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Abstract 

In contrast with findings in climate science, economists often treat losses from natural disasters as 

statistically independent of one another. To better incorporate scientific insights into economic research, 

we introduce a methodology to identify spatial and temporal clusters in datasets on losses from natural 

disasters. We find that expected damage increases non-linearly with relative cluster size. Additionally, 

county-level damage is correlated with the damage experienced by other counties in the same cluster. 

Our findings suggest that accounting for clustering allows for a more complete understanding of the 

economic consequences of natural disasters. 
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In September 2024, Hurricane Helene struck the United States, with Federal Emergency

Management Agency (FEMA) disaster declarations in five different states (Alabama, Florida,

Georgia, North Carolina, and South Carolina). The disaster was estimated to cost $47.5

billion in damage by CoreLogic. Mere weeks later, Hurricane Milton also hit Florida.1 The

wide-reaching footprint of Hurricane Helene beckons the question of whether Florida counties

were affected worse by Helene since their neighboring counties were also affected by Helene.

Additionally, it is possible that Florida counties may have been more adversely affected by

Hurricane Milton, since Helene had occurred in the recent past. This paper introduces a

methodology to account for clustering in natural disaster losses, which can be used to address

such questions.

In previous work, most economic research on natural disasters involved using county-

by-month level data to run panel regressions of different economic outcomes on disaster

damages.2 The regressions often include county and time fixed effects, clustering standard

errors at the county-level, which requires assuming the error terms are uncorrelated across

counties. At the same time, the climate science literature finds consistent evidence of cluster-

ing in natural disaster occurrences, where disasters tend to be concentrated either in certain

regions or in short windows of time.3 In this sense, clustering of disaster damages could be a

challenge to this assumption of uncorrelated error terms. This paper integrates the concept

of natural disaster clustering to the economics literature.

There are numerous reasons why clustering could have important implications for eco-

nomic research. For example, if neighboring counties use the same resources to aid in re-

covery, these resources may be strained if all neighboring counties are affected by contem-

1CNN Business: As Hurricane Milton threatens the US, Helene could cost property owners more than
$47 billion.

2See, for example, Gallagher and Hartley (2017); Bleemer and van der Klaauw (2019); Billings et al.
(2022); Gallagher et al. (2023); Kruttli et al. (2023); Correa et al. (2022); Blickle et al. (2021); Sastry (2021);
Blickle and Santos (2022); Issler et al. (2021); Sastry et al. (2023); Deryugina (2017); Acharya et al. (2022);
Tran et al. (2020); Bakkensen and Barrage (2018)).

3See, for example, Wheater et al. (2005); Li et al. (2016); Fu et al. (2023); Merz et al. (2021); Leonard
et al. (2014); Zscheischler et al. (2018, 2020); Woodruff et al. (2013); Marsooli et al. (2019); Sarhadi et al.
(2018)).
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poraneous disasters. Additionally, counties may be less prepared for a disaster in the wake

of another recent disaster. To allow researchers to consider these effects, this paper develops

algorithmic approaches to identify spatial clusters (i.e., clusters across counties), temporal

clusters (i.e., clusters across time), and spatiotemporal clusters (i.e., clusters across counties

and time). To understand the implications of accounting for natural disaster clustering, we

compare data on natural disaster damages aggregated to the cluster-level to data on natural

disaster damages aggregated to the county-level.

The analyses reveal two key facts about clusters in natural disaster losses. First, we find a

positive relationship between the relative size of a disaster cluster (measured by the number

of counties contained in the cluster) and the amount of damage, and this trend is nonlinear.

In particular, the average logged damage for all clusters in the 60th percentile and below is

about 10 ($22 million). This is because there is little variation in cluster size at this point

in the distribution, with the median cluster having a size of one county. However, at around

the 60th percentile of cluster size, there is a sharp increase in disaster damages, and logged

damages for the 95th percentile bin reaches about 15 logged damages ($3.3 billion). This

suggests that an increase in relative size predicts a sharp increase in the expected level of

damage, especially among very large clusters. Similarly, the distribution of the natural log of

damages is more positive when examining cluster-level damages than county-level damages.

At the same time, certain hazard types appear more severe when using a clustered approach

than when using county-by-month level data.

We also find that county-level damages tend to be larger when the county is part of a

cluster that experiences more damage. In particular, a county typically experiences about

0.25% more disaster damage if all the other counties in the same disaster cluster experience

an additional 1% of damage. While not causal, this result could be consistent with counties

facing greater damages from disasters when their neighbors face the same disasters due to

strained resources. We also find these results are especially acute for certain hazard types,

such as droughts, floods, hurricanes and wildfires.
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To reiterate, this paper introduces a methodology to incorporate clustering of natural

disasters into empirical economic research. We provide an approach to identify natural

disaster clusters. We show that incorporating clustering into analyses increases the severity

of the most severe natural disasters, as well as the severity of hazard types that tend to occur

in large clusters. We also confirm that county-level disaster damages are higher when the

rest of the cluster also experiences higher damages. These findings indicate that clustering

could be important for assessing economic outcomes following disasters.

In the first section, we describe the data sources used and define the clustering method-

ology. In the second section, we examine data on cluster-level damages in comparison to

data on county-level damages, and test how county-level damages are correlated to damage

experienced by other counties in the same cluster. In the third and final section, we conclude.

1 Data and Methodology

1.1 Data

The primary data set used in our analysis is the Spatial Hazard Events and Losses Database

for the United States (SHELDUS). SHELDUS provides information on the incidence of

natural disasters at the county-by-hazard type-by-month level from 2000 until 2020 across

3,249 distinct counties in the United States.4 While we focus on SHELDUS as it is the most

widely used data set on natural disasters in economic research, this methodology could be

easily adapted to other data sets on natural disaster losses.

These data include the type of natural disaster, categorized into 18 distinct hazard cate-

gories, as well as damages (divided into property and crop damages), fatalities, and injuries

associated with the disaster. For control variables, we use Quarterly Census of Employment

and Wages (QCEW) county-level dataset from the Bureau of Labor Statistics on wages,

4While SHELDUS also provides data at the natural disaster level, we use the county-by-disaster-type-
by-month panel as it is the format most commonly used by researchers.
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annual county-level datasets on population from the Census Bureau’s American Commu-

nity Survey (ACS) and county GDP from the Bureau of Economic Analysis for the period

between 2000 and 2020.

1.2 Methodology

Most research designs that rely on a county-by-time level panel require assuming that the

error terms are uncorrelated across county and time.5 However, the climate science litera-

ture presents several important challenges to such an assumption.6 Some counties may be

unconditionally more likely to experience certain types of disasters. For instance, Florida

counties experience more hurricanes than average, and California counties experience more

wildfires than average. Additionally, if a county’s neighbor experiences a disaster, this may

raise the probability that the county itself experiences a disaster at the same time. If both

counties are hit at the same time, this would likely strain the economic resources of each

individual county more. The climate science literature also suggests that if a disaster lasts

longer, this could exacerbate adverse economic consequences of the disaster. These chal-

lenges to the standard assumptions motivate developing a methodology to algorithmically

identify common patterns of natural disasters, so that we can properly account for the cor-

relation between disasters across space and time. We thus propose the following approaches

for identifying common patterns of disasters in county-time level data.

1.2.1 Spatial Clustering

Consider a given county i in a given period t. We can define the following function H(cit) as

outputting the set of hazards H i
t = {hm, ..., hn} where hm denotes a hazard experienced by

county i in time t. For example, the event experienced by Harris County, Texas in August

2017 (when Hurricane Harvey took place) can be described as H(cHarris, TX
2017m8 ) = {hurricane,

5A detailed literature review on natural disasters in economics is provided in Internet Appendix IA.A.
6A detailed literature review on natural disasters in climate science is provided in Internet Appendix

IA.B.
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flooding, tornado, thunderstorm}. Trivially, if cit is not experiencing any hazards, this set

would be the empty set.

We identify two counties (i, j) as having a proximate common climate pattern in time t

if the counties, i and j, are geographically contiguous and they have at least one common

hazard:

PCCP (i, j) =1 if counties i and j are adjacent and

H i
t ∩Hj

t ̸= ∅.

where H i
t and Hj

t are defined as above. Considering the example of Harris County, TX, in

August 2017, in that same month neighboring Montgomery County, TX, experienced hur-

ricane, wind, and flooding. Since Harris and Montgomery are adjacent, and HHarris, TX
2017m8 ∩

HMontgomery, TX
2017m8 = {hurricane, flooding} ≠ ∅, we would say that PCCP (Harris, TX; Mont-

gomery, TX) = 1.

We define two counties (ci, cj) as sharing a common climate pattern if there is a “path,”

with distance n counties, from county i to county j where the intermediate counties are

(pairwise) proximate common:

CCP (ci, cj) =1 if ∃ a set of counties, {k1, · · · , kn} such that

PCCP (ci, k1) = 1 and

PCCP (k1, k2) = 1 and

· · ·

PCCP (kn, c
j) = 1.

A spatial cluster is defined as the largest possible set of counties in time t that corresponds

to a common climate pattern. Looking at Figure 1, we can see the entire spatial cluster

associated with Harris County, Texas in August 2017 (i.e., the spatial cluster associated
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with Hurricane Harvey), following this inductive process until no more proximate common

climate patterns can be identified.

1.2.2 Temporal and Spatiotemporal Clustering

Much of the conceptual framework developed for identifying spatial clusters can be easily

mapped to temporal clustering. We can identify a given county as having a temporally

persistent climate pattern if it experiences the same climate hazard in at least two consecutive

time periods:

TPCP (i, t) = 1 if H i
t ∩H i

t+1. ̸= ∅

This concept can be applied to combine spatial clusters in two consecutive time periods

if at least one county experiences a temporally persistent climate pattern in both clusters.

