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Abstract 

We introduce a new jackknife variance estimator for panel-data regressions. Our variance estimator can 

be motivated as the conventional leave-one-out jackknife variance estimator on a transformed space of the 

regressors and residuals using orthonormal trigonometric basis functions. We prove the asymptotic 

validity of our variance estimator and demonstrate desirable finite-sample properties in a series of 

simulation experiments. We also illustrate how our method can be used for jackknife bias-correction in a 

variety of time-series settings. 
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1 Introduction

Panel data models are often characterized by strong cross-sectional and time-series dependence. In

particular, typical applications, such as panels of states or countries, feature time series behavior

which is, at least partially, driven by common components (e.g., the state of the business cycle).

This adds an additional layer of complexity as it induces a more intricate dependence structure

across individuals and time. However, the standard variance estimators in panel regression models

are not well-suited to accommodate this complicated two-way dependence structure which can

result in substantial size distortions.

In this paper, we endeavor to address this challenge by proposing a jackknife variance estimator

for large-T and large-N panel regressions. The proposed estimator is fully agnostic about the source

of the serial dependence in the common time-series behavior, is largely tuning-parameter-free, and

offers substantial improvements over existing methods, especially when the serial correlation is

particularly strong. While this paper is primarily concerned with panel data models, the proposed

variance estimator naturally specializes to time-series models.

The validity of the standard (leave-one-out) jackknife approach relies on the lack of serial corre-

lation in the data and is not directly applicable in a setting with time dependence. To accommodate

this case, the proposed variance estimator is founded on a data transformation that renders the

time dependence asymptotically negligible without affecting the OLS estimate. More specifically,

we rotate the data using orthonormal trigonometric functions so that the transformed observations

are now associated with particular frequencies that, under certain conditions, are asymptotically or-

thogonal to each other.1 It is important to note that this property obviates the need for HAC/HAR

adjustment in the variance matrix estimation.

We capitalize on this insight and construct a leave-one-out jackknife variance estimator on the

space of the rotated variables. The variance estimator takes the usual sandwich form, but on the

transformed variables, can account for clustering, and is weighted by the leverage. The advantages

of the proposed approach are particularly notable under strong time dependence but it continues to

offer size improvements even in the case of weak serial correlation. The proposed jackknife variance

estimator can be nested in a more general framework which includes jackknife bias correction.2

1These basis functions may be generated as the eigenvectors of the variance matrix of a random walk process.
2In Appendix A.2, we show that such a bias-correction approach shows substantial promise. We simulate data

from a persistent AR(1) and a standard predictive regression model and show that jackknife- and bootstrap-based

1



We assess the finite-sample properties of our proposed variance estimator in an extensive simu-

lation experiment relying on data-generating processes already considered by Chiang et al. (2024),

Chen and Vogelsang (2023), and Hidalgo and Schafgans (2021). We show that our jackknife variance

estimator tightly controls empirical size in all of these designs, which feature strong cross-sectional

or time-series dependence (or both). In contrast, all of the existing procedures show substantial

size distortions. Furthermore, when they have been size adjusted, the jackknife variance estimator

exhibits comparable power properties to these alternatives. The simulation experiments also show

that our jackknife approach is particularly effective when the degree of time-series dependence is

high. This aligns with previous work using these basis functions. Crump and Gospodinov (2021)

show that these basis functions provide close approximations to the eigenvectors of a persistent

spatial AR(1) process. Crump, Gospodinov, and Lopez Gaffney (2024b), in a companion paper,

show that these basis functions (asymptotically) orthogonalize a wide class of time-series processes.

Our paper is related to the growing literature studying cluster-robust variance estimation in

panel data settings. The form of our jackknife variance estimator may be interpreted as clustering

by individual unit whereas the orthogonalization property of our data transformation obviates

the need for clustering over time. In contrast, recent contributions focus on variance estimators

which explicitly accommodate different clustering structures. Cameron et al. (2011) were the first

to propose variance estimators for general multi-way clustering (see also Davezies et al., 2021)

whereas Thompson (2011) studied the two-cluster setting with temporal dependence that is nonzero

for a finite lag length and absent otherwise. Menzel (2021) and MacKinnon et al. (2021) propose

bootstrap-based inference procedures in multi-way clustering setups without serial dependence.

More recently, Chiang et al. (2024) endeavor to accommodate general forms of unknown serial

correlation in two-way clustered standard errors. They add a Newey-West type autocorrelation

correction to the standard two-way clustered standard errors. Chen and Vogelsang (2023) modify

the approach of Chiang et al. (2024) by considering bias-corrected version of their standard errors

and fixed-b asymptotic approximations to the associated t-statistic (see also Vogelsang, 2012). We

share the motivation of this strand of the literature to conduct trustworthy inference across a range

of different time-series behavior. However, our approach is fundamentally different as we remove,

rather than accommodate, serial correlation before constructing our variance estimator.

Our paper is most closely related to Hidalgo and Schafgans (2021) who first transform the data

(on the rotated space) corrections largely eliminate the well documented OLS bias in these settings.
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using the discrete Fourier transform (DFT) and then apply the Eicker-Huber-White variance esti-

mator on the transformed data. There are three important differences between our approach and

that of Hidalgo and Schafgans (2021). First, we rely on a different set of basis functions which have

fundamentally different properties. In particular, our basis functions are well-equipped to accom-

modate both weak dependence but also much more persistent processes (Crump, Gospodinov, and

Lopez Gaffney, 2024b). Since, in practice, the degree of persistence is unknown, this robustness

is an important property as it substantially widens the set of applications where it can be used.

Second, we propose a jackknife variance estimator which corresponds to HC3 rather than HC0 (in

the parlance of MacKinnon and White, 1985), and, in different contexts has been shown to have

better performance in theory and practice (see, e.g., Hansen, 2023; MacKinnon et al., 2023a,b))

Furthermore, the DFT-based transformation does not naturally lend itself to leave-one-out esti-

mation as the resultant regression equation is in terms of complex random variables. Third, in

a series of simulation experiments using the simulation designs from Chiang et al. (2024), Chen

and Vogelsang (2023), and Hidalgo and Schafgans (2021), we show that our variance estimator

uniformly controls size, without compromising power, whereas the Hidalgo and Schafgans (2021)

approach can exhibit size distortions.

Finally, since our variance estimator retains its validity when N = 1 our paper is related to

the vast literature on HAC/HAR estimation. See Lazarus et al. (2018), Baillie et al. (2024) among

others for recent contributions and a broad discussion of the existing literature. Furthermore, our

results on the jackknife bias correction are related to the literature studying the finite-sample bias

of the OLS estimator in nonstandard settings such as persistent autoregressions (e.g., Kendall,

1954) or predictive regressions (e.g., Stambaugh, 1999).

The paper is organized as follows. Section 2 introduces the relevant notation and provides

a heuristic motivation for our jackknife variance estimator. Section 3 formally introduces the

procedure and states all of the main theoretical results. Extensive simulation evidence on the finite-

sample properties of the jackknife estimator, as compared to alternative procedures available in the

literature, are presented in Section 4. Section 5 concludes. Appendix A.1 provides supplemental

simulation results while Appendix A.2 demonstrates the appealing finite-sample properties of a

jackknife bias correction in autoregressive and predictive regression models. Appendix A.3 contains

the proofs of the main results.
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Notation All limits are taken as N,T → ∞. For sequences of numbers or random variables, we

use aN,T ≲ bN,T to denote that lim supN,T |aN,T /bN,T | is finite, aN,T ≲p bN,T or aN,T = Op(bN,T )

to denote lim supε→∞ lim supN,T P[|aN,T /bN,T | ≥ ε] = 0, aN,T = o(bN,T ) implies aN,T /bN,T → 0,

and aN,T = op(bN,T ) implies that aN,T /bN,T →p 0, where →p denotes convergence in probability.

2 Motivation for Variance Estimator

Our variance estimator relies on leave-one-out jackknife estimation with transformed dependent and

independent variables. We use a particular choice of orthonormal trigonometric basis functions

which have desirable features. In this section, we provide background and motivation for our

approach before we introduce our formal results in the next section.

2.1 Jackknife Variance Estimation

Consider the linear regression model:

yi = α+ x′iβ + ϵi, i = 1, . . . , N, (1)

where E[xiϵi] = 0. We can stack this model as

y = Xθ + ϵ, (2)

where θ =
(
α, β′

)′
, X = [ιT , x], where ιN is N × 1 vector of ones and x is a matrix with ith row

equal to xi. Let θ̂ be the OLS estimator of equation (2). Then, the jackknife variance estimator of

θ̂ is

V̂θ =
N∑
j=1

(θ̂(−j) − θ̂)(θ̂(−j) − θ̂)′, (3)

where θ̂(−j) is the OLS estimator of (7) for the sample which excludes the jth observation (see

Shao and Tu, 1996, for an introduction).3 MacKinnon and White (1985) clarify the relationship

between the variance estimator in equation (3) and the more familiar Eicker-White-Huber robust

3Jackknife variance estimators have also been proposed where the centering occurs at N−1 ∑N
j=1 θ̂(−j) instead of

θ̂. In practice, the results are very similar and so we focus on the latter version of the jackknife variance estimator in
this paper.
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variance estimator. We have that,

V̂θ =
(
X′X

)−1
( N∑
i=1

(1− pii)
−2xix

′
i ϵ̂

2
i

) (
X′X

)−1
, (4)

where xi = (x1,i, x
′
2,i)

′ and pii = x′i (X
′X)−1 xi. The presence of the leverage term, (1 − pii)

−2

introduces a more conservative variance estimator than the conventional heteroskedasticity-robust

formulation which has been found to have desirable properties both in theory and in practice (see

Hansen, 2023; MacKinnon et al., 2023a,b,c, and references therein).

2.2 Rotating the Data

The appealing properties of the jackknife variance estimator we have just introduced rely on an

assumption of independence across units and so does not carry over immediately to the time-series

setting. To address this issue, we rotate the data using a particular choice of basis functions

which has the effect of strongly diminishing the covariation across observations. We now define the

orthogonal trigonometric basis. Let ψj ≡ (ψ1,j , ..., ψT,j)
′, where

ψh,j ≡
2√

2T + 1
sin

(
h(2j − 1)π

2T + 1

)
. (5)

Each ψj is an eigenvector of the variance matrix of a random walk and so satisfies Ψ′Ψ = ΨΨ′ = IT .

Figure 1 shows the first, second and tenth basis functions as examples. We can observe that ψ1 is

the lowest frequency basis function and as j increases, the periodicity of ψj shortens.

Figure 1. Examples of Basis Functions This figure provides

ψ1 ψ2 ψ10
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Crump, Gospodinov, and Lopez Gaffney (2024b) prove that for a large class of time-series

processes we have that

Corr(ψ′
jy, ψ

′
ky) = o(1), ∀j ̸= k, (6)

as T → ∞, where y = (y1, . . . , yT ). Even in cases where this result does not hold, Crump,

Gospodinov, and Lopez Gaffney (2024b) show that there is very little residual correlation across

observations when this transformation is applied, even in small samples.

