(02 = 1) | " =

We conclude that

(Pi - 1)1/2 |Pn!7n Xn,n + (:0721 - 1)

Ent (P2 —1)"" Xpo =X, +0,(1).

1/2

1/2

Xno+o0,(1)

(85)

(92— 1) lpul ™ (T Tt — 1)

(P2 — 1>2 pp" (Z?:l x%,tfl -

2

n‘rn,nfl

)

- (10721 = 1) |p,|™" (Z?:l Ty p—1Unp — n! Z?:l T p—1 Zgl:l ﬂn,j)

2 _on n - _ n -« 2
(P2 —1)" p,? (thl x?z,t—l —nt (Zt:l xn,t—1> )

Cop = D) el " X Tl

(p2 — 1)2 Pn" Z?:l f%,t—l
Y,
_X_ + Op (1) .

n

+ 0, (1)

When p,, — —1, (p? — 1)1/2 Xno =0y (1) and Lemma 2 and (21) imply that

(Y., X,] = [X, (=1),Y, (-1)] + 0, (1) —a [X (-1),Y (-1)]

41
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where are defined in (31) with C'(p) = C'(—1) and X (—1),Y (—1) are in-
dependent N (0,0%C (—1)2) random variables. Combining (86) and (87) im-
plies that

(P2 = 1) |pul" (P = ) —a Cfor p < =1
(using the symmetry of the Cauchy distribution) and completes the proof of
part (i).

In the explosive case p, — p < —1, (86) and Lemma 3(ii) applied to X,
and Y, (this is permissible since |p,| — |p| > 1 and (,,) in (30) satisfies
Assumption 2) imply that |, — p,| = O, (|p,]™"). The argument leading
to (83) and (84) also applies to &, and Y,, and shows that &, = f; + 0, (1)
and Y,, = Y/ + 0, (1) where ]EE;Y; = 0. Finally, it is easy to verify that
var (é’n) = var (Yn) in the same way as in (a).

Under Gaussianity of (e,:), &, and Y, are zero mean asymptotically
independent Gaussian processes, so (£,,,Y,) will converge in distribution if
and only if the common variance of ¢, and Y,

o0 n 2
B = BX, (p)°+ (0*—1)Belg Y | (Z ptcn,m)
j=0 \i=1

SGETER IS S SR &

converges as n — oo, i.e. if and only if the sequence {Z;io Cri:neN }

converges. By (83), X,, = X (p)+Go+(p2 — 1)"/? X, 040, (1) with X/, (p)
independent of (én,m Xn,0)7 and )2'7’1 (p) and G, converging in distribution
by Gaussianity and existence of the limit v (p) and X,, o —4 Xo by Assump-
tion 3, where X is Fy-measurable, so X,, o is independent of X{l (p); hence,
joint convergence in distribution of (Gn,o, Xm(]) guarantees convergence in
distribution of (X,,) and asymptotic independence of (X,,) and (Y,,) implies
convergence in distribution of the ratio in (34).

Proof of Theorem 2. The OLS residuals can be written as

an,t = Un,t — Up — (ﬁn - Pn) (xn,tfl - fnfl) 5 (89)
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. . n n _ n -2
s0, since p,—p, = Op (p," (p2 = 1)), o1y (@ng1 = Tn1)” = O, (pi (hp —1) )

Yoy (Tnte1 — Tona1) (ue — @p) = O, (;;g (P — 1)71> and @y, = O, (n—l/Q),

we obtain
n

1 < 1 < 1
2 Z o § : 2 2, (n 2 2 : N
Op = — Up s = — Upp — Uy + (pn - pn) - ("L‘nyt—l - mn—l)
n n n
t=1 t=1 t=1
n

. 1 _ _
—2 (pn - pn) E Z (mn,tfl - xnfl) (un,t - un)

t=1
1 , 1
- 1y i+0,(3)
t=1
2

which, combined with Lemma 1(i) show that 62 —, o?lim, . >0
We now show that

R 2
W2 —, wr=02C (1)%. (90)
Using (89) we may write
1 & ] —
- E un,tﬂn,t—h = - UntUnt—h — U Uy —py
n n
t=h+1 t=h+1
n n
1.
_E (pn - IOn) § Un tTnt—h—1 + E Tnt—1Unt—h
t=h+1 t=h+1

+ (pn - pn) (jn—lﬂn—h + anfn—h—l)
+

X 1 & _
(pn - Pn)2 (ﬁ Z Tnt—1Tnt—h—1 — xn—lxn—h—1>(91)
t=h+1

Since iy, piinn-n = O, (n™') and (80) implies that
(b = £2) (Fus i+ Tnn 1) = Op (072 (p, = 1)) = 0, (n7)

and (D, — )" Tn-1Zn-n-1 = O, (n=2(p, — 1)71) = 0, (n™1), all terms in-
volving 1, , and T, ,_; in (91) are O, (n~') uniformly over h. Also,

n 1 n 1/2 n—h 1/2
Z :L'n,tflxn,tfhfl S (pn - pn>2 ﬁ ( Z xi,tl) (Z mi,tl)
t=1

t=h+1 t=h+1
1 & 1
R 2 2 o
(pn - IOn) E ; xn,t—l — OP (ﬁ)
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uniformly over h,

n n
E UntTnt—h—1 + E Tnt—1Unt—h

t=h+1 t=h+1

IN

uniformly over h. We conclude that

E untunt h__ § untunt h

t h+1 t h+1

max
1<h<M

=0, (n7'?) (92

which implies that

M n n
1 h .
E £ K M E Up tUnt—h — g Up tUn,t—h

t=h+1 t=h+1
Since Mn~'/? — 0 by assumption, the law of large number of Lemma 1(ii)
implies that

1 & W\ < 1 &
= K(M) i gl p—n = » K( ) Z Un U g—n + Op (Mn™?)
h=1 t=h+1

= t=h+1

IN

o 3k (4)

= 0, (Mn_l/z) )

completing the proof of (90).
The approximations of (82) and (86) and (90) yield the following for the
t-statistic in (35):

L) = (1 +o, () (Yl {p= 1) -1 {p< 1)), (93

In the mildly explosive case of part (i), |p| = 1, Lemma 2 implies that both Y,
and Y, are asymptotically normally distributed with mean 0 and common
asymptotic variance equal to w? = ¢2C (1)® by (31). Part (i) of the theorem
follows by (93). For part (ii), (93) still holds but the asymptotic variance
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of Y, (and of Y,,) is given by (88) and is no longer to w?; we may recover
the correct asymptotic variance only when the (Gaussian) sequence (u, ;) is
independent, i.e. when ¢,; = 0 for all j > 1 and w? = ¢?. In this case,
T, (p,) —a N (0,1) follows immediately from (93) with Y, and Y, being
identically distributed zero mean Gaussian sequences for each n with (88)
giving

n—oo

~ 2
var (Y,) = 02C (p)? = 62 lim (Cn,o + Zp_jcw) =02 lim ¢, — o

j=1

completing the proof of the theorem.
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