When this link can be established, the most expansive possible set of all of the counties

experiencing proximate common and temporally persistent climate patterns is defined as

a spatiotemporal cluster. We provide an extension of the Hurricane Harvey example to a

spatiotemporal cluster in Internet Appendix IA.C. Note that the results in the main text

will focus on spatial clusters, although the Internet Appendix contains analogous results for

spatiotemporal clusters.

This approach is readily implementable in any statistical software such as Stata, Python,

R, or Matlab. When executing the clustering algorithm, we classify the 161,664 county-

months in which a hazard loss occurs to 37,296 spatial clusters and 28,495 spatiotemporal

clusters.

1.3 Summary Statistics

Summary statistics on disasters at the using data at the cluster-level and at the county-level

are displayed in Table 1. Data on the cluster-size, total damages, property damages, crop
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damages, injuries and fatalities are provided. The size of the average cluster is about 4

counties.

The average cluster’s total damage is $17.5 million. On the other hand, the median

total damage is only $23,600, indicating that the distribution is positively skewed.7 The

total damage numbers include both property and crop damages, although property damages

contribute to 90% of the total damage. This could lead to analyses using SHELDUS data

understating hazard types that result in relatively more crop damage than property damage,

such as heat. The table also includes the distributions of injuries and fatalities, which also

show larger average values using clustered approaches. All results in the main text are

based on total damages, although results for specific damage types, injuries and fatalities

are included in Internet Appendix IA.C.8

This section included a description of our new approach to identify clusters of natural

disasters using data on natural disaster damages. In the next section, we will explore cluster-

level disaster damages, to better understand how the choice of whether to examine disasters

using county-level data or cluster-level data could impact the conclusions of researchers.

2 Comparing Cluster- and County-Level Damages

In the previous section, we described the clustering methodology we developed for this

analysis, and introduced summary statistics on the clustered data. In this section, we will

compare the cluster-level data on natural disaster damages with the county-level data on

natural disaster damages. We will also examine whether counties tend to experience greater

disaster damage when they are part of clusters that experience more severe disasters.

7These summary statistics include events in SHELDUS with zero damage recorded, although they look
similar when excluding the zero-damage events.

8Note that by construction, the cluster-level distribution of damages will have more extreme values
than the county-level distribution due to the effect of scaling. For this reason, all analysis in the paper
making comparisons between counties and clusters will use the natural log of damage, to reduce the effects
of outliers. We also include results examining the log of damages, scaled by the respective sample medians
for counties and clusters, as well as by the respective hazard-specific medians for counties and clusters, in
Internet Appendix IA.C.
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2.1 Exploring disaster-level distributions

To visualize the distributions of damage according to the approach used, panel (a) of Figure 2

displays the histogram showing the distribution of logged damages measured at the county-

level, overlaid with the distribution of logged damages at the cluster-level. The right tail of

the cluster-level distribution has substantially more mass than the county-level distribution.9

Internet Appendix IA.C displays a similar histogram with spatiotemporal clusters, as well

as for crop damage and property damage. All appear similar to the result shown in the main

text.

The histograms show that the clusters with the most damage are more extreme than the

counties with the most damage. One potential explanation for this could be that disasters

that cover larger areas tend to create more damage, and examining natural disasters in the

form of a cluster allows you to observe this effect. To directly study whether disasters affect-

ing more counties yield more damage, we study heterogeneity in cluster damages according

to the cluster’s size. Specifically, we sort clusters into percentile bins according to the num-

ber of counties contained in each cluster. Then, within each cluster, we calculate the average

logged-damage. The results are displayed in panel (b) of Figure 2. There is little variation

in disaster damage according to cluster size up until the 60th percentile, averaging about

$22 million. This is primarily because all clusters up until this point only have one county.

However, disaster damage increases non-linearly at this point, eventually reaching average

damage of $3.3 billion at the 95th percentile. This highlights both that the cluster-level

distribution of disaster damages includes some disasters with very large amounts of damage,

and that larger clusters tend to have more disaster damage.

It is also possible that certain hazard types appear less severe using county-level data

than cluster-level data. To assess this possibility, we regress logged damages on hazard type

indicators. Specifically, we study droughts, extreme heat, wildfire, flooding and hurricanes.

9Two-sample Smirnov (1939) equality of distribution tests confirm that these two distributions are sta-
tistically different at the 1% level.
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The results are displayed in Table 2. The constant of this regression can be interpreted as the

average logged damages for all hazard types except the one explored using the hazard type

indicator, after controlling for observables. The coefficient on the hazard type indicator is

the marginal effect of additional damage for the hazard type of interest. For all hazard types

explored, the marginal effect of each hazard type occurring is larger when using cluster-level

data than when using county-level data.10

In this subsection, we showed that there exist important differences between the distri-

butions of county-level data and cluster-level data. In particular, cluster-level data exhibits

greater positive skewness than county-level data, and larger clusters tend to have greater

disaster damage. We also find some evidence that some disaster types appear more severe

using cluster-level data than county-level data. In the next subsection, we will study whether

counties that are part of larger clusters tend to experience greater disaster damage. We will

do this by testing whether county-level disaster damage varies according to disaster damage

experienced by other counties located in the same cluster.

2.2 Relationship Between County-Damage and Cluster-Damage

Distributions using cluster-level data appear more skewed than when using county-level data,

and climate events affecting more counties tend to yield higher damages. One potential ex-

planation for this is that there could be “network effects” of disaster damage. In particular,

it is possible that if a given county experiences a disaster at the same time that nearby coun-

ties face disasters, this could lead to higher disaster damages. This could be due to strained

resources to mitigate the damages, or greater degradation of shared infrastructure between

the counties. It is also possible that these network effects may be especially problematic for

certain disaster types. To test these hypotheses, we implement the following regression:

10Internet Appendix IA.C shows results using injuries, fatalities, property damages and crop damages as
outcome variables.
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log(Damagec,t) = β11c,t[Hazard=j]× log(Damage−c
i,t ) + β21c,t[Hazard=j] (1)

+ β3log(Damage−c
i,t ) + ΓXc,t + ϵc,t,

where log(Damagec,t) is the log of damage of county c, at time t, log(Damage−c
i,t ) is

the log of damage of cluster i (excluding damage for county c) at time t, and 1c[Hazard=j]

are indicator variables equal to one if hazard type j occurs in county c at time t. Xc,t are

county-by-time controls. Specifically, to control for whether larger, or more populated areas,

are more likely to experience severe disaster damage, we control for county GDP, population

and wages. If larger clusters tend to experience more damage, we expect the that β3 > 0.

Additionally, if clustering makes certain hazard types look more severe, then we expect that

β1 > 0.

Results for these regressions are shown in Table 3. In all specifications, the estimate for

β3 is equal to about 0.25, meaning for that a 1% change in cluster-level damage is associated

with a 0.25% increase in county-level damage. Moreover, for all hazard types except for heat,

the estimate for β1 is positive and statistically significant, meaning that these hazard types

appear more severe when clustering is accounted for. One concern is that these results could

be due to county-level characteristics or time trends. To this end, this table also includes

results with county and time fixed effects, which yield the same conclusions.11 Overall, these

results are consistent with a tendency for counties to experience greater disaster damage

when the rest of their cluster also experiences disaster damage, and with some hazard types

appearing more severe when incorporating clustering into an analysis.

In this subsection, we learned that some hazard types look much more severe when using

a clustered approach than a county-level approach. This could indicate that researchers

11Internet Appendix IA.C includes results using property damages, crop damages, injuries and fatalities
as outcome variables, as well as a version of the test controlling for cluster-level observables in addition to
county-level observables.
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have underestimated the threat posed by these disasters by focusing on county-by-month

level data.

3 Conclusion

It is clear that the temporal duration and the spatial footprint of natural disasters influence

the intensity of damages they incur, and that damages from natural disasters tend to be

spatially and temporally clustered. In this paper, we provide a tool for researchers to use

to account for the correlated damages from natural disasters across counties and time. We

find that accounting for clustering results in a more positively skewed distribution than when

using county-level data. We also find that disaster damages in a particular county tend to be

larger when the neighboring counties in its cluster are experiencing greater disaster damage.

As a note of caution, because neighboring counties may have correlated economic funda-

mentals, accounting for clustering presents a challenge when examining the economic impact

of natural disasters. Nevertheless, this analysis provides researchers with a useful tool to

further study how natural disaster clustering can affect economic outcomes following disas-

ters.

Our analyses show that clustering is an important feature of how natural disaster losses

accrue, and this may have important economic consequences. The tendency of natural

disaster damages to cluster may induce correlated economic outcomes in counties hit by the

same disaster cluster, an unexplored source of economic risk. Clustering could also hinder the

process of recovering from natural disasters if shared resources within a relevant time frame

or region are limited. Additionally, the correlated incidence of natural disaster damages

across space and time could present challenges in insuring against natural disasters, leading

to financial stability risks. These conjectures demonstrate the broad economic relevance of

natural disaster clustering, and suggest that failing to take clustering into account may leave

policy makers blind to an important source of risks.
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Figures

Figure 1: Spatial Cluster Containing Harris County, August 2017

This figure illustrates the entire set of counties that are included in the Harris County
August 2017 spatial cluster as obtained in the procedure outlined in subsubsection 1.2.1.