Consider the following time series model:

yt = α+ x′tβ + ϵt, i = 1, . . . , T, (7)

which we stack similarly to obtain

y = Xϑ+ ϵ, (8)

where we use the notation ϑ = (α, β′)′ to distinguish from the cross-sectional case above. We can

limit the degree of correlation across observations by rotating the data using Ψ. To do so, we

pre-multiply to obtain

Ψ′y = Ψ′Xϑ+Ψ′ϵ. (9)

By the orthonormal property of Ψ, we can interpret Ψ′y as the OLS regression of y on each of the

T basis functions (and similarly for each column of X) since

w = (Ψ′Ψ)−1Ψ′y = Ψ′y. (10)

Thus, w collects these coefficient estimates, where wj is associated with a particular frequency of

the data. In our case, w1 is the loading on the lowest frequency basis function, w2 is the loading

on the next lowest, and so on.
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Importantly, this transformation has no effect on the OLS estimator as

ϑ̂ = (X′X)−1X′y = (X′ΨΨ′X)−1X′ΨΨ′y = (Z′Z)−1Z′w, (11)

where Z = Ψ′X and w = Ψ′y. Although the OLS estimator is invariant to the transformation Ψ,

when we omit the jth observation of w and Z we obtain an OLS estimate which is different from

a leave-one-out estimate in the time domain (i.e., the un-rotated data). This leads to the modified

jackknife estimation approach we consider herein

V̂ϑ =

N∑
j=1

(ϑ̂(−j) − ϑ̂)(ϑ̂(−j) − ϑ̂)′, (12)

where ϑ̂(−j) is the estimate constructed by removing the jth observation (i.e., omitting a “fre-

quency”). In the next section, we will generalize this approach to panel data and prove its asymp-

totic validity for inference.

Remark 1 (Bias Correction). The focus of this paper is on jackknife variance estimation but, by

analogy, we can also use our jackknife approach to bias correct the OLS estimator,

ϑ̂bc = T ϑ̂− (T − 1)

T

T∑
j=1

ϑ̂(−j). (13)

Furthermore, we can also consider the pairs bootstrap on the transformed data, {(wj ,Z′
j) : j =

1, . . . , T}, to construct an alternative bias correction. In Appendix A.2, we show extensive simu-

lation evidence suggesting that both of these bias correction methods perform well in challenging

estimation settings. □

3 Main Results

We focus on the following linear panel-data model:

yit = αi + x1,itβ1 + x′2,itβ2 + εit, i = 1, . . . , N, t = 1, . . . , T, (14)
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where x1,it ∈ R, x2,it ∈ RK . Without loss of generality we assume that β1 is the parameter of

interest. We can stack the model as

Yi = αiιT +X1,iβ1 +X2,iβ2 + εi, i = 1, . . . , N, (15)

where Yi = (yi1,...,yiT )
′ and similarly for X1,i, X2,i, and εi. As in the previous section, we can

transform this equation using our basis functions Ψ which yields

Wi = αiζ + Z1,iβ1 + Z2,iβ2 + ui, i = 1, . . . , N, (16)

where Wi = Ψ′Yi, Z1,i = Ψ′X1,i, Z2,i = Ψ′X2,i, and ζ = Ψ′ιT . We will construct our variance

estimator as a leave-out jackknife of equation (16). Unlike the previous section, however, we will

omit N observations (rather than one) when we construct our leave-out OLS estimator. Let wij

be the jth element of Wi and similarly for ζj , z1,ij , z2,ij , and uij . We omit the jth observation for

each i from i = 1, . . . , N and, using the remaining data (sample of size (T − 1)N), we calculate the

OLS estimator, β̂(−j). Let β̂1,(−j) be the component of this OLS estimator corresponding to β1.

Then, our jackknife (JN) variance estimator is

V̂1 =

T∑
j=1

(β̂1,(−j) − β̂1)
2. (17)

We can rewrite V̂1 in a more familiar form. To do so, let us define the following OLS estimator

from the stacked panel regression of x1,it on x2,it, and individual fixed effects,

λ̂ =
( N∑
i=1

T∑
t=1

(x2,it − µ̂2,i)(x2,it − µ̂2,i)
′
)−1

N∑
i=1

T∑
t=1

(x2,it − µ̂2,i)x1,it (18)

along with

µ̂1,i = T−1
T∑
t=1

x1,it, µ̂2k,i = T−1
T∑
t=1

x2k,it, (19)
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and µ̂2,i = (µ̂21,i, . . . , µ̂2K,i)
′. Then, since we focus on inference on β1, the relevant Gram matrix is

ω̂1 = (NT )−1
N∑
i=1

T∑
t=1

(
x1,it − µ̂1,i − (x2,it − µ̂2,i)

′λ̂
)(

x1,it − µ̂1,i − (x2,it − µ̂2,i)
′λ̂
)′
. (20)

Finally, let ε̂i be the OLS residual from equation (15) and define ûij = ψ′
j ε̂i. Also define,

v̂ij = ψ′
j

(
x1,it − µ̂1,i − (x2,it − µ̂2,i)λ̂

)
, (21)

and stack these objects across i as ûj = (û1j , . . . , ûNj)
′ and V̂ j = (v̂1j , . . . , v̂Nj)

′. We can then

re-express V̂1 as

V̂1 = ω̂−1
1

(
(NT )−1

T∑
j=1

V̂ j (IN − Pjj)
−1 ûj ûj′ (IN − Pjj)

−1 V̂ j′
)
ω̂−1
1 , Pjj = Zj

(
X′X

)−1
Zj , (22)

where X is the NT × (N +K + 1) matrix of right-hand side variables (including dummy variables

for the fixed effects) from equation (14) and Zj = (IN ⊗ψ′
j)X. Although ω̂1 is a scalar, we write the

expression in equation (22) in “sandwich” form for clarity. ω̂−1
1 represents the inverse of the Gram

matrix and would generally be present with any variance estimator. The middle of the sandwich,

however, is fundamentally different from the usual formulation. In the absence of the matrix

(IN − Pjj)
−1, the estimator is of Eicker-Huber-White form (HC0 or HC1) but, importantly, on the

transformed variables v̂ij and ûij . Instead, the presence of (IN − Pjj)
−1 lends the interpretation of

a weighted version of this estimator (HC3); see MacKinnon and White (1985).

To prove the validity of our variance estimator we require some assumptions on the data gen-

erating process.

Assumption 1 (Model). We observe (yit, x
′
it) which satisfies equation (14) and assume the fol-

lowing:

(i) For each i, (yit, x
′
it) is strictly stationary and ergodic with µ1,i := E[x1,it] and µ2k,i := E[x2k,it]

for k = 1, . . . ,K;

(ii)
√
NT (λ̂− λ) = Op(1);

(iii) Let ω1 = plimN,T→∞ω̂1 and γ1 = limN,T→∞ E
[(

1√
NT

∑N
i=1

∑T
t=1(x1,it − x′2,itλ)εit

)2]
. For

some c > 0, c < ω1 ≲ 1, c < γ1 ≲ 1 and
√
NT

(
β̂1 − β1

)
→d N

(
ω−2
1 γ1

)
;
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(iv)
√
NT

(
β̂2 − β2

)
= Op(1).

Assumption 1 imposes relatively modest restrictions on the data-generating process. We assume

that the time-series dependence is well behaved and that OLS estimation of β1 with the associated

standard limiting distribution holds in our model. In addition to Assumption 1, we also assume

the following:

Assumption 2 (Moments and Dependence). Assume that:

(i) NT−1 log (T ) → 0;

(ii) ALRV(εit) ≲ 1, ALRV(x1,it) ≲ 1, and ALRV(x2k,it) ≲ 1 for k = 1, . . . ,K where ALRV(xit) :=

limN,T→∞N−1
∑N

i=1V
(

1√
T

∑T
t=1 xit

)
;

(iii) max1≤j≤T max1≤i≤N E
[
|uij |4

]
≲ 1, max1≤j≤T max1≤i≤N E

[
|z1,ij |4

]
≲ 1, and

max1≤j≤T max1≤i≤N E
[
|z2k,ij |4

]
≲ 1 for k = 1, . . . ,K;

(iv) Define ṽij = ψ′
j

(
x1,it − µ1,i − (x2,it − µ2,i)

′λ
)
, Ṽ j = (ṽ1j , . . . , ṽNj)

′, and uj = (u1j , . . . , uNj)
′.

Then, (NT )−1
∑T

j=1

{(
Ṽ j′uj

)2 − E
[(
Ṽ j′uj

)2]}
= op (1);

(v) (NT )−1
∑T

j=1 E
[(
Ṽ j′uj

)2]− (NT )−1E
[(∑T

j=1 Ṽ
j′uj

)2]
= o (1).

Assumption 2 makes further restrictions on how the data are generated. Assumption 2(i)

imposes that T grows slightly faster than N . Assumption 2(ii) ensures that the average long-run

variances (ALRV) of both the regressors and the regression errors exist and are finite. Assumption

2(iii)− (v) regulate the degree of time-series and cross-sectional dependence in the observed data.

Assumption 2(iii) restricts the higher-order covariances of the transformed regressors and regression

errors to diminish as observations become increasingly far apart. Meanwhile, Assumptions 2(iv)−

(v) place joint restrictions on the degree of dependence across units and time (see also Remark 3

below). These latter two assumptions play a key role in establishing consistency of the variance

estimator.

We can now state our main result.

Theorem 1. Let Assumptions 1 and 2 hold. Then,

√
NT (β̂1 − β1)

V̂
1/2
1

→d N (0, 1). (23)
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Theorem 1 shows that valid asymptotic inference can be conducted using the jackknife variance

estimator we introduce. Because there are no additional tuning parameters necessary, our estimator

can be implemented easily and in a computationally-effective manner.

Theorem 1 proves validity of the t-statistic for a test of significance of the marginal coefficient

β1. Our results do not immediately carry over to general tests of linear restrictions for the coefficient

vector β. To accommodate Wald-type tests, the variance estimator must be modified to adjust for

the fact that the basis functions only marginally orthogonalize each variable.

There are several other remarks on our proposed method which are warranted:

Remark 2 (Unbalanced Panels). In practice, panels may not be balanced. We can accommodate

the unbalanced panel case by defining a selection matrix S ∈ RN̄×(N ·T ), where N̄ is the number

of observations in the unbalanced panel, and S is a matrix of ones and zeros corresponding to the

observations available in the sample. In order to calculate the jackknife estimator in this unbalanced

case, define

ΨNT,(−j) = S(IN ⊗Ψ(−j)),

where Ψ(−j) is the matrix Ψ with the jth column removed. Then, we can calculate β̂(−j) through a

regression of Ψ′
NT,(−j)Y on Ψ̃′

NT,(−j)X, where X is the N̄ × (N +K + 1) vector of right-hand side

variables and Y is the corresponding N̄ × 1 vector of left-hand side variables. □

Remark 3 (Failure of Assumption 2(v)). In some cases, Assumption 2(v) may fail to hold (e.g., in

some (panel) local projection models). In this case, there is an asymptotic bias term of the variance

estimator of the form,

B = plimN,T→∞(NT )−1
∑
j ̸=ℓ

E
[
Ṽ j′uj Ṽ ℓ′uℓ

]
.

In this case, there exist natural plug-in estimators which can be used to eliminate the presence of B

in the probability limit. For intuition, consider the simple case where N = 1, the data {(yt, xt)}Tt=1

are a jointly Gaussian process and xt is a scalar. Then, we have

B = plimN,T→∞
∑
j ̸=ℓ

(
ψ′
jΓψℓ

) (
ψ′
ℓΓψj

)
,
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where Γ is the T × T matrix Γ = E[xε′]. Using an estimator of this matrix, Γ̂, we could adjust the

JN variance estimator by

B̂ =
∑
j ̸=ℓ

(
ψ′
jΓ̂ψℓ

)(
ψ′
ℓΓ̂ψj

)
.

Unlike in conventional HAC estimation, the joint persistence properties of xt and εt are down-

weighted by the basis-function weights through ψj and ψℓ. This should limit the sensitivity of the

adjusted variance estimator to estimation error of Γ. □

Remark 4 (Spatial Models). We can also consider more general forms of dependence. It is straight-

forward to tailor our procedure to models of spatial dependence, i.e., X ∈ RN2
which follows a

d = 2 Levy-Brownian motion as in Müller and Watson (2024). Here, N is the cardinality of the

sets X ,Y ∈ RN . Correspondingly, the index set C = X × Y has cardinality N2 where C(i) defines

the location or coordinate where Xi is observed for all i ∈ {1, ..., N2}. Here, we assume a single

cross-section for simplicity but similar steps as below can be followed in the panel spatial case.

Given that X follows a Levy-Brownian motion, we can describe its covariance matrix Σ ∈

RN2×N2
as

Σi,j =
1

2
(|C(i)|+ |C(j)| − |C(i)− C(j)|),

where ||x|| =
√
x′x. An eigendecomposition of Σ produces a Ψ which satisfies

Ψ′ΣΨ = Λ,

where Λ is a diagonal matrix collecting the eigenvalues. Although, in this case, Ψ is not generally

available in closed-form, it can be easily computed.

In practice, we may have that C ̸= X × Y (i.e., the data are irregularly sampled over a grid).

To accommodate this case, we can define a set C̃ ≡ X × Y and a selection matrix S ∈ R(Nx·Ny)×N̄ ,

where N̄ is the cardinality of C. Then, we can form the matrix Σ̃ ∈ R(Nx·Ny)×(Nx·Ny) as above and

then perform an eigendecomposition on Σ̃ to obtain Ψ̃. We then construct Ψ = S′Ψ̃, and utilize

the transformation Ψ′X.
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To generalize to the regression setting, consider the spatial regression model:

y = αιN̄ +X1β1 +X2β2 + ϵ,

where y is an N̄ × 1 vector. We can pre-multiply by Ψ′ as before and obtain the spatial jackknife

variance estimator,

V̂1 =

(NxNy)∑
j=1

(β̂1,(−j) − β̂1)
2. (24)

□

4 Simulation Evidence

In this section, we present simulation evidence on the finite-sample properties of our JN estimator

relative to a number of other procedures available in the literature. For our simulation experiments,

we use the exact designs utilized in Chiang et al. (2024), Chen and Vogelsang (2023), and Hidalgo

and Schafgans (2021). This has several advantages. First, we can cover a wide range of different

data-generating mechanisms. Second, these are established designs and so are not tailored to

our approach. Finally, this allows us to (implicitly) make comparisons to an even wider range of

methods since these papers include computationally-intensive bootstrap methods which we avoid

for simplicity (e.g., Chiang et al., 2024; MacKinnon et al., 2021; Hidalgo and Schafgans, 2021) and

variance estimators which are nested in other procedures (e.g., Thompson, 2011).

We consider the following three data-generating processes (DGPs):

CHS This design is from Chen and Vogelsang (2023) but was originally considered in Chiang et al.

(2024). The data follow the linear model

Yit = β0 +Xitβ1 + Uit,

with (β0, β1) = (1, 1), where (Xit, Uit) are generated as

Xit = wαα
x
i + wγγ

x
t + wϵϵ

x
it, Uit = wαα

u
i + wγγ

u
t + wϵϵ

u
it,

13



γxt = ργxt−1 +
(√

1− ρ2
)
γ̃xt , γut = ργxt−1 +

(√
1− ρ2

)
γ̃ut ,

and (wxα, w
x
γ , w

x
ϵ ) = (wuα, w

u
γ , w

u
ϵ ) = (.25, .5, .25). Finally, (αxi , α

u
i , ϵ

x
it, ϵ

u
it, γ̃

x
t , γ̃

u
t ) along with

the initial conditions for γ̃xt and γ̃ut , are mutually independent standard Gaussian random

variables.

CHS-NL This design is a non-linear version of the CHS design and is taken from Chen and Vogelsang

(2023). They replace Xit and Uit in the CHS design above with

Xit = Φ(wαα
x
i + wγγ

x
t + wϵϵ

x
it) , Uit = Φ(wαα

u
i + wγγ

u
t + wϵϵ

u
it) ,

where Φ(·) is the CDF of a standard Gaussian random variable.

HS This design is taken from Hidalgo and Schafgans (2021). The data follow the linear model

yit = αt + ηi + βxit + uit,

where αt and ηi are mutually independent Gaussian random variables with unit mean and

variance and are held fixed across simulations. We follow Hidalgo and Schafgans (2021) and

set β = 0. To generate spatial dependence, we draw si as an independent uniform random

variable on [0, N ] for i = 1, . . . , N . These are the locations of the units. Next, define the

spatially-dependent error process as

uit = ρui(t−1) +
√

1− ρ2ϵuit,

where

ϵuit = σu

N∑
ℓ=1

cℓ(i)eℓt, cℓ(i) = (1 + |sℓ − si|)−0.7.

Here eℓt are i.i.d. standard Gaussian random variables, σu is chosen to ensure that ϵuit has

unit variance, and the weighting function cℓ(i) generates strong spatial dependence.4 The xit

4We also considered the weak spatial dependence design of Hidalgo and Schafgans (2021) and the JN variance
estimator performed similarly as in the strong spatial dependence case. We omit these results here for brevity but
are available upon request.
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are generated in the exact same way and then transformed as xit 7→ xit + µt, where µt are

mutually independent Gaussian random variables with unit mean and variance.

We present results for our JN variance estimator along with the following alternatives:

◦ [OLS] Conventional variance estimator based on the assumption of a spherical error variance.

◦ [EHW] Eicker-Huber-White heteroskedasticity robust estimator.

◦ [Ci] Cluster-robust variance estimator within i.

◦ [Ct] Cluster-robust variance estimator within t.

◦ [DK] The Driscoll and Kraay (1998) variance estimator.

◦ [CGM] Two-way cluster-robust variance estimator as in Cameron et al. (2011).

◦ [CHS] CHS variance estimator as in Chiang et al. (2024).

◦ [CHSbc] bias-corrected CHS variance estimator as in Chen and Vogelsang (2023).

◦ [DKA] Driscoll-Kray and Arrelano variance estimator as in Chen and Vogelsang (2023).

◦ [HS] HS variance estimator as in Hidalgo and Schafgans (2021).

All procedures rely on an asymptotic standard Gaussian limiting distribution.5 All simulations set

N = 50 and vary T and ρ, and are based on 5,000 replications. The nominal size is set equal to

5%.

We start with the linear CHS design and present results for ρ ∈ {0.2, 0.5, 0.9, 0.95} and T ∈

{25, 75, 125}. The empirical size of each procedure is presented in Table 1. The OLS, EHW, and Ci

methods lead to severe size distortions, as they are not designed to accommodate time dependence.

The Ct, DK, CGM, and CHS methods exhibit somewhat lower over-rejections for larger T and

smaller ρ but their empirical size uniformly exceeds the nominal size and grows markedly as the

degree of persistence increases. The CHSbc and DKA methods modestly improve size control

relative to CHS but are still over-sized throughout, especially for larger ρ. The HS procedure

5For more direct comparison and computational ease, we do not explore bootstrap-based procedures here. However,
Chiang et al. (2024) include the approaches of Menzel (2021) and MacKinnon et al. (2021) in their simulation results
while Hidalgo and Schafgans (2021) also include a bootstrap version of their method. Based on the simulation
results presented in these papers, we can conclude that the JN variance estimator controls size better than these
resampling-based methods.
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outperforms all the other alternative methods although it can be over-sized for small T and also

for larger values of ρ. For example, when ρ = 0.9 and T = 25, the empirical size is over 10%.

In contrast to all of these approaches, the JN variance estimator has empirical size close to

nominal size for all values of T and ρ. In fact, the empirical size resides between 4.5% and 6.2%

for all specifications. Importantly, the excellent size control demonstrated by the JN estimator

does not come at the expense of lower power. Table 2 presents size-adjusted power for this design.

Broadly speaking, the power is similar across different approaches so we can conclude that the

JN variance estimator has comparable (size-adjusted) power properties. Notably, when ρ moves

toward unity, both the HS and JN approaches have higher power relative to the other procedures

although the power of the JN method tends to exceed that of the HS method.

In Tables 3 and 4 we present the corresponding empirical size and size-adjusted empirical power

for the CHS-NL design. The results are very similar as those presented in Tables 1 and 2 highlighting

the robustness of the JN variance estimator to a nonlinear components structure. In Appendix A.1,

we report the corresponding results for the CHS and CHS-NL design when individual fixed effects

are included in all procedures. This is the more empirically relevant setting. Tables A.1 and

A.3 show that although all procedures have worse size control in the presence of fixed effects, the

deterioration in the performance of the JN variance estimator is extremely modest. The empirical

size remains tightly concentrated around the nominal size, ranging from 3.3% to 6.7%. In terms of

power, Tables A.2 and A.4 continue to show that the JN method does not suffer from meaningful

power losses relative to procedures which fail to control size.

We next consider the DGP utilized in HS. Because of the presence of time effects, we modify

the implementation of the JN variance estimator to accommodate them. In particular, we work

with the transformed variables ẏit and ẋit, defined as

ẏit = yit −
1

N

N∑
i=1

yit, ẋit = xit −
1

N

N∑
i=1

xit.

We can make such a transformation as the presence of time effects is unaffected by whether the

data have been rotated or not. Once we obtain ẏit and ẋit, we proceed as in Section 3. In Table 5,

we present the empirical size results. As in the previous two designs, the JN variance estimator has

excellent size control even when T is small or ρ is high and despite the very strong cross-sectional

dependence. For the other methods, when T = 128 and ρ = 0.7, CHS, CHSbc, DKA, and HS
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perform reasonably well, but these procedures exhibit more substantial size distortions in all other

specifications. The remaining alternatives all fail to control size across all specifications.

Table 6 presents the corresponding size-adjusted power for the HS design. Again, the excellent

size control does not come at the expense of lower power. It may be worth noting that OLS and Ct

generally have the highest size-adjusted power but this power is practically unattainable since, as

shown in Table 5, they have empirical size which is highly distorted (at least an order of magnitude

greater than the nominal size). Compared to the other competing procedures, the JN variance

estimator appears to exhibit higher power as ρ increases.

In the next set of simulation experiments, we decouple the degree of persistence of the regressor

from the error. We designate the autoregressive parameter used to generate the regressors as ρX

and the autoregressive parameter used to generate the errors as ρU .
6 We fix ρX = 0.9 and vary

the value of ρU . In Table 7, we report the ρX -fixed case for the CHS design. Importantly, this

mismatch between persistence of the regressors and the error does not compromise the ability of

the JN variance estimator to control size. In contrast, all of the other procedures continue to have

material size distortions. Furthermore, Table 8 shows that the power from using the JN variance

estimator continues to be comparable, on a size-adjusted basis, to the other computing procedures.

Tables 9 and 10 (and Tables A.5 and A.6 in Appendix A.1) show that the same pattern emerges

in the HS and CHS-NL DGPs. For example, in the ρX -fixed HS design, the empirical size of the

HS procedure is 23.4% when T = 16 as compared to 5.4% for the JN estimator. Even the best

performing alternative (CHSbc) has an empirical size of 16.9% in this case. Finally, in unreported

results, we confirm that the JN variance estimator continues to control size when the Gaussian

innovations used in the CHS, CHS-NL and HS designs are replaced by heavy-tailed or asymmetric

distributions and in the presence of conditional heteroskedasticity using a GARCH(1,1) model.

Taken in sum, these simulation results highlight the highly desirable finite-sample properties of

the JN variance estimator introduced in Section 3.

6We also consider decoupling the persistence across individuals instead. In particular, for each i, we impose that
γx
t and γu

t is a Gaussian AR(1) with ρ of 0.2 or 0.95, each with equal probability of occurrence. Tables A.7 and A.8
in the Appendix report these results for the CHS DGP which are qualitatively similar to all other simulation results.
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5 Conclusion

In this paper, we propose a novel jackknife variance estimator for panel-data (and time-series)

regressions. The procedure is particularly simple to implement, requiring no additional tuning

parameters, and can be characterized as leave-one-out jackknife variance estimation on a rotated

data space. The variance estimator performs well for varying degrees of persistence but especially

outperforms alternative approaches when the degree of persistence in the data is high. We prove

asymptotic validity of our approach and demonstrate excellent finite-sample properties in a series

of simulation experiments using designs that have previously been investigated in the literature.