Figure 2: Distributions of Damage Across Clusters

(a) Damage Histogram (b) Size vs Log(Damage)

Notes: This figure displays information on the distribution of damages across clusters.
Panel (a) shows the distribution of the log of total damages defined at the cluster-level,
alongside the distribution of the log of total damages defined at the county-level. Panel (b)
shows the expected log damage conditional on the size of the cluster it lies in. Data on
natural disasters are sourced from SHELDUS, and run from 2000 though 2020.
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Tables

Table 1: Summary Statistics

Counties

Count Mean SD Median 90th Pct. 95th Pct. 99th Pct.

Property Damage 161,664 3,613.9 154,580.5 15.8 450.6 1,425.3 18,249.3
Crop Damage 161,664 413.8 9,368.8 0.0 0.0 51.4 6,320.9
Total Damage 161,664 4,027.6 155,071.3 19.5 666.0 2,455.1 28,129.6
Injuries 161,664 0.3 6.8 0.0 0.0 1.0 5.0
Fatalities 161,664 0.1 1.8 0.0 0.0 0.0 1.0
Size 161,664 1.0 0.0 1.0 1.0 1.0 1.0
GDP 149,031 8,495.4 27,857.5 1,369.3 18,730.0 41,368.7 109,829.3
Population 159,101 158,076.2 416,648.7 40,234.0 371,839.0 748,626.0 1,975,076.0
Wages 149,416 3,237.9 2,352.2 2,792.8 5,387.5 6,556.6 9,859.4

Spatial Clusters

Property Damage 37,296 15,664.7 765,883.9 21.9 1,032.6 4,144.2 74,840.0
Crop Damage 37,296 1,793.5 44,856.2 0.0 0.0 40.5 7,990.4
Total Damage 37,296 17,458.2 777,418.7 23.6 1,230.1 5,555.8 116,869.9
Injuries 37,296 1.5 25.8 0.0 1.0 3.0 23.0
Fatalities 37,296 0.3 6.0 0.0 1.0 1.0 5.0
Size 37,296 4.3 20.0 1.0 6.0 13.0 58.0
GDP 34,380 32,175.4 115,593.6 3,040.0 65,681.8 149,291.7 510,954.1
Population 36,712 643,224.6 2,388,171.1 79,821.5 1,236,064.0 2,869,672.0 9,996,678.0
Wages 34,753 3,550.8 2,103.3 3,186.9 5,731.4 6,768.5 9,436.6

Notes: This table shows summary statistics of the fatalities, injuries, property damage, crop damage, and total (property
and crop) damage from natural disasters, aggregated to the county- and spatial cluster-levels, as well as the average GDP,
population, size, and wages in each of these units of aggregation. GDP totals are annual, and in millions of USD. Wage
totals are quarterly per-capita. Population figures are annual. Damage totals are in thousands of inflation-adjusted USD,
and include property and crop damages. Damages, injuries, and fatalities data are sourced from SHELDUS, and run from
2000 through 2020. GDP data are sourced from the Bureau of Economic Analysis. Population data are sourced from the US
Census Bureau’s Annual Community Survey (ACS). Wages data are sourced from the Quarterly Census of Employment and
Wages (QCEW).
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Table 2: Differences in Total Damages According to Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought 1.801*** 3.974***
(0.363) (0.238)

Heat 0.826*** 0.958***
(0.179) (0.189)

Wildfire 1.688*** 2.054***
(0.156) (0.125)

Flooding 1.432*** 1.123***
(0.063) (0.041)

Hurricane 3.202*** 2.493***
(0.232) (0.345)

Log GDP 0.563*** 0.601*** 0.587*** 0.577*** 0.622*** 0.925*** 0.952*** 0.919*** 0.937*** 0.955***
(0.068) (0.069) (0.069) (0.071) (0.069) (0.073) (0.076) (0.075) (0.076) (0.076)

Log Population -0.447*** -0.499*** -0.485*** -0.474*** -0.523*** -0.356*** -0.375*** -0.348*** -0.391*** -0.378***
(0.071) (0.073) (0.073) (0.074) (0.073) (0.067) (0.070) (0.069) (0.069) (0.070)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 7.242*** 7.319*** 7.336*** 7.111*** 7.210*** 1.480*** 1.353*** 1.457*** 1.507*** 1.328***
(0.276) (0.277) (0.271) (0.279) (0.275) (0.297) (0.307) (0.300) (0.308) (0.305)

Observations 134,771 134,771 134,771 134,771 134,771 29,763 29,763 29,763 29,763 29,763
R2 0.025 0.012 0.017 0.066 0.043 0.177 0.159 0.173 0.188 0.162

Notes: This table shows the results of a regression of log of all (property and crop) damages on indicators for the presence of a
hazard in a given county/cluster, with controls included as regressors. Damages, as well as control variables, are aggregated to
the county/cluster level. Wages data are annual and sourced from BEA. Population data are annual and sourced from the US
Census Bureau. Wages data are quarterly and sourced from the QCEW. *, **, and *** indicate 10%, 5%, and 1% significance,
respectively.
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Table 3: Differences in County-Level Damage By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 -5.807*** -3.875***
(1.169) (0.990)

Drought=1 × Cluster Log Damage 0.432*** 0.318***
(0.080) (0.065)

Heat=1 0.286 -0.112
(0.744) (0.654)

Heat=1 × Cluster Log Damage 0.022 0.035
(0.050) (0.043)

Wildfire=1 -1.058 -0.624
(0.657) (0.608)

Wildfire=1 × Cluster Log Damage 0.200*** 0.157***
(0.048) (0.044)

Flooding=1 -0.168 -0.150
(0.182) (0.184)

Flooding=1 × Cluster Log Damage 0.091*** 0.087***
(0.013) (0.013)

Hurricane=1 -1.743*** -1.603***
(0.633) (0.555)

Hurricane=1 × Cluster Log Damage 0.182*** 0.161***
(0.032) (0.035)

Cluster Log Damage 0.248*** 0.262*** 0.262*** 0.274*** 0.261*** 0.272*** 0.227*** 0.240*** 0.243*** 0.257***
(0.011) (0.008) (0.011) (0.009) (0.011) (0.009) (0.012) (0.010) (0.010) (0.009)

Log GDP 0.644*** 0.070 0.696*** 0.069 0.682*** 0.081 0.664*** 0.072 0.708*** 0.056
(0.061) (0.086) (0.066) (0.090) (0.065) (0.090) (0.066) (0.091) (0.066) (0.090)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.511*** -0.128 -0.583*** -0.088 -0.569*** -0.152 -0.549*** -0.102 -0.595*** -0.099
(0.065) (0.244) (0.071) (0.257) (0.070) (0.256) (0.071) (0.265) (0.071) (0.250)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 115,739 115,712 115,739 115,712 115,739 115,712 115,739 115,712 115,739 115,712
R2 0.187 0.336 0.169 0.325 0.176 0.330 0.216 0.361 0.183 0.332

Notes: This table shows the results of a regression of log of all (property and crop) damages for both county-level aggregates
on indicators for the presence of a hazard in a given county/cluster along with an interaction of the damage indicator with the
log of damage of that county’s spatial cluster excluding that county. Damages are aggregated to the county/cluster level, and
are in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000 through 2020. Standard errors
are double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.

19



Internet Appendix

IA.A Economics Literature

This internet appendix contains a broad review of the literature on natural disasters in
finance and economics.IA.1 Many of these studies take the form of panel regressions using
data aggregated at the county-by-period (e.g., month, quarter, year) level, while others
isolate a single natural disaster event (e.g., Hurricane Katrina) and examine how geographic
variation in exposure to that event is linked to economic outcomes. Researchers tend to
agree that natural disasters have broadly negative consequences for households in the short-
term. However, the results vary significantly according to demographic characteristics, and
are more mixed in the long-run. Much of the research on natural disasters has focused on
hurricanes since they tend to be disproportionately damaging.

IA.A.1 Natural Disasters and Household Credit

It is natural to expect that natural disasters could impact household credit outcomes. On
the one hand, damages from natural disasters could lead households to demand more credit.
At the same time, disasters may lead to income shocks, inhibiting the ability of borrowers to
repay debt. Several papers attempt to understand the overall effect of disasters on household
borrowing. Numerous papers have investigated a specific natural disaster event in order to
understand the impacts of natural disaster exposure on households.

Several papers examine how Hurricane Katrina affected households. For instance, Gal-
lagher and Hartley (2017) show that in the short-run more severe flooding from Hurricane
Katrina was associated with temporary increases in credit card debt and debt delinquencies,
as well as temporary drops in credit scores. On the other hand, they also show that in the
long-run flooding led to decreases in total debt, which the authors attribute to the use of flood
insurance payouts to paydown mortgage debt. Furthermore, they find that two years after
the event, non-local lenders tend to exit the market, while local lenders tend to recover to pre-
Katrina levels of lending. In a subsequent analysis, Bleemer and van der Klaauw (2019) find
that a decade after Hurricane Katrina, homeownership and credit insolvency rates in flooded
neighborhoods remain persistently lower than in non-flooded neighborhoods. However, they
find that residents in the surrounding region were better off on net, as indicated by higher
rates of consumption and homeownership, lower levels of debt, and lower rates of bankruptcy
and foreclosure. They find that these effects tend to favor younger and low-income residents.

Researchers found similar effects when studying Hurricane Harvey. Billings et al. (2022)
use variation in flooding from Hurricane Harvey to understand the impacts of flood losses on
household credit. They find that credit-constrained homeowners in flooded areas experienced
significant increases in bankruptcies and delinquencies relative to those not in flooded areas,
but that flood insurance ameliorated these effects. In a follow-up paper, Gallagher et al.
(2023) find that for college-aged adults, the likelihood of having student debt is reduced in
areas that experienced flooding compared to areas that did not, and that local university

IA.1See Botzen et al. (2019) for another useful review of the economics literature on natural disasters.
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enrollment appears to drop in Texas counties more affected by hurricane damage. The
authors propose that households experiencing flooding are less able to secure credit for
additional schooling, causing them to opt out of human capital investments.

IA.A.2 Effects of Disasters on Financial Assets and Banks

Beyond the household effects, there is a literature examining the effects of natural disasters on
local firms and asset prices. The literature finds evidence that firms are negatively affected
by natural disasters, and this is reflected in financial markets. Collier et al. (2024) find,
using a sample of credit reports and FEMA flooding estimates data, that in the aftermath of
Hurricane Harvey, business credit delinquencies doubled in areas exposed to more flooding
damage, and that these effects are driven by independent businesses. Kruttli et al. (2023) find
that the implied volatility of stock options of firms increased in advance of hurricanes affecting
regions the firm has a presence in. Comparing the implied volatility to the eventual realized
volatility indicates that investors underreact, although estimates of this underreaction have
decreased following Hurricane Sandy.

While natural disasters have been shown to affect financial markets, the effects are less
clear for banks. Correa et al. (2022) shows that corporate loan spreads for borrowers located
in areas at high risk of experiencing a hurricane increase following hurricanes in other regions.
This could indicate that lenders incorporate beliefs about the likelihood and severity of
hurricanes in loan pricing. On the other hand, Blickle et al. (2021) find that banks are not
significantly impacted by disasters. They find, using a county-level analysis, that disasters
increase the demand for loans, offsetting losses and increasing profits at larger banks, while
local banks seem to avoid lending in areas in which flooding is more common than official
estimates. This finding is consistent with the idea that local firms can make use of local
knowledge to more efficiently account for natural disaster risk. Similarly, Koetter et al. (2020)
shows that local German banks lend to firms affected by flooding and Berg and Schrader
(2012) shows that relationships between banks and borrowers can mitigate reductions in
access to credit after volcanic eruptions in Ecuador.

IA.A.3 Disasters and Housing, Mortgage, and Insurance Markets

Given natural disasters can adversely affect household credit, it is important to understand
how they affect housing markets, as well as mortgage and insurance markets. This subsection
discusses effects of natural disasters on these markets, and how they can affect households’
location decisions.

Several papers use FEMA flood map data to show that government mandates to purchase
homeowner insurance can reduce borrower access to credit. These flood maps are partic-
ularly useful as lags in updates to the flood maps provide researchers an opportunity for
identification. Sastry (2021) uses highly granular data on flood maps, home- and loan-level
mortgage data, and data on insurance coverage and construction costs. Using an estimation
strategy relying on the fact that government-backed flood insurance has a strict limit, they
find that insurers offload flood risk both to the government through subsidized policies and
to borrowers through requirements of higher down payments. They also show that updates
to flood maps lead banks to reduce loan-to-value ratios while interest rates remain roughly
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the same. Blickle and Santos (2022) use Home Mortgage Disclosure Act (HMDA) data along
with FEMA flood map data to investigate how banks adjust lending in response to levels of
and changes to insurance requirements. They find that banks are less willing to lend in areas
after flood maps are extended. They also find local banks are less responsive to updates to
flood zone maps, suggesting that they use local knowledge to more responsively monitor true
risk exposure relative to the insurance requirements. These results suggest that mandatory
insurance standards may unintentionally harm low-income and low-credit borrowers.

It is not clear that insurers will continue to be willing to bear this risk. Issler et al. (2021)
combines a game theoretic framework with closely matched data on fire burn areas to consider
how wildfires affect housing and mortgage markets in California. Consistent with the model
predictions, they find that insurance payouts cause increases in square footage and decreases
in mortgage terminations in the aftermath of a fire, suggesting that insurance payouts lead
to a general improvement in the value of homes. They further argue that perverse incentives
to improve homes in high fire-risk areas may jeopardize the ability of insurance companies
to bear the risks in the absence of the ability to raise prices. Sastry et al. (2023) use
county- and zip code-level data on insurance to construct a comprehensive picture of how
insurers respond to increases in hurricanes in Florida. They find that traditional insurers
exit following increases in natural disasters. This leads riskier insurers to take their place,
who offload the risk to both the government and mortgage lenders.

The exit of insurers is especially troubling as households are likely to demand more in-
surance as disaster-risk increases. Gallagher (2014) uses a community-level dataset with
information on presidential disaster declarations to understand how affected households re-
spond to flooding in their communities and unaffected households respond to flooding in
other communities in their television media markets. Flooded households have a sharp spike
in sign-ups for flood insurance and unaffected households in flooded media markets have
a significant, though smaller increase in sign-ups. These findings indicate that households
respond to information about floods by purchasing insurance. Similarly, theoretical research
argues that household location decisions and home values are driven by a combination of
households’ beliefs about the level of flood risk and their preferences for waterfront living
(Bakkensen and Barrage, 2018).

IA.A.4 Macroeconomic Effects of Natural Disasters

Intuitively, one would expect natural disasters to be a negative local shock to local economies,
and there is some literature supporting this conjecture. Deryugina (2017) finds that local
government expenditures appear to increase significantly in the decade of a hurricane. They
also find that on average, disaster aid is not sufficient to cover the present value of natural
disasters, although victims appear to be better insured than previously thought. Jerch et al.
(2023) similarly finds that hurricanes reduce city- and county-level government tax revenues
in the following decade. They also find that hurricanes raise municipal bond default risk,
leading to ratings downgrades, further increasing municipal costs of capital. Similarly, Auh
et al. (2022) shows that natural disasters reduce returns of uninsured municipal bonds in the
weeks following a disaster. The authors also find heterogeneities in this effect according to
disaster severity, federal aid, and local economic conditions. Similarly, Acharya et al. (2022)
finds that municipal bond pricing is affected by heat stress.
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Nonetheless, it is not always the case that natural disasters are a net drag on the economy,
because the negative economic consequences from disasters may be offset by disaster aid and
private insurance payouts. Using county-level disaster declarations data from FEMA, Tran
et al. (2020) finds that total and per-capita income increase in the 8 years following natural
disasters, with a temporary local employment boost followed by a long-term increase in
wages. This effect appears to be increasing in the size of the disaster. Additionally, house
prices tend to increase while population remains roughly constant, particularly in areas with
inelastic housing supply. Similarly, Deryugina et al. (2018) finds that households exposed to
Katrina appear to experience transitory reductions in income, while they actually increase
their incomes over the longer term. This increase in income is especially concentrated among
movers out of New Orleans. This finding on mobility is consistent with Boustan et al. (2020),
which shows that severe disasters increase out-migration, although unlike Tran et al. (2020),
these authors find housing costs and income growth decreased in the decade after disasters.
In contrast, Kim et al. (2022) find that severe weather shocks are associated with persistent
reductions in aggregate industrial production growth, and increases in unemployment and
inflation.

Researchers have also examined macroeconomic effects of disasters at the country level.
Skidmore and Toya (2002) finds that exposure to repeated climate disasters leads to a substi-
tution of physical capital investment towards human capital investment, while also prompt-
ing a more frequent updating of the capital stock. Surprisingly then, higher frequency of
natural disasters can boost total factor productivity. Cavallo et al. (2013) provides one ex-
planation for the boost in total factor productivity by showing that while very large natural
disasters reduce output, small disasters do not affect economic growth. These disappear;
however, after, when controlling for major negative political events in the wake of these
disasters. Bakkensen and Barrage (2018) also shows that cyclone risk is largest for small
island nations, and otherwise is only modestly underestimated.

Overall, the economics literature finds mixed evidence on the economic consequences
of natural disasters. While several papers show evidence consistent with negative effects
of disasters on the economy, there is also significant work showing no strong effect, and
even some work showing a positive effect. Of course, these findings are typically based on
analyses from panel data, which requires assuming that natural disaster risk in one location
is uncorrelated with natural disaster risk in another location. In the next section, we will
review the climate science literature on natural disasters, which will allow us to interrogate
whether this assumption is consistent with the realities observed by the scientific community.
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IA.B Climate Science Literature

In this Internet Appendix section, we describe the scientific literature related to climate
change. There is an extensive climate literature relating to the societal impacts of natu-
ral disasters which aims to understand the mechanisms and impacts of natural disasters
historically, as well as to model future natural disasters and their impacts on society.

IA.B.1 Distributions of Severe Disasters Across Time and Space

A large strand of the climate literature has been devoted to understanding the spatial and
temporal distributions of natural disaster damages. Much of these papers provide evidence
that natural disasters are spatially and temporally linked, and can amplify the effects of
subsequent disasters in nonlinear ways. One of the first papers to consider the spatial and
temporal correlation between disasters was Wheater et al. (2005), which critiques methods
that model individual rainstorms as discrete events. They propose that a methodology using
more temporally and spatially continuous measures would provide better estimates of the
true geographic distribution of flood risks.

A substantial body of literature also aims to understand the determinants of flood risk,
and broadly shows that damage from flooding is conditional on local infrastructure, previous
weather conditions, and the climate of nearby regions. Li et al. (2016) find when looking in
Africa, that several factors determine how destructive and deadly a storm will be, conditional
on the severity of rainfall. In particular, higher levels of forest coverage, as well as lower
levels of urbanization and economic development were associated with an increase in the
frequency of catastrophic flooding events. Fu et al. (2023) find that there have historically
been significant heterogeneities in the levels and seasonality of flood risk across China, and
over time. They show that the simultaneous increases in the frequency and severity of both
drought and rainfall are linked via the same large-scale climate factors.