We also show that our jackknife approach leads to a broader framework including jackknife

bias correction. This naturally leads to consideration of a pairs bootstrap on the rotated data. In

Appendix A.2, we show that such an approach provides effective bias adjustment but lays promise

for more general improvements in inference which are currently under study by the authors.

Our proposed jackknife variance estimator is also well suited to panel data models with more

structure imposed, such as the reduced-rank regression models prevalent in empirical finance (e.g.,

Adrian, Crump, and Moench, 2015). This setting is studied in the companion paper, Crump,

Gospodinov, and Lopez Gaffney (2024a).
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Table 1. Empirical Size (CHS). This table presents empirical size for the t-test of the null hypothesis that
β1 = 1 for the CHS DGP. The results are reported for a nominal level of 5%, N = 50, and different values of T and
ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.704 0.71 0.694 0.115 0.127 0.108 0.123 0.114 0.104 0.071 0.056
0.2 75 0.716 0.718 0.58 0.091 0.089 0.08 0.077 0.073 0.069 0.063 0.062
0.2 125 0.713 0.716 0.49 0.087 0.085 0.071 0.071 0.068 0.063 0.063 0.06
0.5 25 0.736 0.742 0.713 0.185 0.184 0.18 0.175 0.152 0.141 0.082 0.053
0.5 75 0.759 0.763 0.626 0.162 0.124 0.147 0.112 0.099 0.094 0.069 0.057
0.5 125 0.759 0.759 0.557 0.161 0.113 0.137 0.094 0.085 0.082 0.065 0.058
0.9 25 0.773 0.775 0.648 0.453 0.401 0.397 0.346 0.282 0.274 0.118 0.046
0.9 75 0.872 0.874 0.739 0.53 0.298 0.483 0.274 0.232 0.23 0.112 0.052
0.9 125 0.873 0.873 0.723 0.531 0.244 0.485 0.224 0.19 0.189 0.095 0.059
0.95 25 0.728 0.731 0.526 0.503 0.452 0.374 0.332 0.248 0.247 0.138 0.046
0.95 75 0.871 0.873 0.7 0.626 0.375 0.535 0.332 0.266 0.268 0.121 0.045
0.95 125 0.892 0.892 0.734 0.645 0.325 0.58 0.297 0.248 0.249 0.109 0.058

Table 2. Size-Adjusted Empirical Power (CHS). This table presents size-adjusted empirical power for the
t-test of the alternative hypothesis that β1 = 0 for the CHS DGP. The results are reported for a nominal level of
5%, N = 50, and different values of T and ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.461 0.447 0.417 0.4 0.396 0.406 0.4 0.402 0.407 0.454 0.407
0.2 75 0.899 0.898 0.842 0.878 0.868 0.886 0.871 0.873 0.874 0.895 0.884
0.2 125 0.983 0.982 0.962 0.978 0.976 0.979 0.978 0.978 0.978 0.979 0.977
0.5 25 0.345 0.326 0.286 0.296 0.299 0.304 0.3 0.298 0.299 0.383 0.345
0.5 75 0.745 0.749 0.668 0.737 0.691 0.741 0.697 0.697 0.706 0.747 0.715
0.5 125 0.924 0.923 0.863 0.912 0.891 0.914 0.899 0.899 0.901 0.907 0.896
0.9 25 0.2 0.181 0.145 0.228 0.206 0.215 0.203 0.226 0.219 0.327 0.319
0.9 75 0.246 0.242 0.197 0.253 0.258 0.25 0.27 0.264 0.267 0.33 0.305
0.9 125 0.34 0.326 0.255 0.32 0.305 0.326 0.317 0.312 0.312 0.387 0.373
0.95 25 0.266 0.237 0.173 0.346 0.281 0.287 0.289 0.326 0.309 0.426 0.434
0.95 75 0.208 0.2 0.158 0.243 0.232 0.204 0.234 0.234 0.23 0.32 0.35
0.95 125 0.232 0.216 0.162 0.229 0.243 0.214 0.236 0.234 0.236 0.329 0.326
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Table 3. Empirical Size (CHS-NL). This table presents empirical size for the t-test of the null hypothesis that
β1 = 1 for the CHS-NL DGP. The results are reported for a nominal level of 5%, N = 50, and different values of T
and ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.702 0.708 0.695 0.117 0.129 0.11 0.124 0.116 0.105 0.071 0.056
0.2 75 0.715 0.719 0.578 0.093 0.091 0.081 0.079 0.077 0.069 0.062 0.064
0.2 125 0.712 0.716 0.492 0.088 0.087 0.071 0.071 0.068 0.064 0.063 0.061
0.5 25 0.737 0.742 0.71 0.187 0.186 0.18 0.175 0.154 0.142 0.083 0.055
0.5 75 0.758 0.763 0.626 0.161 0.124 0.148 0.111 0.101 0.094 0.068 0.057
0.5 125 0.758 0.761 0.557 0.161 0.113 0.138 0.093 0.086 0.081 0.064 0.059
0.9 25 0.772 0.774 0.646 0.454 0.403 0.398 0.346 0.282 0.274 0.117 0.046
0.9 75 0.873 0.875 0.737 0.531 0.301 0.483 0.275 0.231 0.231 0.112 0.052
0.9 125 0.873 0.875 0.723 0.531 0.247 0.485 0.225 0.193 0.191 0.096 0.059
0.95 25 0.729 0.729 0.524 0.501 0.453 0.373 0.331 0.247 0.248 0.138 0.047
0.95 75 0.87 0.871 0.7 0.625 0.376 0.533 0.334 0.267 0.27 0.121 0.045
0.95 125 0.892 0.895 0.731 0.646 0.328 0.579 0.298 0.249 0.251 0.108 0.058

Table 4. Size-Adjusted Empirical Power (CHS-NL). This table presents size-adjusted empirical power for
the t-test of the alternative hypothesis that β1 = 0 for the CHS-NL DGP. The results are reported for a nominal
level of 5%, N = 50, and different values of T and ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.468 0.46 0.43 0.408 0.401 0.416 0.409 0.408 0.415 0.457 0.411
0.2 75 0.9 0.895 0.844 0.879 0.864 0.884 0.87 0.87 0.872 0.892 0.883
0.2 125 0.983 0.982 0.961 0.976 0.976 0.978 0.976 0.976 0.977 0.98 0.975
0.5 25 0.351 0.331 0.299 0.304 0.305 0.316 0.304 0.306 0.31 0.386 0.352
0.5 75 0.747 0.751 0.67 0.734 0.693 0.746 0.708 0.704 0.706 0.751 0.721
0.5 125 0.924 0.924 0.865 0.909 0.884 0.915 0.9 0.899 0.9 0.909 0.901
0.9 25 0.207 0.191 0.149 0.235 0.203 0.221 0.217 0.234 0.229 0.335 0.322
0.9 75 0.252 0.255 0.21 0.265 0.261 0.262 0.269 0.265 0.266 0.336 0.308
0.9 125 0.346 0.342 0.264 0.326 0.314 0.337 0.325 0.319 0.321 0.395 0.377
0.95 25 0.27 0.252 0.184 0.351 0.27 0.293 0.294 0.32 0.307 0.429 0.436
0.95 75 0.217 0.216 0.171 0.251 0.242 0.214 0.244 0.239 0.238 0.326 0.357
0.95 125 0.245 0.228 0.17 0.233 0.252 0.231 0.244 0.237 0.239 0.335 0.327
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Table 5. Empirical Size (HS). This table presents empirical size for the t-test of the null hypothesis that β = 0
for the HS DGP. The results are reported for a nominal level of 5%, N = 50, and different values of T and ρ.
Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.7 16 0.67 0.667 0.56 0.276 0.376 0.15 0.242 0.145 0.209 0.181 0.056
0.7 32 0.689 0.687 0.566 0.288 0.253 0.144 0.158 0.111 0.159 0.132 0.059
0.7 64 0.698 0.696 0.556 0.263 0.165 0.119 0.088 0.07 0.11 0.087 0.051
0.7 128 0.685 0.683 0.544 0.256 0.115 0.103 0.055 0.046 0.078 0.063 0.043
0.9 16 0.738 0.732 0.556 0.44 0.606 0.259 0.343 0.164 0.329 0.295 0.047
0.9 32 0.786 0.783 0.566 0.508 0.503 0.289 0.296 0.162 0.279 0.246 0.053
0.9 64 0.81 0.81 0.558 0.528 0.345 0.301 0.215 0.143 0.195 0.176 0.055
0.9 128 0.815 0.813 0.542 0.52 0.214 0.301 0.143 0.107 0.133 0.111 0.044

Table 6. Size-Adjusted Empirical Power (HS). This table presents size-adjusted empirical power for the
t-test of the alternative hypothesis that β = 0.3 for the HS DGP. The results are reported for a nominal level of 5%,
N = 50, and different values of T and ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.7 16 0.362 0.34 0.323 0.298 0.187 0.309 0.258 0.265 0.266 0.28 0.294
0.7 32 0.548 0.54 0.501 0.535 0.436 0.508 0.48 0.479 0.483 0.481 0.483
0.7 64 0.881 0.876 0.808 0.856 0.762 0.843 0.813 0.811 0.791 0.82 0.816
0.7 128 0.994 0.994 0.982 0.993 0.972 0.992 0.985 0.985 0.979 0.984 0.978
0.9 16 0.212 0.198 0.187 0.172 0.101 0.176 0.18 0.166 0.165 0.158 0.202
0.9 32 0.267 0.252 0.225 0.254 0.132 0.243 0.231 0.229 0.206 0.209 0.254
0.9 64 0.424 0.427 0.372 0.401 0.28 0.409 0.373 0.379 0.354 0.369 0.405
0.9 128 0.688 0.673 0.621 0.66 0.548 0.685 0.632 0.629 0.609 0.607 0.645
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Table 7. Empirical Size (CHS; ρx Fixed). This table presents empirical size for the t-test of the null
hypothesis that β1 = 1 for the CHS DGP where each procedure includes individual fixed effects in the estimation.
The results are reported for ρX = 0.9, a nominal level of 5%, N = 50, and different values of T and ρU . Results are
based on 5,000 simulations.

ρU T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.791 0.797 0.883 0.151 0.157 0.153 0.161 0.149 0.145 0.141 0.068
0.2 75 0.788 0.789 0.892 0.115 0.101 0.118 0.103 0.101 0.097 0.106 0.062
0.2 125 0.786 0.79 0.896 0.114 0.091 0.117 0.094 0.092 0.088 0.091 0.066
0.5 25 0.829 0.835 0.9 0.267 0.243 0.27 0.245 0.224 0.219 0.16 0.075
0.5 75 0.836 0.84 0.917 0.244 0.155 0.248 0.158 0.146 0.142 0.119 0.068
0.5 125 0.838 0.84 0.922 0.24 0.128 0.244 0.131 0.124 0.12 0.102 0.069
0.9 25 0.829 0.833 0.858 0.454 0.377 0.452 0.372 0.326 0.321 0.183 0.046
0.9 75 0.895 0.896 0.923 0.536 0.289 0.538 0.289 0.268 0.266 0.146 0.067
0.9 125 0.898 0.901 0.934 0.528 0.236 0.532 0.237 0.22 0.218 0.116 0.066
0.95 25 0.784 0.787 0.8 0.452 0.371 0.446 0.361 0.318 0.309 0.159 0.032
0.95 75 0.886 0.888 0.91 0.578 0.313 0.578 0.312 0.286 0.282 0.122 0.039
0.95 125 0.909 0.91 0.928 0.58 0.263 0.581 0.263 0.242 0.241 0.105 0.048

Table 8. Size-Adjusted Empirical Power (CHS; ρx Fixed). This table presents size-adjusted empirical
power for the t-test of the alternative hypothesis that β1 = 0 for the CHS DGP where each procedure includes
individual fixed effects in the estimation. The results are reported for ρX = 0.9, a nominal level of 5%, N = 50, and
different values of T and ρU . Results are based on 5,000 simulations.