Janizadeh et al. (2021) models future flood risks in northwestern Iran using ensemble
machine learning models. They find that granular data about geography (e.g., elevation,
slope and proximity to rivers) as well as precipitation is important for predicting flood risk.
More broadly, Merz et al. (2021) find that the rate of disastrous flooding has increased in
severity with population and economic growth, as well as the frequency of severe storms.
However, they suggest that the increase in the severity of storms is often partially offset
by more effective flood mitigation and adaptation strategies. They suggest that, over the
longer term, unanticipated floods due to anomalous atmospheric conditions interacting with
an ill-equipped built environment are likely to be the largest source of damage and fatalities.

IA.B.2 Compound Events and Their Societal Effects

In the previous subsection, we discussed how disasters tend to be correlated across space and
time. We now explore how the effects of different hazard types may be correlated. There
is a significant literature studying how the co-occurrence of natural disasters can lead to
“compound effects,” where the downstream consequences of multiple disasters are greater
than the sum of their parts. This could occur because experiencing multiple disasters could
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strain natural and institutional systems, leading them to breakdown. Much of the work re-
lating to compound effects has been theoretical. Leonard et al. (2014) propose a framework
for considering the risks and consequences of natural disasters, which rejects the conven-
tional approach that natural disaster risks from multiple hazard types are independently
distributed. They suggest that the causes of seemingly disparate hazard types are linked,
which would lead compound events to be more frequent and more destructive than under
existing models. The authors note that natural disasters can have long-term effects on a re-
gion’s climate or conditions that can compound the effects of future disasters.IA.2 Similarly,
natural disasters can alter conditions in regions far away from where the disaster actually
occurs.

In a later paper, Zscheischler et al. (2018) argues that it is important to model different
hazard types as being driven by different factors. Subsequently, Zscheischler et al. (2020)
identify broad categories of natural disaster compounding, including temporal compounding
(i.e., multiple hazards occurring in succession) and spatial compounding (i.e., hazards in
multiple connected locations). These hazards may be driven by a related cause, which can
lead to greater damage. Moreover, destructive natural feedback loops and the failure of
important infrastructure can result from hazards occurring nearby each other.

Some researchers have focused specifically on the compounding effects driving flooding.
Wahl et al. (2015) demonstrate that the combination of tidal surge and heavy rain is es-
pecially likely to lead to coastal flooding. They also find that the risk of both tidal surge
and heavy rain is especially severe on the US Atlantic/Gulf coast, and that the risk of these
hazards has increased in recent years. In another investigation of flooding as an outcome
of other compound events, Lian et al. (2013) finds that upstream rainfall can strain water
drainage systems, leading to unanticipated flooding from high tides. Zhang et al. (2018)
investigate the meteorological phenomena surrounding Hurricane Harvey, and show that ur-
banization exacerbated both the severity of rainfall as well as the flood risk, and that these
effects combined to amplify the severity of the flooding.

IA.B.3 Future Projections of Climate Disasters

The previous subsections reviewed literature on correlations between the effects of disaster
damage across space, time and hazard type. This subsection will review how scientists expect
natural disaster risks to evolve in the future. Much of the literature attempts to understand
how the evolution of climate change could affect realizations of natural disaster risk. These
papers consider a variety of global temperature rise scenarios, incorporating knowledge on
the compound effects of natural disasters.

Woodruff et al. (2013) show that under the expected rates of sea level rise, the severity
of hurricanes is expected to increase, even holding constant the frequency of hurricanes.
They suggest that changes in land use may ameliorate these increases, and that geography
is a crucial determinant of the level of property loss given a particular event. Marsooli
et al. (2019) find, modeling the trajectory of hurricane risks under anticipated sea level rise,
that the compound effects of these hazards together would cause 100-year flooding to occur

IA.2Lange et al. (2020) also provides evidence that the frequency of compound hazards has increased as
global average temperatures have risen.
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annually in the Atlantic and Gulf cost regions. Lin et al. (2012) use a general circulation
model (GCM) in combination with a hydrodynamic model to simulate possible surge events
under different projections of climate change. They show that due to increased surge events,
100-year floods are likely to occur between 1-in-3 and 1-in-20 years by the late 2020s.

Work has also been done to understand the likelihood of the co-occurrence of extreme
temperature and drought events. Ridder et al. (2022) models future changes to the spatial
correlations of heatwaves and drought as well as extreme winds and precipitation. Their
models suggest that these compound events will occur more frequently under all emissions
scenarios, with substantial regional heterogeneity. Further examining heat-drought, Bevac-
qua et al. (2022) use ensemble climate models to predict the future co-occurrence of hot-dry
events. Their models seem to suggest that precipitation is the main driver of the occurrence
of hot-dry events because the conditional probability of at least moderate heat given drought
becomes extremely high with even 2°C of warming.

On a broader level, researchers have tried to use some of the relationships between exist-
ing disaster types in order to assess the types of disaster risk increases that would be most
damaging to society. Sarhadi et al. (2018) simulate the likelihood of spatial and temporal
co-occurrence of natural disasters in an attempt to understand the downstream effects of
a nonstationary climate, and find that climate change is likely to double the joint proba-
bility of the co-occurence of heat and dought in the same region, and broadly that it will
increase the likelihood of the simultaneous co-occurrence of these stresses in multiple regions
simultaneously. Zhou et al. (2023) models the future statistical dependence of temperature
and precipitation extremes, and demonstrates a significant spatial correlation of these ex-
treme events. According to their model, there is likely to be a significant increase in the
simultaneous occurrence of extreme drought and flooding events that, together, will make
adaptation to climate change more costly and difficult. Their findings suggest that the con-
current nature of extreme precipitation and temperature events poses substantial risks to
natural ecosystems’ abilities to self-regulate and act as a carbon sink, further amplifying
climate change. They argue that “although future risks of climate extremes vary geograph-
ically, they are becoming more strongly interlinked through further warming with increased
climate variability and spatial dependence of climate extremes.” Anticipating and modeling
the ways in which future disaster risks are likely to increase under plausible climate change
scenarios is very important because of the threats these hazards can pose towards human
society.

IA.B.4 Projected Societal Implications of Increasingly Severe Dis-
asters

Future changes in the probabilities of extreme natural disasters are expected to have serious
socioeconomic effects. Climate change is likely to threaten the reliability of the energy grid,
and the spatial correlation of temperature shocks appear to be a key driver of this. Do et al.
(2023) analyze power outages in the United States between 2018 and 2020 and find that
outages are pervasive and widespread across the country, and that the most severe outages
frequently co-occur with severe weather events. Counties within 100 miles of a tropical
cyclone appear to be the most prone to power outages relative to other severe weather

26



incidents, suggesting that natural disasters can have consequences outside of the places they
most directly impact. Perera et al. (2020) model the impacts of a potential increase in the
frequency of extreme heat and cold on the energy system in Sweden. They find that these
extreme weather demands will lead to shocks both to energy demand and energy supply.
Because of the spatial correlation of these weather shocks, strain on the entire energy system
is likely to increase. Stone Jr et al. (2021) examine the potential for electrical grid failure
under extreme heat events in the United States. They find that in recent years, power grid
blackouts have increased in frequency as simultaneous heatwaves in multiple regions have
placed unanticipated strain on energy systems. Under modeled heatwave scenarios, their
findings suggest that spatial compounding is likely to play a significant role in triggering a
rise in the frequency of widespread blackouts. Ultimately, their findings suggest that a much
greater share of the urban population is likely to face an elevated risk of heat exhaustion
and heat stroke relative to the present.

Climate change can also threaten food production systems due to both heat and drought
events. Tigchelaar et al. (2018) argue corn production will likely be adversely affected by
increased global frequencies of heat-drought events. Their research suggests that, absent
technological change enabling the growth of corn under higher heat scenarios, major disrup-
tions in the global supply of corn would become a regular occurrence under a 4°C warming
scenario, with especially severe consequences for low- and middle-income countries. Thiery
et al. (2021) take a more holistic approach, investigating how many extreme events the av-
erage person in a given generation will expect to experience over their lifetime. They find
that expected lifetime exposure to heat waves, crop failures, droughts, and river flooding has
increased significantly for current birth cohorts (those born after 2020). However, they note
that the degree of these increases is highly sensitive to the degree of warming, and suggest
that failing to take into account compounding effects may lead to underestimating the true
increase in severe disaster risk.

Many models of future climate risks aim to understand the potential threat of multiple
simultaneous shocks to key economic systems. Climate change is expected to compromise
the reliability of energy grids, with spatially correlated temperature extremes increasing both
energy demand and supply challenges. Additionally, the compounding effects of heat and
drought are likely to significantly impact food production, such as for crops like corn, with
potential disruptions becoming more common under higher warming scenarios. Ultimately,
the cumulative effects of extreme climate events, amplified by compounding effects, are
expected to increase significantly for future generations.
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IA.C Additional Tables and Figures

Figure IA.1: Spatiotemporal Cluster Containing Harris County, April-October 2017

This figure illustrates the entire set of counties that are included in the Harris County
April-October 2017 spatiotemporal cluster, obtained following the process outlined in
subsubsection 1.2.2.

Figure IA.2: Temporal Evolution of Harris County Spatiotemporal Cluster, 04-10/2017

(a) 2017m4 (b) 2017m5 (c) 2017m6 (d) 2017m7

(e) 2017m8 (f) 2017m9 (g) 2017m10
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Figure IA.3: Distribution of Property Damage Across Spatial Clusters

(a) Property Damage Histogram (b) Size vs Log(Property Damage)

Notes: Panel (a) compares the distributions of the log of property damages, based on
whether they are aggregated to the county level or to the spatial cluster level, following the
process outlined in subsubsection 1.2.1. Panel (b) shows the expected log property
damages conditional on the size of the spatiotemporal cluster it lies in. Data on natural
disasters are sourced from SHELDUS, and run from 2000 though 2020.

Figure IA.4: Distribution of Crop Damage Across Spatial Clusters

(a) Crop Damage Histogram (b) Size vs Log(Crop Damage)

Notes: Panel (a) compares the distributions of the log of crop damages, based on whether
they are aggregated to the county level or to the spatial cluster level, following the process
outlined in subsubsection 1.2.1. Panel (b) shows the expected log crop damages conditional
on the size of the spatiotemporal cluster it lies in. Data on natural disasters are sourced
from SHELDUS, and run from 2000 though 2020.

29



Figure IA.5: Distribution of Total Damage Across Spatiotemporal Clusters

(a) Damage Histogram (b) Size vs Log(Damage)

Notes: Panel (a) compares the distributions of the log of total damages, based on whether
they are aggregated to the county level or to the spatiotemporal cluster level, following the
process outlined in subsubsection 1.2.2. Panel (b) shows the expected log total damage
conditional on the size of the spatiotemporal cluster it lies in. Data on natural disasters are
sourced from SHELDUS, and run from 2000 though 2020.

30



Figure IA.6: Distributions of Damage Scaled by the Sample Median Across Clusters

(a) Damage Histogram (b) Size vs Log(Damage)

Notes: This figure displays information on the distribution of damages scaled by the
median across clusters. Panel (a) shows the distribution of the log of total damages scaled
by the sample median defined at the cluster-level, alongside the distribution of the log of
total damages scaled by the sample median defined at the county-level. Panel (b) shows
the expected log damage conditional on the size of the cluster it lies in. Data on natural
disasters are sourced from SHELDUS, and run from 2000 though 2020.

Figure IA.7: Distributions of Damage Scaled by the Sum of Hazard-Specific Medians Across
Clusters

(a) Damage Histogram (b) Size vs Log(Damage)

Notes: This figure displays information on the distribution of damages, where the damages
are scaled by the sum of all hazard-specific medians for all hazards included in each cluster.
Panel (a) shows the distribution of the log of total damages scaled by the sample median
defined at the cluster-level, alongside the distribution of the log of total damages scaled by
the sample median defined at the county-level. Panel (b) shows the expected log damage
conditional on the size of the cluster it lies in. Data on natural disasters are sourced from
SHELDUS, and run from 2000 though 2020.
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Table IA.1: Summary Statistics on Total Disaster Damages by Hazard – County-Level Data

All Damage (thousands of $)

Count Mean SD P50 P90 P95 P99

Hurricane 2,907 116,401.4 1,078,979.7 304.4 51,132.7 187,899.4 2,013,905.6
Earthquake 112 60,860.6 275,912.3 10,256.4 20,398.4 76,109.1 1,019,616.2
Heat 1,513 21,639.4 574,761.9 0.0 412.3 1,520.7 57,385.8
Coastal 1,539 21,458.9 481,718.2 0.0 222.0 1,517.0 23,487.4
Wildfire 2,280 18,542.7 233,944.5 85.9 4,349.4 13,983.5 285,734.3
Landslide 976 16,201.0 213,895.4 23.1 3,377.8 18,261.2 142,381.2
Tornado 11,847 11,807.7 327,615.9 140.0 3,166.9 9,929.7 108,074.9
Flooding 30,597 11,764.9 327,334.3 69.4 2,361.9 7,465.0 75,000.0
Drought 3,879 9,600.3 55,307.1 146.9 18,020.7 29,140.6 130,019.7
Lightning 9,861 4,370.6 103,756.7 38.5 627.9 1,568.6 22,275.0
Hail 13,174 4,299.6 81,688.3 57.7 1,866.3 6,447.5 54,917.8
Volcano 19 2,441.0 6,788.8 55.5 16,054.7 26,097.2 26,097.2
Tsunami 58 2,303.6 8,368.6 166.6 6,409.1 9,368.9 60,918.0
Winter 14,105 1,785.9 25,599.7 50.6 1,400.1 3,887.1 28,121.2
Wind 102,856 1,524.8 67,663.9 14.7 304.7 1,010.0 11,510.6
Thunderstorm 78,705 1,304.2 39,884.1 16.0 314.1 998.3 12,090.3
Fog 317 374.8 2,084.0 50.1 555.2 1,156.9 6,597.7
Avalanche 1,055 354.2 7,399.2 0.0 16.6 111.8 2,529.1

Notes: This table shows summary statistics of total damages from natural disasters by disaster-type, aggregated to the county level.
All Damage totals are in thousands of inflation-adjusted USD, and include property and crop damages. Damages data are sourced
from SHELDUS, and run from 2000 through 2020.
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Table IA.2: Summary Statistics on Total Disaster Damages by Hazard – Spatial Cluster-
Level Data

All Damage (thousands of $)

Count Mean SD P50 P90 P95 P99

Hurricane 251 1,515,411.8 9,206,264.8 402.4 717,977.0 5,183,330.6 28754559.3
Drought 316 282,780.4 1,467,953.3 6,648.5 468,473.7 1,023,147.6 7,404,489.6
Earthquake 28 243,551.9 855,175.1 1,387.6 775,056.4 800,000.0 4,468,203.6
Heat 756 217,200.3 3,502,643.5 0.0 14,184.5 81,492.4 2,725,001.8
Landslide 548 191,678.5 1,657,752.1 63.1 33,485.2 193,630.8 4,468,203.6
Coastal 967 177,302.4 3,219,685.8 0.0 4,499.4 28,905.7 1,168,300.2
Tornado 4,443 95,185.1 2,154,472.4 217.1 19,371.8 76,109.1 947,638.0
Wildfire 1,061 65,565.3 644,749.1 256.4 24,307.3 94,620.1 1,624,240.5
Flooding 7,836 64,262.7 1,674,410.3 87.4 9,133.1 38,130.5 479,159.0
Hail 4,359 58,071.9 1,579,582.4 103.7 18,369.7 74,124.2 617,133.1
Lightning 5,684 55,398.8 1,465,435.3 54.2 5,016.8 29,528.4 468,473.7
Thunderstorm 15,783 30,499.4 1,166,570.8 26.8 1,783.0 8,963.9 194,103.9
Avalanche 333 29,874.3 410,041.4 0.0 998.8 11,759.7 230,797.9
Fog 158 28,271.8 165,974.5 126.4 13,243.5 98,944.2 870,080.4
Wind 19,136 25,842.4 1,059,512.1 24.0 1,509.5 7,407.6 169,508.6
Tsunami 32 21,282.6 37,244.0 2,451.9 93,238.3 123,556.2 126,338.0
Winter 2,227 19,724.0 204,289.9 61.1 10,131.0 41,626.6 395,161.7
Volcano 11 4,216.2 8,645.4 444.0 16,054.7 26,097.2 26,097.2

Cluster Size (# of Counties)

Tsunami 32 44.7 77.6 3.5 189.0 233.0 270.0
Drought 316 29.7 88.5 6.5 55.0 89.0 368.0
Hurricane 251 24.0 63.8 2.0 47.0 171.0 309.0
Heat 756 19.8 76.2 1.0 33.0 99.0 380.0
Landslide 548 18.2 66.8 1.0 27.0 55.0 384.0
Tornado 4,443 14.9 53.1 1.0 30.0 71.0 242.0
Hail 4,359 14.4 52.1 1.0 30.0 62.0 240.0
Fog 158 13.4 74.0 2.0 20.0 39.0 90.0
Coastal 967 13.3 67.2 1.0 13.0 46.0 309.0
Avalanche 333 12.4 76.9 3.0 11.0 17.0 240.0
Winter 2,227 12.3 39.9 2.0 31.0 52.0 173.0
Lightning 5,684 11.8 46.9 1.0 22.0 53.0 216.0
Flooding 7,836 11.1 41.4 1.0 23.0 47.0 185.0
Wildfire 1,061 11.0 56.2 1.0 18.0 34.0 208.0
Thunderstorm 15,783 7.0 29.8 1.0 11.0 26.0 106.0
Wind 19,136 6.6 27.4 1.0 11.0 24.0 91.0
Earthquake 28 4.2 14.5 1.0 4.0 9.0 78.0
Volcano 11 1.7 2.1 1.0 2.0 8.0 8.0

Notes: This table shows summary statistics of damages and cluster sizes from natural disasters by disaster-type, aggregated to the
spatial cluster level. All Damage totals are in thousands of inflation-adjusted USD, and include property and crop damages. Damages
data are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.3: Summary Statistics on Property and Crop Damage by Hazard – County-Level
Data

Property Damage (thousands of $)

Count Mean SD P50 P90 P95 P99

Hurricane 2,907 112289200.8 1.1e+09 250,000.0 38958251.8 152580213.6 2.0e+09
Earthquake 112 60860596.6 275912311.8 10256410.3 20398415.6 76109071.0 1.0e+09
Coastal 1,539 21328717.9 481720028.4 0.0 181,188.7 1,105,167.1 21839296.5
Heat 1,513 21048272.6 574728609.3 0.0 263,646.0 891,070.2 7,663,818.6
Wildfire 2,280 17485988.0 232077677.5 71,676.3 3,918,637.5 12004120.4 167726381.0
Landslide 976 16027641.2 213651834.7 22,311.5 3,222,129.7 17673373.3 142381223.5
Tornado 11,847 11393616.4 327218848.7 132,739.9 2,764,776.8 8,444,576.0 100010000.0
Flooding 30,597 11279870.4 327081581.3 61,089.6 1,822,515.7 5,689,910.6 64808014.2
Lightning 9,861 4,176,031.7 102742277.3 37,001.6 585,571.7 1,403,953.7 16584008.0
Hail 13,174 3,699,507.5 81315226.5 36,425.7 890,499.4 3,019,811.5 50086453.4
Tsunami 58 2,272,505.7 8,345,215.8 166,647.2 6,409,106.6 8,739,690.8 60917975.3
Drought 3,879 1,650,004.9 25061334.0 0.0 153,818.6 742,621.9 18034970.9
Wind 102,856 1,330,726.7 67297076.6 14,064.8 260,039.3 740,032.9 7,548,161.3
Winter 14,105 1,233,793.6 23502167.9 38,054.5 765,452.8 2,250,369.3 20770468.0
Thunderstorm 78,705 1,124,336.6 39481406.8 15,171.6 260,964.1 712,281.6 7,400,328.6
Volcano 19 888,129.4 3,672,941.3 55,502.5 148,006.6 16054739.4 16054739.4
Fog 317 355,622.2 2,057,396.4 49,384.8 527,814.2 1,118,295.6 4,792,807.0
Avalanche 1,055 353,879.4 7,399,243.4 0.0 15,272.4 101,144.2 2,529,109.9