ρU T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.424 0.409 0.425 0.374 0.358 0.373 0.357 0.36 0.363 0.292 0.281
0.2 75 0.953 0.951 0.944 0.949 0.932 0.948 0.931 0.93 0.93 0.888 0.848
0.2 125 0.999 0.998 0.996 0.998 0.996 0.998 0.996 0.996 0.996 0.993 0.982
0.5 25 0.251 0.244 0.25 0.224 0.213 0.223 0.212 0.208 0.213 0.18 0.174
0.5 75 0.738 0.718 0.724 0.699 0.638 0.699 0.638 0.634 0.636 0.623 0.572
0.5 125 0.938 0.933 0.916 0.928 0.906 0.928 0.905 0.905 0.906 0.875 0.833
0.9 25 0.129 0.118 0.116 0.105 0.121 0.105 0.12 0.12 0.119 0.173 0.201
0.9 75 0.163 0.161 0.156 0.158 0.16 0.158 0.161 0.159 0.16 0.181 0.203
0.9 125 0.244 0.225 0.218 0.212 0.196 0.21 0.196 0.194 0.194 0.24 0.25
0.95 25 0.159 0.138 0.123 0.168 0.192 0.165 0.193 0.204 0.2 0.282 0.362
0.95 75 0.163 0.146 0.136 0.151 0.18 0.15 0.178 0.177 0.177 0.233 0.29
0.95 125 0.19 0.175 0.159 0.172 0.171 0.173 0.171 0.17 0.171 0.242 0.265
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Table 9. Empirical Size (HS; ρx Fixed). This table presents empirical size for the t-test of the null hypothesis
that β = 0 for the CHS DGP. The results are reported for ρX = 0.9, a nominal level of 5%, N = 50, and different
values of T and ρU . Results are based on 5,000 simulations.

ρU T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.7 16 0.69 0.688 0.548 0.338 0.415 0.201 0.263 0.169 0.237 0.234 0.054
0.7 32 0.728 0.729 0.559 0.363 0.293 0.204 0.191 0.142 0.185 0.192 0.061
0.7 64 0.744 0.741 0.562 0.364 0.201 0.183 0.117 0.091 0.132 0.136 0.059
0.7 128 0.75 0.746 0.546 0.347 0.138 0.17 0.078 0.064 0.098 0.091 0.044
0.9 16 0.738 0.732 0.556 0.44 0.606 0.259 0.343 0.164 0.329 0.295 0.047
0.9 32 0.786 0.783 0.566 0.508 0.503 0.289 0.296 0.162 0.279 0.246 0.053
0.9 64 0.81 0.81 0.558 0.528 0.345 0.301 0.215 0.143 0.195 0.176 0.055
0.9 128 0.815 0.813 0.542 0.52 0.214 0.301 0.143 0.107 0.133 0.111 0.044

Table 10. Size-Adjusted Empirical Power (HS; ρx Fixed). This table presents size-adjusted empirical power
for the t-test of the alternative hypothesis that β = 0.3 for the HS DGP. The results are reported for ρX = 0.9, a
nominal level of 5%, N = 50, and different values of T and ρU . Results are based on 5,000 simulations.

ρU T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.7 16 0.153 0.141 0.14 0.14 0.085 0.154 0.13 0.127 0.122 0.116 0.136
0.7 32 0.308 0.308 0.269 0.295 0.223 0.282 0.253 0.252 0.256 0.227 0.218
0.7 64 0.618 0.61 0.54 0.591 0.496 0.581 0.538 0.538 0.546 0.503 0.485
0.7 128 0.921 0.918 0.857 0.913 0.863 0.904 0.889 0.887 0.874 0.859 0.856
0.9 16 0.212 0.198 0.187 0.172 0.101 0.176 0.18 0.166 0.165 0.158 0.202
0.9 32 0.267 0.252 0.225 0.254 0.132 0.243 0.231 0.229 0.206 0.209 0.254
0.9 64 0.424 0.427 0.372 0.401 0.28 0.409 0.373 0.379 0.354 0.369 0.405
0.9 128 0.688 0.673 0.621 0.66 0.548 0.685 0.632 0.629 0.609 0.607 0.645
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Appendix

A.1 Additional Simulation Results

Table A.1. Empirical Size (CHS). This table presents empirical size for the t-test of the null hypothesis that
β1 = 1 for the CHS DGP where each procedure includes individual fixed effects in the estimation. The results are
reported for a nominal level of 5%, N = 50, and different values of T and ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.755 0.763 0.846 0.113 0.13 0.115 0.133 0.12 0.114 0.087 0.065
0.2 75 0.746 0.751 0.851 0.082 0.081 0.084 0.083 0.078 0.074 0.064 0.059
0.2 125 0.742 0.745 0.843 0.069 0.066 0.071 0.069 0.065 0.062 0.054 0.051
0.5 25 0.788 0.794 0.861 0.188 0.187 0.191 0.188 0.168 0.162 0.106 0.063
0.5 75 0.793 0.796 0.872 0.148 0.113 0.151 0.115 0.105 0.101 0.08 0.062
0.5 125 0.788 0.789 0.872 0.144 0.093 0.147 0.095 0.09 0.086 0.06 0.052
0.9 25 0.829 0.833 0.858 0.454 0.377 0.452 0.372 0.326 0.321 0.183 0.046
0.9 75 0.895 0.896 0.923 0.536 0.289 0.538 0.289 0.268 0.266 0.146 0.067
0.9 125 0.898 0.901 0.934 0.528 0.236 0.532 0.237 0.22 0.218 0.116 0.066
0.95 25 0.8 0.803 0.816 0.483 0.394 0.476 0.384 0.341 0.334 0.191 0.033
0.95 75 0.9 0.905 0.922 0.619 0.361 0.621 0.36 0.336 0.333 0.171 0.05
0.95 125 0.918 0.92 0.94 0.646 0.32 0.647 0.32 0.298 0.296 0.146 0.058

Table A.2. Size-Adjusted Empirical Power (CHS). This table presents size-adjusted empirical power for the
t-test of the alternative hypothesis that β1 = 0 for the CHS DGP where each procedure includes individual fixed
effects in the estimation. The results are reported for a nominal level of 5%, N = 50, and different values of T and
ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.314 0.306 0.311 0.271 0.273 0.272 0.274 0.279 0.277 0.288 0.25
0.2 75 0.799 0.788 0.777 0.77 0.747 0.77 0.741 0.745 0.748 0.77 0.755
0.2 125 0.957 0.952 0.948 0.947 0.943 0.947 0.943 0.943 0.944 0.954 0.945
0.5 25 0.245 0.222 0.239 0.196 0.191 0.197 0.193 0.189 0.192 0.217 0.214
0.5 75 0.612 0.602 0.585 0.577 0.54 0.578 0.541 0.539 0.541 0.587 0.559
0.5 125 0.845 0.838 0.826 0.821 0.806 0.821 0.804 0.802 0.803 0.822 0.805
0.9 25 0.129 0.118 0.116 0.105 0.121 0.105 0.12 0.12 0.119 0.173 0.201
0.9 75 0.163 0.161 0.156 0.158 0.16 0.158 0.161 0.159 0.16 0.181 0.203
0.9 125 0.244 0.225 0.218 0.212 0.196 0.21 0.196 0.194 0.194 0.24 0.25
0.95 25 0.148 0.134 0.118 0.151 0.163 0.146 0.166 0.175 0.168 0.244 0.335
0.95 75 0.149 0.134 0.131 0.144 0.136 0.142 0.134 0.135 0.137 0.175 0.23
0.95 125 0.166 0.147 0.152 0.138 0.133 0.138 0.134 0.137 0.134 0.162 0.214
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Table A.3. Empirical Size (CHS-NL). This table presents empirical size for the t-test of the null hypothesis
that β1 = 1 for the CHS-NL DGP where each procedure includes individual fixed effects in the estimation. The
results are reported for a nominal level of 5%, N = 50, and different values of T and ρ. Results are based on 5,000
simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.756 0.766 0.847 0.114 0.132 0.116 0.135 0.121 0.116 0.089 0.067
0.2 75 0.749 0.753 0.85 0.083 0.082 0.086 0.085 0.081 0.075 0.064 0.06
0.2 125 0.743 0.746 0.84 0.068 0.067 0.07 0.069 0.067 0.063 0.054 0.05
0.5 25 0.786 0.796 0.861 0.191 0.19 0.193 0.191 0.17 0.164 0.103 0.063
0.5 75 0.791 0.797 0.872 0.149 0.113 0.151 0.116 0.106 0.102 0.079 0.062
0.5 125 0.788 0.79 0.871 0.142 0.093 0.145 0.096 0.09 0.087 0.06 0.053
0.9 25 0.83 0.833 0.858 0.452 0.377 0.451 0.373 0.327 0.322 0.182 0.047
0.9 75 0.893 0.895 0.92 0.536 0.292 0.539 0.292 0.268 0.265 0.145 0.065
0.9 125 0.899 0.901 0.931 0.53 0.24 0.532 0.241 0.223 0.221 0.115 0.066
0.95 25 0.798 0.801 0.816 0.483 0.393 0.476 0.383 0.342 0.335 0.189 0.033
0.95 75 0.901 0.905 0.922 0.618 0.362 0.619 0.361 0.338 0.334 0.171 0.05
0.95 125 0.919 0.921 0.941 0.645 0.322 0.647 0.322 0.299 0.298 0.145 0.059

Table A.4. Size-Adjusted Empirical Power (CHS-NL). This table presents size-adjusted empirical power for
the t-test of the alternative hypothesis that β1 = 0 for the CHS-NL DGP where each procedure includes individual
fixed effects in the estimation. The results are reported for a nominal level of 5%, N = 50, and different values of T
and ρ. Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.319 0.315 0.327 0.275 0.281 0.276 0.283 0.286 0.286 0.287 0.249
0.2 75 0.798 0.789 0.78 0.769 0.745 0.769 0.746 0.746 0.747 0.771 0.754
0.2 125 0.957 0.952 0.948 0.948 0.943 0.948 0.943 0.943 0.944 0.954 0.945
0.5 25 0.249 0.237 0.25 0.204 0.199 0.205 0.199 0.199 0.199 0.218 0.21
0.5 75 0.611 0.61 0.596 0.583 0.55 0.582 0.553 0.553 0.552 0.589 0.563
0.5 125 0.846 0.838 0.83 0.823 0.809 0.823 0.808 0.805 0.807 0.822 0.809
0.9 25 0.133 0.124 0.123 0.108 0.123 0.109 0.122 0.122 0.123 0.178 0.21
0.9 75 0.171 0.173 0.18 0.169 0.162 0.169 0.162 0.162 0.162 0.185 0.206
0.9 125 0.249 0.24 0.246 0.22 0.202 0.219 0.202 0.199 0.199 0.239 0.257
0.95 25 0.153 0.139 0.132 0.151 0.166 0.152 0.171 0.178 0.168 0.251 0.345
0.95 75 0.151 0.144 0.151 0.148 0.138 0.151 0.138 0.138 0.139 0.182 0.235
0.95 125 0.169 0.158 0.165 0.146 0.14 0.148 0.139 0.142 0.141 0.164 0.219
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Table A.5. Empirical Size (CHS-NL; ρx Fixed). This table presents empirical size for the t-test of the null
hypothesis that β1 = 1 for the CHS-NL DGP where each procedure includes individual fixed effects in the
estimation. The results are reported for ρX = 0.9, a nominal level of 5%, N = 50, and different values of T and ρU .
Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.793 0.8 0.878 0.153 0.161 0.155 0.164 0.155 0.151 0.139 0.069
0.2 75 0.784 0.787 0.895 0.119 0.105 0.121 0.108 0.104 0.102 0.105 0.061
0.2 125 0.787 0.79 0.894 0.113 0.091 0.119 0.094 0.091 0.088 0.091 0.066
0.5 25 0.831 0.838 0.899 0.268 0.242 0.269 0.244 0.224 0.219 0.159 0.076
0.5 75 0.839 0.844 0.918 0.246 0.16 0.249 0.163 0.151 0.147 0.118 0.068
0.5 125 0.838 0.842 0.919 0.24 0.131 0.246 0.133 0.126 0.123 0.1 0.069
0.9 25 0.83 0.833 0.858 0.452 0.377 0.451 0.373 0.327 0.322 0.182 0.047
0.9 75 0.893 0.895 0.92 0.536 0.292 0.539 0.292 0.268 0.265 0.145 0.065
0.9 125 0.899 0.901 0.931 0.53 0.24 0.532 0.241 0.223 0.221 0.115 0.066
0.95 25 0.784 0.787 0.8 0.451 0.37 0.446 0.36 0.318 0.309 0.158 0.032
0.95 75 0.885 0.888 0.908 0.578 0.314 0.578 0.314 0.286 0.284 0.122 0.04
0.95 125 0.906 0.907 0.926 0.58 0.265 0.581 0.265 0.243 0.241 0.104 0.048

Table A.6. Size-Adjusted Empirical Power (CHS-NL; ρx Fixed). This table presents size-adjusted
empirical power for the t-test of the alternative hypothesis that β1 = 0 for the CHS-NL DGP where each procedure
includes individual fixed effects in the estimation. The results are reported for ρX = 0.9, a nominal level of 5%,
N = 50, and different values of T and ρU . Results are based on 5,000 simulations.