Crop Damage (thousands of $)

Drought 3,879 7,950,303.5 47015111.0 53,631.0 16813546.7 28144643.4 80528307.3
Hurricane 2,907 4,112,170.0 27523193.0 0.0 805,283.1 20877127.3 98255592.7
Volcano 19 1,552,827.6 5,958,626.7 0.0 1,221,792.2 26096409.1 26096409.1
Wildfire 2,280 1,056,716.1 28018097.5 0.0 6,430.2 64,550.4 10930439.9
Hail 13,174 600,049.8 5,851,991.3 0.0 284,912.6 1,165,292.1 15670195.9
Heat 1,513 591,150.3 7,613,529.0 0.0 0.0 58,264.6 4,661,168.4
Winter 14,105 552,087.5 10092482.9 0.0 0.0 114,166.6 7,585,092.5
Flooding 30,597 485,030.4 7,629,397.5 0.0 21,452.4 291,323.0 10267359.2
Tornado 11,847 414,048.0 8,837,408.0 0.0 12,020.8 159,575.2 3,653,553.6
Lightning 9,861 194,576.2 4,272,883.9 0.0 0.0 1,105.9 728,514.8
Wind 102,856 194,095.6 6,049,553.6 0.0 0.0 6,087.2 1,221,792.2
Thunderstorm 78,705 179,834.7 4,449,395.3 0.0 0.0 12,174.5 1,460,934.4
Landslide 976 173,324.8 2,023,756.5 0.0 0.0 11,072.2 8,667,977.5
Coastal 1,539 130,149.1 1,787,798.5 0.0 0.0 0.0 534,211.2
Tsunami 58 31,141.4 237,166.0 0.0 0.0 0.0 1,806,202.8
Fog 317 19,183.9 214,798.5 0.0 0.0 5,708.3 177,607.9
Avalanche 1,055 317.5 6,639.1 0.0 0.0 0.0 0.0
Earthquake 112 0.0 0.0 0.0 0.0 0.0 0.0

Notes: This table shows summary statistics of property and crop damage from natural disasters by disaster-type, aggregated to the
county level. All Damage totals are in thousands of inflation-adjusted USD, and include property and crop damages. Damages data
are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.4: Summary Statistics on Property and Crop Damage by Hazard – Spatial Cluster-
Level Data

Property Damage (thousands of $)

Count Mean SD P50 P90 P95 P99

Hurricane 251 1.5e+09 9.1e+09 394,452.3 522450111.1 4.8e+09 2.9e+10
Earthquake 28 243551914.6 855175117.3 1,387,610.6 775056385.2 800000000.3 4.5e+09
Heat 756 202426875.3 3.5e+09 0.0 11140750.7 47055820.9 2.6e+09
Drought 316 180844672.1 1.4e+09 78,088.3 51741923.6 250909530.4 7.4e+09
Landslide 548 176903602.3 1.6e+09 59,019.6 30544805.8 152162263.1 4.0e+09
Coastal 967 170655933.4 3.2e+09 0.0 3,988,351.0 21839296.5 725038628.0
Tornado 4,443 89816750.7 2.1e+09 206,965.7 14818436.1 57143538.6 685012082.3
Flooding 7,836 60000233.9 1.7e+09 78,762.9 7,516,921.7 30128218.0 444015000.0
Wildfire 1,061 57019350.5 634813771.4 210,172.4 18868000.0 62445467.0 1.1e+09
Hail 4,359 52252693.0 1.5e+09 67,198.6 11298923.6 49137744.7 523857381.3
Lightning 5,684 52187550.3 1.4e+09 53,181.9 4,068,965.4 21042561.2 435289331.3
Avalanche 333 28903357.8 406823959.9 0.0 890,476.1 8,991,520.1 230797874.7
Thunderstorm 15,783 28062604.1 1.2e+09 25,957.4 1,503,027.3 6,815,850.0 137272159.7
Wind 19,136 23621053.3 1.0e+09 22,849.0 1,260,330.7 5,661,042.0 112254918.9
Tsunami 32 20737956.9 37323667.3 412,871.3 91432080.2 123556183.1 126338031.8
Fog 158 18664638.9 94003543.6 119,714.7 9,951,998.9 98931859.9 536298604.9
Winter 2,227 15783781.3 196678579.8 51,956.9 6,008,469.1 23240915.7 267988338.1
Volcano 11 1,534,041.6 4,817,810.7 11,416.7 444,019.7 16054739.4 16054739.4

Crop Damage (thousands of $)

Drought 316 101935705.7 309370829.2 1,869,448.0 260039326.0 545714553.5 1.2e+09
Hurricane 251 52840149.8 336693667.7 0.0 15434592.2 186448194.3 1.0e+09
Landslide 548 14774881.3 166374829.1 0.0 33,553.5 786,757.8 257959011.1
Heat 756 14773417.9 143724572.4 0.0 14,800.7 2,062,567.0 347932618.2
Fog 158 9,607,193.2 101568810.2 0.0 71,228.2 14278890.9 79876542.6
Wildfire 1,061 8,545,914.9 109268665.2 0.0 54,785.0 1,300,196.6 134452905.6
Coastal 967 6,646,429.7 75376785.1 0.0 0.0 188,704.0 69204784.6
Hail 4,359 5,819,248.0 73221039.9 0.0 693,943.9 4,478,938.4 82608621.9
Tornado 4,443 5,368,300.3 64822316.1 0.0 114,166.6 1,954,867.6 79876542.6
Flooding 7,836 4,262,488.2 80100542.7 0.0 37,541.7 753,085.9 47258037.1
Winter 2,227 3,940,183.8 50781136.4 0.0 0.0 379,256.9 75201312.0
Lightning 5,684 3,211,239.5 49983313.5 0.0 4,203.4 337,555.4 41063036.1
Volcano 11 2,682,156.7 7,783,153.4 0.0 1,221,792.2 26096409.1 26096409.1
Thunderstorm 15,783 2,436,809.6 50998965.4 0.0 562.6 107,262.0 15049747.4
Wind 19,136 2,221,358.8 48236527.9 0.0 0.0 58,848.2 13471657.6
Avalanche 333 970,931.9 14317655.5 0.0 0.0 0.0 1,129,367.9
Tsunami 32 544,662.4 2,408,875.7 0.0 0.0 2,151,336.4 13471657.6
Earthquake 28 0.0 0.0 0.0 0.0 0.0 0.0

Notes: This table shows summary statistics of injuries and fatalities from natural disasters by disaster-type, aggregated to the spatial
cluster level. All Damage totals are in thousands of inflation-adjusted USD, and include property and crop damages. Damages data
are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.5: Summary Statistics on Injuries and Fatalities by Hazard – County-Level Data

Fatalities

Count Mean SD P50 P90 P95 P99

Heat 1,513 1.7 4.7 1.0 3.0 6.0 21.0
Coastal 1,539 0.8 1.1 1.0 2.0 2.0 4.0
Hurricane 2,907 0.5 12.4 0.0 0.0 1.0 3.0
Landslide 976 0.4 3.2 0.0 0.3 1.0 6.0
Avalanche 1,055 0.3 0.4 0.2 0.9 1.0 2.0
Wildfire 2,280 0.2 1.7 0.0 0.0 1.0 5.3
Volcano 19 0.2 0.7 0.0 1.0 3.0 3.0
Fog 317 0.2 0.7 0.0 1.0 1.0 2.0
Lightning 9,861 0.2 2.0 0.0 0.0 1.0 2.0
Tornado 11,847 0.2 1.9 0.0 0.0 1.0 3.0
Flooding 30,597 0.1 3.9 0.0 0.0 0.4 2.0
Earthquake 112 0.1 0.4 0.1 0.2 0.3 2.0
Winter 14,105 0.1 0.4 0.0 0.0 0.8 2.0
Wind 102,856 0.0 0.8 0.0 0.0 0.0 1.0
Thunderstorm 78,705 0.0 0.9 0.0 0.0 0.0 1.0
Hail 13,174 0.0 0.6 0.0 0.0 0.0 1.0
Tsunami 58 0.0 0.1 0.0 0.0 0.5 0.5
Drought 3,879 0.0 0.3 0.0 0.0 0.0 1.0