ρ T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

0.2 25 0.49 0.485 0.495 0.445 0.421 0.446 0.419 0.424 0.427 0.348 0.322
0.2 75 0.97 0.967 0.963 0.964 0.953 0.964 0.952 0.95 0.952 0.928 0.898
0.2 125 0.999 0.999 0.997 0.999 0.998 0.999 0.998 0.998 0.998 0.996 0.991
0.5 25 0.29 0.288 0.317 0.261 0.247 0.264 0.248 0.248 0.248 0.21 0.196
0.5 75 0.788 0.774 0.789 0.756 0.701 0.756 0.699 0.696 0.697 0.693 0.645
0.5 125 0.957 0.952 0.946 0.95 0.929 0.95 0.929 0.929 0.929 0.908 0.877
0.9 25 0.133 0.124 0.123 0.108 0.123 0.109 0.122 0.122 0.123 0.178 0.21
0.9 75 0.171 0.173 0.18 0.169 0.162 0.169 0.162 0.162 0.162 0.185 0.206
0.9 125 0.249 0.24 0.246 0.22 0.202 0.219 0.202 0.199 0.199 0.239 0.257
0.95 25 0.157 0.142 0.127 0.169 0.197 0.164 0.195 0.202 0.2 0.282 0.361
0.95 75 0.167 0.149 0.148 0.149 0.177 0.149 0.175 0.174 0.174 0.232 0.288
0.95 125 0.19 0.179 0.172 0.173 0.168 0.173 0.167 0.17 0.17 0.239 0.261
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Table A.7. Empirical Size (CHS w/ heterogeneous ρ). This table presents empirical size for the t-test of the
null hypothesis that β1 = 1 for the CHS DGP where each procedure includes individual fixed effects in the
estimation. The degree of persistence for the regressor and the error are heterogeneous: for each i we have that γx

t

and γu
t are a Gaussian AR(1) with ρ of 0.2 or 0.95, each with equal probability of occurrence. The results are

reported for a nominal level of 5% and different values of N and T . Results are based on 5,000 simulations.

N T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

25 25 0.595 0.577 0.641 0.16 0.186 0.159 0.186 0.154 0.134 0.1 0.054
25 75 0.711 0.705 0.704 0.301 0.225 0.281 0.206 0.189 0.175 0.092 0.045
25 125 0.75 0.747 0.732 0.373 0.22 0.341 0.195 0.177 0.166 0.08 0.04
50 25 0.707 0.692 0.74 0.151 0.188 0.151 0.184 0.156 0.144 0.095 0.053
50 75 0.794 0.788 0.791 0.304 0.224 0.288 0.218 0.193 0.185 0.091 0.046
50 125 0.824 0.821 0.812 0.386 0.225 0.367 0.213 0.195 0.189 0.081 0.037
75 25 0.756 0.744 0.783 0.157 0.194 0.155 0.191 0.161 0.153 0.098 0.057
75 75 0.824 0.821 0.822 0.301 0.223 0.292 0.217 0.195 0.191 0.093 0.043
75 125 0.85 0.85 0.841 0.385 0.218 0.37 0.21 0.194 0.192 0.085 0.039
100 25 0.792 0.778 0.813 0.156 0.195 0.154 0.193 0.161 0.154 0.095 0.053
100 75 0.847 0.843 0.846 0.3 0.22 0.293 0.216 0.194 0.191 0.089 0.044
100 125 0.871 0.871 0.865 0.377 0.226 0.371 0.217 0.197 0.195 0.08 0.038

Table A.8. Empirical Power (CHS w/ heterogeneous ρ). This table presents size-adjusted empirical power
for the t-test of the null hypothesis that β1 = 1 for the CHS DGP where each procedure includes individual fixed
effects in the estimation. The degree of persistence for the regressor and the error are heterogeneous: for each i we
have that γx

t and γu
t are a Gaussian AR(1) with ρ of 0.2 or 0.95, each with equal probability of occurrence. The

results are reported for a nominal level of 5% and different values of N and T . Results are based on 5,000
simulations.

N T OLS EHW Ci Ct DK CGM CHS CHSbc DKA HS JN

25 25 0.399 0.373 0.371 0.33 0.291 0.353 0.308 0.31 0.32 0.363 0.376
25 75 0.539 0.517 0.556 0.436 0.533 0.571 0.594 0.591 0.594 0.651 0.648
25 125 0.585 0.572 0.658 0.525 0.617 0.697 0.682 0.681 0.68 0.717 0.708
50 25 0.435 0.401 0.415 0.327 0.31 0.337 0.322 0.328 0.327 0.38 0.409
50 75 0.506 0.493 0.588 0.454 0.535 0.535 0.577 0.565 0.571 0.652 0.659
50 125 0.569 0.56 0.666 0.53 0.609 0.657 0.66 0.66 0.658 0.721 0.713
75 25 0.434 0.404 0.415 0.347 0.307 0.351 0.318 0.323 0.326 0.391 0.387
75 75 0.542 0.508 0.595 0.457 0.524 0.525 0.562 0.555 0.557 0.653 0.654
75 125 0.601 0.59 0.673 0.562 0.619 0.641 0.649 0.647 0.646 0.718 0.712
100 25 0.432 0.405 0.42 0.345 0.308 0.348 0.313 0.325 0.326 0.394 0.4
100 75 0.553 0.53 0.602 0.481 0.546 0.531 0.561 0.558 0.558 0.656 0.657
100 125 0.61 0.6 0.68 0.563 0.628 0.645 0.648 0.646 0.648 0.711 0.71
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A.2 Jackknife- and Bootstrap-Based Bias Correction

In this section, we propose to use our framework to construct bias-corrected estimators in time

series and panel data settings. Consider the linear time series model7

yt = α+ β′xt + εt, t = 1, . . . , T,

which we transform, as in the main text, to obtain {wj , zj}Tj=1. Let β̂ be the OLS estimator and

β̂(−ℓ) the OLS estimator after leaving out {wℓ, zℓ} from the sample. We can then construct a JN

bias corrected estimator on the rotated space of the variables by following the standard prescription

(see Shao and Tu, 1996),

β̂∗JN = β̂ − T − 1

T

T∑
t=1

(
β̂(−j) − β̂

)
. (A.1)

We can generalize this bias correction by adding triangular weights {ωj,T }Tj=1 which satisfy
∑T

j=1 ωj,T =

1 for all T ,

β̂∗JN,ω = β̂ − T − 1

T

T∑
t=1

ωj,T

(
β̂(−j) − β̂

)
. (A.2)

In our simulation experiments below, we choose ωj,T = (z′j(X
′X)zj)

−ζT where ζT = T 1/3. Fi-

nally, since the (instantaneous) jackknife can be interpreted as a first-order approximation to the

bootstrap, it is natural to also consider a bootstrap-based bias correction. Since we work with

the rotated data, which are heteroskedastic in general, we utilize the pairs bootstrap by resam-

pling (with replacement) from {wj , zj}Tj=1.
8 Let {w∗

j,b, z
∗
j,b}Tj=1 be the bth bootstrap sample with

corresponding OLS estimator β̂∗b . Then,

β̂∗boot = 2β̂ − 1

B

B∑
b=1

β̂∗b . (A.3)

To assess the properties of these bias-corrected estimators, we consider two simulation designs

featuring data generating processes which are well known to produce severely biased OLS estimates.

7We can follow the same steps as below in the panel data setting. We focus on the case where N = 1 for notational
simplicity.

8See Kirch and Politis (2011) for an alternative bootstrap procedure relying on the DFT.
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The first design is an autoregression of order one,

yt = βyt−1 + εt,

where εt ∼iid N (0, 1−β2) and we focus on values of β near unity.9 The second design is a predictive

regression model,

yt = βxt−1 + εy,t

xt = ϕxt−1 + εx,t,

where (εy,t, εx,t) are multivariate Gaussian random variables with variance matrix equal to

 1 ρ
√
0.1

ρ
√
0.1 0.1

 .
In the predictive regression model, we generate data under the null hypothesis that β = 0 (see,

e.g., Stambaugh, 1999; Campbell and Yogo, 2006).

For all simulations, we consider sample sizes of T ∈ {50, 100, 200} and report average and

median bias along with the mean-square error (MSE). Initial conditions are set equal to zero and

there is a burn-in period of 100 observations. All results are based on 5,000 simulations.

We begin with the AR(1) model. Following common practice, we consider two specifications

for the deterministic component. The first includes just a constant in the OLS estimation of the

autoregressive parameter whereas the second includes both a constant and a linear time trend. We

consider values of β ∈ {0.3, 0.9, 0.95, 0.99}. We include β = 0.3 in the specification with a constant

only to show how the bias-correction procedures perform when the OLS estimator has little bias.10

The results are presented in Table A.9. The OLS estimator of β exhibits a strong downward

bias in small samples and as β approaches unity. As documented in the existing literature, the

downward bias is exacerbated when a linear time trend is included in the estimation. For T = 100

and β = 0.99 in the specification with a time trend, for example, the mean and the median bias

of the OLS estimator is −0.092 and −0.081, respectively. The bias of the OLS estimator is greatly

9All results are robust to using standard Gaussian innovations rather than εt ∼iid N (0, 1− β2).
10We do not report results for β = 0.3 in the second specification because it is unlikely that a linear time trend

will be included in the model when the underlying process is strongly mean reverting.
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reduced using our jackknife and bootstrap bias-correction procedures. The JN method effectively

eliminates the downward bias for T > 50 but this comes at the cost of increased variance and

MSE. The weighted JN also manages to materially reduce the downward bias of the OLS estimator

but without elevating the variability of the bias-adjusted estimate. As a result, the MSE for the

weighted JN procedure is substantially below the MSE of the OLS estimator for these higher values

of β. The best performing method is the bootstrap on the rotated space of the data. This method

almost fully corrects the bias of the OLS estimator for T = 100 and T = 200 with an MSE that is

materially lower (often twice as low) than that of OLS. This correction can be of great importance

for computing accurate half-lives, impulse responses, and for long-horizon forecasting.

We now move on to the predictive regression model. In this setting, the OLS bias rises as a

function of both ϕ and |ρ|. As such, we consider ϕ ∈ {0.9, 0.95, 0.99} and ρ ∈ {0, 0.7,−0.95}.

The value of ρ = −0.95 mimics the properties of equity return predictive regressions when the

regressor is the dividend yield or dividend-price ratio (e.g., Campbell and Yogo, 2006). In this case,

it is known that the OLS estimator of β is upwardly biased. In contrast, when ρ = 0.7, the OLS

estimator will be downward biased. Finally, we include the case of ρ = 0 to assess the robustness

properties of the bias correction when the bias is small in magnitude.

Table A.10 reports the results for the predictive regression model as we vary T , ϕ and ρ. When

the degree of endogeneity is large (ρ = −0.95 or 0.7), the OLS estimator is characterized by a large

bias which tends to increase as the persistence parameter ϕ approaches one. The jackknife and

bootstrap methods prove to be very effective in reducing this bias which becomes rather negligible

for the larger sample sizes. While the JN method achieves this bias reduction at the expense of

increased variability (reflected in its larger MSE), the weighted JN and, especially, the bootstrap

bias-correction methods have a MSE that is lower than that of OLS. For example, the reduction of

MSE of the bootstrap relative to OLS is over 30% for the empirically relevant case of T = 200 and

ϕ = 0.99. The corresponding mean (median) bias in this case is 0.074 (0.059) for the OLS estimator

and 0.005 (−0.005) for the bootstrap-based bias correction. The performance of the jackknife and

bootstrap methods remains satisfactory even when bias correction is unnecessary which is the case

of ρ = 0. We should note that the proposed methods can also straightforwardly accommodate

multiple predictors with varying degrees of persistence – a setting that cannot be readily handled

by many of the existing methods.
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Table A.9. Jackknife Bias Correction of AR(1). This table presents mean and median bias, along with the (scaled) mean-square error of four different
estimators of the autoregressive coefficient in an AR(1) model: (1) the OLS estimator; the jackknife bias-corrected estimator as in equation (A.1); (3) the weighted
jackknife bias-corrected estimator as in equation (A.2); the bootstrap-based bias corrected estimator as in equation (A.3). The top panel reports results for
estimators with only a constant included as the deterministic term whereas the bottom panel reports results when both a constant and a linear time trend are
included. All results are based on 5,000 simulations.

Deterministic Component: Constant Only

OLS JN Weighted JN Bootstrap

Mean Med. MSE Mean Med. MSE Mean Med. MSE Mean Med. MSE
T β Bias Bias ×100 Bias Bias ×100 Bias Bias ×100 Bias Bias ×100

50 0.30 -0.0381 -0.0313 2.0052 0.0048 0.0075 2.3333 -0.0113 -0.0074 2.1331 -0.0067 -0.0017 2.1481
50 0.90 -0.0819 -0.0661 1.5577 0.0263 0.0202 2.0989 -0.0195 -0.0115 1.3020 -0.0097 0.0012 1.2155
50 0.95 -0.0876 -0.0705 1.5079 0.0299 0.0200 2.0872 -0.0232 -0.0168 1.1567 -0.0114 -0.0006 1.0692
50 0.99 -0.0979 -0.0815 1.6238 0.0299 0.0244 2.1839 -0.0322 -0.0237 1.1409 -0.0185 -0.0065 1.0271
100 0.30 -0.0192 -0.0172 0.9219 0.0028 0.0043 0.9973 -0.0038 -0.0023 0.9573 -0.0021 -0.0001 0.9586
100 0.90 -0.0389 -0.0297 0.4647 0.0137 0.0151 0.5614 -0.0034 0.0024 0.4126 -0.0007 0.0070 0.3840
100 0.95 -0.0431 -0.0340 0.4389 0.0164 0.0132 0.5735 -0.0046 -0.0000 0.3654 -0.0016 0.0051 0.3275
100 0.99 -0.0499 -0.0397 0.4492 0.0182 0.0141 0.6377 -0.0090 -0.0052 0.3467 -0.0056 0.0009 0.2925
200 0.30 -0.0104 -0.0100 0.4800 0.0007 0.0017 0.4988 -0.0019 -0.0009 0.4905 -0.0015 -0.0009 0.4900
200 0.90 -0.0189 -0.0143 0.1594 0.0063 0.0092 0.1711 0.0001 0.0037 0.1469 0.0006 0.0052 0.1380
200 0.95 -0.0200 -0.0156 0.1241 0.0082 0.0093 0.1471 0.0008 0.0037 0.1119 0.0010 0.0050 0.0987
200 0.99 -0.0242 -0.0189 0.1157 0.0100 0.0069 0.1678 -0.0009 -0.0003 0.0995 -0.0011 0.0015 0.0789

Deterministic Component: Constant and Linear Time Trend

OLS JN Weighted JN Bootstrap

Mean Med. MSE Mean Med. MSE Mean Med. MSE Mean Med. MSE
T β Bias Bias ×100 Bias Bias ×100 Bias Bias ×100 Bias Bias ×100

50 0.90 -0.1393 -0.1231 3.1341 0.0336 0.0095 4.1863 -0.0557 -0.0468 2.1418 -0.0305 -0.0196 1.9550
50 0.95 -0.1554 -0.1376 3.4747 0.0263 -0.0009 4.3289 -0.0699 -0.0638 2.2084 -0.0422 -0.0320 1.9366
50 0.99 -0.1795 -0.1624 4.2903 0.0141 -0.0154 4.6869 -0.0914 -0.0882 2.5973 -0.0612 -0.0517 2.1888
100 0.90 -0.0641 -0.0550 0.8064 0.0189 0.0116 1.0698 -0.0158 -0.0120 0.6087 -0.0070 -0.0015 0.5537
100 0.95 -0.0741 -0.0646 0.8919 0.0205 0.0048 1.1826 -0.0213 -0.0191 0.6071 -0.0114 -0.0055 0.5275
100 0.99 -0.0916 -0.0810 1.1588 0.0140 -0.0022 1.3474 -0.0355 -0.0341 0.6939 -0.0248 -0.0185 0.5858
200 0.90 -0.0303 -0.0249 0.2397 0.0079 0.0078 0.2710 -0.0047 -0.0010 0.1959 -0.0020 0.0025 0.1790
200 0.95 -0.0343 -0.0292 0.2250 0.0096 0.0063 0.2698 -0.0058 -0.0035 0.1639 -0.0032 0.0004 0.1425
200 0.99 -0.0426 -0.0372 0.2644 0.0112 0.0030 0.3406 -0.0102 -0.0107 0.1699 -0.0074 -0.0045 0.1378
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Table A.10. Jackknife Bias Correction of the Predictive Regression Model. This table presents mean and median bias, along with the (scaled)
mean-square error of four different estimators of the slope coefficient in the standard predictive regression model: (1) the OLS estimator; the jackknife bias-corrected
estimator as in equation (A.1); (3) the weighted jackknife bias-corrected estimator as in equation (A.2); the bootstrap-based bias corrected estimator as in equation
(A.3). The three panels report results for different degrees of endogeneity: ρ = 0.7, ρ = 0, and ρ = −0.95, respectively. All results are based on 5,000 simulations.

Degree of Endogeneity: ρ = 0.7

OLS JN Weighted JN Bootstrap

Mean Med. MSE Mean Med. MSE Mean Med. MSE Mean Med. MSE
T β Bias Bias ×100 Bias Bias ×100 Bias Bias ×100 Bias Bias ×100

50 0.90 -0.1809 -0.1424 10.8375 0.0576 0.0497 14.9891 -0.0437 -0.0229 9.9847 -0.0210 0.0075 9.4721
50 0.95 -0.2007 -0.1572 10.7000 0.0567 0.0446 15.4931 -0.0589 -0.0369 9.4868 -0.0326 -0.0018 8.8782
50 0.99 -0.2170 -0.1718 10.3651 0.0648 0.0500 15.4823 -0.0724 -0.0447 8.5658 -0.0405 -0.0036 7.9525
100 0.90 -0.0874 -0.0669 3.6264 0.0313 0.0359 4.4449 -0.0073 0.0076 3.4883 -0.0018 0.0172 3.2766
100 0.95 -0.0954 -0.0721 3.0379 0.0340 0.0317 4.0741 -0.0113 0.0019 2.8437 -0.0046 0.0143 2.5997
100 0.99 -0.1090 -0.0823 2.8909 0.0415 0.0353 4.4934 -0.0188 -0.0050 2.6276 -0.0115 0.0079 2.2918
200 0.90 -0.0387 -0.0287 1.3447 0.0184 0.0233 1.4940 0.0044 0.0115 1.3358 0.0053 0.0135 1.2754
200 0.95 -0.0455 -0.0345 0.9635 0.0175 0.0204 1.1624 0.0008 0.0082 0.9404 0.0011 0.0113 0.8564
200 0.99 -0.0528 -0.0409 0.7231 0.0228 0.0190 1.1183 -0.0013 0.0028 0.7162 -0.0019 0.0063 0.5864

Degree of Endogeneity: ρ = 0

50 0.90 -0.0070 -0.0081 7.3627 -0.0032 -0.0003 10.3906 -0.0047 -0.0024 8.2579 -0.0058 -0.0051 8.0228
50 0.95 -0.0026 -0.0022 5.9564 -0.0010 0.0019 9.9525 -0.0020 -0.0011 7.0244 -0.0023 -0.0018 6.7370
50 0.99 -0.0015 -0.0021 4.5649 -0.0062 -0.0081 9.3018 -0.0038 -0.0044 5.6666 -0.0035 -0.0048 5.4618
100 0.90 -0.0006 -0.0002 2.6811 0.0017 -0.0011 3.3358 0.0009 -0.0015 2.9374 0.0006 -0.0012 2.8337
100 0.95 -0.0004 0.0007 1.8085 -0.0008 0.0016 2.6933 -0.0006 0.0027 2.1411 -0.0006 0.0019 2.0061
100 0.99 0.0020 0.0019 1.1922 0.0008 0.0013 2.1938 0.0014 0.0014 1.5176 0.0015 0.0016 1.3871
200 0.90 -0.0021 -0.0005 1.0713 -0.0018 -0.0006 1.2206 -0.0019 -0.0004 1.1484 -0.0021 0.0002 1.1145
200 0.95 -0.0009 -0.0023 0.6916 -0.0019 -0.0021 0.8864 -0.0016 -0.0018 0.7898 -0.0014 -0.0017 0.7435
200 0.99 0.0001 -0.0004 0.3526 0.0000 0.0011 0.6362 0.0001 -0.0001 0.4779 0.0001 0.0001 0.4165

Degree of Endogeneity: ρ = −0.95

50 0.90 0.2416 0.1901 14.2368 -0.0796 -0.0667 19.4009 0.0567 0.0252 12.1099 0.0264 -0.0144 11.3643
50 0.95 0.2720 0.2243 14.7666 -0.0824 -0.0482 20.6774 0.0769 0.0548 11.6859 0.0415 0.0080 10.7064
50 0.99 0.2962 0.2420 15.4953 -0.0872 -0.0715 20.9835 0.0988 0.0719 11.2862 0.0560 0.0168 10.1439
100 0.90 0.1188 0.0908 4.6373 -0.0399 -0.0465 5.4714 0.0114 -0.0071 4.1236 0.0033 -0.0200 3.8671
100 0.95 0.1275 0.1004 3.9868 -0.0520 -0.0430 5.4968 0.0116 -0.0031 3.4299 0.0029 -0.0195 3.0496
100 0.99 0.1468 0.1207 3.9699 -0.0580 -0.0442 5.5855 0.0238 0.0145 3.0160 0.0136 -0.0033 2.5915
200 0.90 0.0594 0.0462 1.5888 -0.0162 -0.0245 1.6301 0.0022 -0.0089 1.4315 0.0004 -0.0114 1.3541
200 0.95 0.0658 0.0513 1.2940 -0.0186 -0.0202 1.4726 0.0036 -0.0047 1.1539 0.0029 -0.0092 1.0242
200 0.99 0.0740 0.0590 1.0868 -0.0291 -0.0195 1.5608 0.0036 0.0018 0.9475 0.0047 -0.0050 0.7458
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A.3 Proofs

Before proceeding to the main proof, we introduce the following lemmas which we rely on repeatedly

in the proof of Theorem 1.

Lemma A.1. Let ζj = ψ′
jιT . Then,

(ii) ζj > 0;

(ii)
ζj√
T
→ ζ̄j =

2
√
2

π(2j−1) ;

(iii)
∑T

j=1 ζj = O
(
log (T )

√
T
)
;

(iv)
∑T

j=1 ζ
m
j = O

(
Tm/2

)
for m ∈ N with m ≥ 2 .

Proof of Lemma A.1. For (i), we have that

ζj =
2√

2T + 1

T∑
t=1

sin

(
πt(2j − 1)

2T + 1

)
=

−1√
2T + 1

csc

(
π(2j − 1)

4T + 2

)
sin

(
π(j − 1− T )

2T + 1

)
=

−1√
2T + 1

tan

(
π(j + T )

2T + 1

)
.

As j ∈ {1, ..., T}, we know π(j+T )
2T+1 ∈ (π2 , π) which in turn implies tan

(
π(j+T )
2T+1

)
< 0 as tan(x) < 0

∀ x ∈ (π2 + πa, π + πa) and all a ∈ Z, the result follows.

For (ii), by a series expansion at T = ∞ of ζj we have that

ζj =
2
√
2
√
T

π(2j − 1)
+O(T−1/2)

and the result follows. For (iii), note that from the above we have that

ζj =
−1√
2T + 1

tan

(
πj

2T + 1
+

πT

2T + 1

)
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so that

∑
j

ζj =

 −1

2
√
2T + 1

T∑
j=1

tan

(
πj

2T + 1
+

πT

2T + 1

)
=

 −T
2
√
2T + 1

1

T

T∑
j=1

tan

(
πTj/T

2T + 1
+

πT

2T + 1

)
≤

(
−T

2
√
2T + 1

∫ 1

1/T
tan

(
πT (j + 1)

2T + 1

)
dj

)
[1 +O(T−1)].

Evaluating the integral, we obtain

∫ 1

1/T
tan

(
πT (j + 1)

2T + 1

)
dj = −2T + 1

πT
ln

(
cos

(
πT (j + 1)

2T + 1

))
|11/T

= −2T + 1

πT

[
ln

(
cos

(
2Tπ

2T + 1

))
− ln

(
cos

(
Tπ(1 + T−1)

2T + 1

))]

= −2T + 1

πT
ln

 cos
(

2Tπ
2T+1

)
cos
(
Tπ(1+T−1)

2T+1

)
 .

From a series expansion at T = ∞, we then have that

∫ 1

1/T
tan

(
πT (j + 1)

2T + 1

)
dj = −2T + 1

πT
ln

(
4

π
T +

2

π
−O(T−1)

)
= −2T + 1

πT
O(ln (T ))

= −O(ln (T ))

and the result follows. Finally, for (iv), we have that

T∑
j=1

ζ2pi =
T∑
j=1

(
1√

2T + 1

T∑
t=1

sin

(
πt(2j − 1)

2T + 1

))2p

≲ T−p
T∑
j=1

[
−1

2
csc

(
π(2j − 1)

4T + 2

)(
sin(πj) + sin

(
π(j − 1− T )

2T + 1

))]2p
.

Since 0 < csc2p(π(2j−1)
4T+2 ) <∞ ∀ j ∈ {1, .., T} and sin(πj) = 0 ∀ j ∈ Z,

T∑
j=1

ζ2pi ≲ T−p
T∑
j=1

[
−1

2
csc

(
π(2j − 1)

4T + 2

)
sin

(
π(j − 1− T )

2T + 1

)]2p
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= T−p
T∑
j=1

tan2p
(
π(j + T )

2T + 1

)

= T−p
T∑
j=1

tan2p
(

πj

2T + 1

)
.

By Theorem 2 of Shevelev and Moses (2014), we have

T∑
j=1

tan2p
(

πj

2T + 1

)
=

22p−1(22p−1 − 1)

(2p)!
|B2p|T 2p,

where B2p is a Bernoulli number and so the result holds for even m. For odd values of m, we can

use the Cauchy–Schwarz inequality and the result for even m to obtain the general result.

Lemma A.2. Let Assumptions 1 and 2 hold. Then,
√

T
N

∥∥µ̂1−µ1
∥∥ = Op (1) and

√
T
N

∥∥µ̂2−µ2
∥∥ =

Op (1). Let µ̂e be the N×1 vector with ℓth element equal to µ̂e is
1
T

∑T
t=1 εit, then

√
T
N

∥∥µ̂e∥∥ = Op (1).

Proof of Lemma A.2. For the first result, note that

T

N
E
[∥∥µ̂1 − µ1

∥∥2] = T

N

N∑
i=1

E
[
(µ̂1,i − µ1,i)

2
]

=
1

N

N∑
i=1

E

( 1√
T

T∑
t=1

(x1,it − E [x1,it])

)2


=
1

N

N∑
i=1

V

(
1√
T

T∑
t=1

x1,it

)
,

so that if limN,T→∞
1
N

∑N
i=1V

(
1√
T

∑T
t=1 xit

)
≲ 1, then by Markov’s inequality we have that√

T
N

∥∥µ̂1 − µ1
∥∥ = Op (1). The other results follow by similar steps.

We can now proceed to the proof of Theorem 1.

Proof of Theorem 1. By equation (22) and Assumption 1, we need only to show that

(NT )−1
T∑
j=1

V̂ jM̂−1
j ûj ûj′M̂−1

j V̂ j′ = γ1 + op(1), (A.4)
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where M̂−1
j = (IN − Pjj)

−1. First, note that using the results Lemma A.1 it can be shown that

∣∣∣(NT )−1
T∑
j=1

V̂ jM̂−1
j ûj ûj′M̂−1

j V̂ j′ − (NT )−1
T∑
j=1

V̂ j ûj ûj′V̂ j′
∣∣∣ = op(1), (A.5)

since for sufficiently large j,
∣∣M̂−1

j − In
∣∣ = op(1). Then, we have that

∣∣∣(NT )−1
T∑
j=1

V̂ j ûj ûj′V̂ j′ − γ1

∣∣∣ ≤ R1 +R2 +R3, (A.6)

where

R1 =

∣∣∣∣∣(NT )−1
T∑
j=1

V̂ j ûj ûj′V̂ j′ − (NT )−1
T∑
j=1

Ṽ jujuj′Ṽ j′

∣∣∣∣∣, (A.7)

R2 =

∣∣∣∣∣(NT )−1
T∑
j=1

Ṽ jujuj′Ṽ j′ − (NT )−1
T∑
j=1

E
[
Ṽ jujuj′Ṽ j′

] ∣∣∣∣∣, (A.8)

R3 =

∣∣∣∣∣(NT )−1
T∑
j=1

E
[
Ṽ jujuj′Ṽ j′

]
− γ1

∣∣∣∣∣. (A.9)

Thus, it is sufficient to show that Ri = op(1) for i ∈ {1, 2, 3}. The results for R2 and R3 follow by

Assumption 2. To show R1, first note that R1 =
∑9

ℓ=1R1ℓ, where

R11 =
1

NT

T∑
j=1

δ′V,jδu,jδ
′
u,jδV,j ,

R12 =
2

NT

T∑
j=1

δ′V,jδu,ju
′
jδV,j ,

R13 =
2

NT

T∑
j=1

δ′V,jδu,jδ
′
u,j Ṽ

j ,

R14 =
2

NT

T∑
j=1

δ′V,jδu,ju
′
j Ṽ

j ,

R15 =
1

NT

T∑
j=1

δ′V,juju
′
jδV,j ,

R16 =
2

NT

T∑
j=1

δ′V,jujδ
′
u,j Ṽ

j ,

R17 =
2

NT

T∑
j=1

δ′V,juju
′
j Ṽ

j ,
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R18 =
1

NT

T∑
j=1

Ṽ j′δu,jδ
′
u,j Ṽ

j ,

R19 =
2

NT

T∑
j=1

Ṽ j′δu,ju
′
j Ṽ

j .

Here,

δu,j = Z̃j1

(
β1 − β̂1

)
+ Z̃j2

(
β2 − β̂2

)
+ ζjΓu,

Γu = (µ̂1 − µ1)
(
β̂1 − β1

)
+ (µ̂2 − µ2)

(
β̂2 − β2

)
− µ̂e,

δV,j = ζjΓV + Z̃j2(λ− λ̂),

ΓV = (µ1 − µ̂1) + (µ2 − µ̂2)(λ̂− λ) + (µ2 − µ̂2)λ,

where Z̃j1 = Zj1 − ζjµ1 and Zj1 = (z1,1j , . . . , z1,Nj)
′ (and similarly for Z̃j2). We can show that R11,

. . . , R19 are op(1) repeatedly using elementary bounds and Assumption 2. To see this, consider

R11. We have

R11 =
1

NT

T∑
j=1

δ′V,jδu,jδ
′
u,jδV,j

≲
1

NT

T∑
j=1

∣∣∣ζjΓ′
V Z̃

j
1

(
β1 − β̂1

) ∣∣∣2 + 1

NT

T∑
j=1

∣∣∣ζjΓ′
V Z̃

j
2

(
β2 − β̂2

) ∣∣∣
+

1

NT

T∑
j=1

∣∣∣ζ2j Γ′
V Γu

∣∣∣2 + 1

NT

T∑
j=1

∣∣∣ (λ− λ̂
)′
Z̃j′2 Z̃

j
1

(
β1 − β̂1

) ∣∣∣2
+

1

NT

T∑
j=1

∣∣∣ (λ− λ̂
)′
Z̃j′2 Z̃

j
2

(
β2 − β̂2

) ∣∣∣2 + 1

NT

T∑
j=1

∣∣∣ζj (λ− λ̂
)′
Z̃j′2 Γu

∣∣∣2.
The first term satisfies,

1

NT

T∑
j=1

∣∣∣ζjΓ′
V Z̃

j
1

(
β1 − β̂1

) ∣∣∣2 ≤ NT
∣∣β1 − β̂1

∣∣2 × T

N

∥∥ΓV ∥∥2 × 1

NT 3

T∑
j=1

ζ2j
∥∥Z̃j1∥∥2.

The first two factors are Op(1) by Assumption 1 and Lemma A.2 and the last factor is Op(T
−2)

using Lemma A.1. Thus, the first term is op(1). The second term follows by similar steps. The

39



third term is

1

NT

T∑
j=1

∣∣∣ζ2j Γ′
V Γu

∣∣∣2 ≤ T

N

∥∥ΓV ∥∥2 × T

N

∥∥Γu∥∥2 × N

T 3

T∑
j=1

ζ4j .

The first two factors are Op(1) by Assumption 1 and Lemma A.2 and the last factor is Op(NT
−1)

using Lemma A.1. Thus, the third term is op(1). The fourth term is,

1

NT

T∑
j=1

∣∣∣ (λ− λ̂
)′
Z̃j′2 Z̃

j
1

(
β1 − β̂1

) ∣∣∣2 ≤ NT
∥∥λ− λ̂

∥∥2 ×NT
∣∣β1 − β̂1

∣∣2 × 1

N3T 3

T∑
j=1

∥∥Z̃j′2 Z̃j1∥∥2.
The first two factors are Op(1) by Assumption 1 and Lemma A.2 and the last factor is Op(N

−1T−2).

Thus, the fourth term is op(1). The fifth term follows by similar steps. Finally, the sixth term follows

by similar steps as for the first and second terms. The bounds for the terms R12, . . . , R19 can then

be obtained by similar steps.
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