Injuries

Heat 1,513 9.4 40.8 0.0 17.0 40.0 213.0
Earthquake 112 2.9 16.9 0.0 1.0 20.0 30.0
Wildfire 2,280 1.8 17.5 0.0 2.0 4.0 20.0
Tornado 11,847 1.8 17.6 0.0 2.0 6.0 31.0
Fog 317 1.7 5.2 0.0 4.0 10.0 30.0
Volcano 19 1.4 5.3 0.0 3.0 23.0 23.0
Lightning 9,861 0.9 15.4 0.0 1.0 3.0 9.0
Coastal 1,539 0.8 2.9 0.0 2.0 4.0 10.0
Hurricane 2,907 0.7 15.0 0.0 0.0 1.0 5.0
Landslide 976 0.7 7.3 0.0 0.2 2.0 12.0
Drought 3,879 0.3 10.4 0.0 0.0 0.0 1.0
Thunderstorm 78,705 0.3 7.1 0.0 0.0 0.0 3.0
Hail 13,174 0.3 3.0 0.0 0.0 0.0 5.0
Avalanche 1,055 0.3 0.8 0.0 0.7 1.0 2.7
Winter 14,105 0.2 4.0 0.0 0.0 0.0 4.0
Wind 102,856 0.2 6.3 0.0 0.0 0.0 3.0
Flooding 30,597 0.2 3.8 0.0 0.0 0.0 3.0
Tsunami 58 0.1 0.4 0.0 0.0 1.0 2.0

Notes: This table shows summary statistics of injuries and fatalities from natural disasters by disaster-type, aggregated to the county
level. All Damage totals are in thousands of inflation-adjusted USD, and include property and crop damages. Damages data are
sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.6: Summary Statistics on Injuries and Fatalities by Hazard – Spatial Cluster-Level
Data

Fatalities

Count Mean SD P50 P90 P95 P99

Hurricane 251 6.9 64.0 0.0 6.0 14.0 82.0
Heat 756 4.4 12.6 1.0 9.0 19.0 59.0
Drought 316 2.8 25.4 0.0 2.0 5.0 35.0
Avalanche 333 2.8 22.5 1.0 3.0 4.1 19.0
Landslide 548 2.6 13.2 0.0 3.0 10.0 82.0
Coastal 967 2.4 14.1 1.0 3.0 5.0 27.0
Wildfire 1,061 1.7 14.3 0.0 1.0 5.0 38.0
Tornado 4,443 1.1 17.0 0.0 1.0 3.0 19.0
Fog 158 1.0 3.0 0.0 2.0 5.0 16.0
Lightning 5,684 1.0 15.1 0.0 1.0 2.0 15.0
Hail 4,359 1.0 17.1 0.0 0.0 2.0 15.0
Flooding 7,836 0.8 13.0 0.0 1.0 2.0 13.0
Winter 2,227 0.8 8.7 0.0 2.0 3.0 8.0
Tsunami 32 0.5 1.2 0.0 2.5 4.0 4.0
Earthquake 28 0.5 1.3 0.0 2.0 3.0 5.9
Thunderstorm 15,783 0.4 9.1 0.0 0.0 1.0 6.0
Wind 19,136 0.4 8.3 0.0 0.0 1.0 6.0
Volcano 11 0.4 0.9 0.0 1.0 3.0 3.0

Injuries

Heat 756 23.5 98.1 0.0 47.0 98.0 450.0
Drought 316 23.3 230.7 0.0 4.0 19.0 349.0
Avalanche 333 13.1 200.4 0.0 3.0 8.0 38.0
Earthquake 28 11.6 33.1 0.0 30.0 40.0 172.0
Wildfire 1,061 10.2 119.2 0.0 7.0 21.0 153.0
Hurricane 251 9.8 58.0 0.0 8.0 30.0 300.0
Coastal 967 8.0 120.1 0.0 6.0 13.0 61.0
Fog 158 7.3 22.0 0.0 22.0 40.0 101.0
Landslide 548 7.1 73.7 0.0 5.0 14.0 85.0
Tornado 4,443 6.5 67.1 0.0 8.0 21.0 102.0
Hail 4,359 4.8 65.2 0.0 3.0 11.0 87.0
Lightning 5,684 4.4 58.9 0.0 4.0 10.0 63.0
Winter 2,227 4.1 79.7 0.0 3.0 7.0 47.0
Tsunami 32 3.9 10.9 0.0 11.0 24.0 54.0
Flooding 7,836 3.2 50.1 0.0 2.0 6.0 56.0
Volcano 11 2.5 6.9 0.0 3.0 23.0 23.0
Thunderstorm 15,783 2.1 37.2 0.0 1.0 4.0 31.0
Wind 19,136 1.9 33.9 0.0 1.0 3.0 27.0

Notes: This table shows summary statistics of injuries and fatalities from natural disasters by disaster-type, aggregated to the spatial
cluster level. All Damage totals are in thousands of inflation-adjusted USD, and include property and crop damages. Damages data
are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.7: Summary Statistics on Total Disaster Damages by Hazard – Spatiotemporal
Cluster-Level Data

All Damage (thousands of $)

Count Mean SD P50 P90 P95 P99

Hurricane 205 1,963,249.8 10233478.9 770.2 2,479,581.6 9,103,685.5 28836436.1
Drought 287 898,143.5 6,440,464.2 34,090.7 1,006,839.9 2,137,319.8 22814845.2
Heat 581 321,479.4 4,020,061.0 0.0 86,286.5 330,235.7 7,884,366.7
Coastal 914 293,508.1 3,474,335.0 0.0 47,078.6 289,351.0 7,427,618.9
Landslide 531 281,027.7 1,876,897.3 142.0 119,935.3 516,826.3 7,884,366.7
Earthquake 28 244,245.6 854,974.6 10,090.4 775,056.4 800,000.0 4,468,203.6
Tornado 3,601 140,534.5 2,473,059.3 208.6 33,286.5 147,319.8 1,446,102.8
Hail 3,275 110,779.0 1,970,065.6 110.6 40,033.3 158,066.1 1,436,114.5
Wildfire 1,010 97,283.6 752,906.6 353.6 41,583.8 236,637.1 2,283,272.1
Flooding 5,647 92,928.0 1,987,866.1 78.3 15,826.3 70,442.4 910,873.6
Lightning 4,318 89,451.9 1,743,610.9 50.2 10,003.3 70,677.2 1,053,624.8
Fog 155 61,794.1 252,195.4 380.5 121,939.8 280,777.7 1,810,372.9
Tsunami 28 51,198.7 92,339.7 11,410.7 170,003.3 171,338.9 426,637.6
Thunderstorm 11,598 44,486.3 1,374,608.5 23.3 2,111.5 14,613.0 349,048.6
Wind 14,399 36,436.1 1,233,626.1 20.9 1,538.8 10,623.7 288,607.9
Winter 1,914 33,297.2 267,370.3 62.9 19,040.3 86,601.0 688,621.7
Avalanche 324 32,434.4 417,199.3 0.1 3,135.3 21,368.4 264,194.4
Volcano 11 4,216.2 8,645.4 444.0 16,054.7 26,097.2 26,097.2

Cluster Size

Drought 287 123.7 230.0 16.0 429.0 641.0 1,038.0
Tsunami 28 90.8 136.7 7.0 297.0 321.0 510.0
Hurricane 205 80.4 169.4 2.0 356.0 527.0 633.0
Heat 581 62.5 174.5 2.0 205.0 492.0 854.0
Landslide 531 47.7 147.4 2.0 86.0 342.0 842.0
Coastal 914 46.2 148.1 1.0 77.0 403.0 754.0
Fog 155 40.9 126.9 4.0 68.0 333.0 546.0
Hail 3,275 27.8 100.1 1.0 43.0 145.0 552.0
Tornado 3,601 26.9 97.2 1.0 40.0 144.0 545.0
Wildfire 1,010 25.0 108.9 2.0 24.0 86.0 567.0
Winter 1,914 21.4 68.9 2.0 46.0 103.0 358.0
Lightning 4,318 21.4 88.1 1.0 23.0 91.0 510.0
Flooding 5,647 19.4 78.9 1.0 26.0 76.0 451.0
Avalanche 324 17.1 87.7 4.0 16.0 27.0 456.0
Thunderstorm 11,598 10.7 55.9 1.0 10.0 27.0 277.0
Wind 14,399 9.4 50.4 1.0 10.0 23.0 215.0
Earthquake 28 6.0 15.2 1.0 17.0 23.0 78.0
Volcano 11 1.7 2.1 1.0 2.0 8.0 8.0

Notes: This table shows summary statistics of damages and cluster sizes from natural disasters by disaster-type, aggregated to the
spatiotemporal cluster level, conditional on the presence of the given hazard. All Damage totals are in thousands of inflation-adjusted
USD, and include property and crop damages. Damages data are sourced from SHELDUS, and run from 2000 through 2020.
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Table IA.8: Differences in Injuries According to Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought 0.127 4.894
(0.255) (3.471)

Heat 8.054*** 18.585***
(1.972) (3.123)

Wildfire 1.728** 4.485***
(0.707) (1.282)

Flooding -0.088** 0.446*
(0.041) (0.233)

Hurricane 0.300 4.733
(0.339) (4.571)

Log GDP 0.077*** 0.053** 0.063** 0.081*** 0.081*** 0.803*** 0.690*** 0.747*** 0.833*** 0.835***
(0.029) (0.024) (0.027) (0.029) (0.028) (0.138) (0.122) (0.140) (0.138) (0.137)

Log Population 0.071** 0.064** 0.082*** 0.065** 0.065** 0.152 0.074 0.200* 0.127 0.124
(0.030) (0.028) (0.030) (0.027) (0.027) (0.102) (0.097) (0.107) (0.098) (0.100)

Average Wages -0.000 -0.000 -0.000 -0.000 -0.000 -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -1.572*** -1.204*** -1.513*** -1.559*** -1.576*** -12.039*** -9.761*** -11.851*** -12.217*** -12.162***
(0.324) (0.256) (0.300) (0.320) (0.321) (1.385) (1.137) (1.403) (1.425) (1.401)

Observations 134,771 134,771 134,771 134,771 134,771 32,492 32,492 32,492 32,492 32,492
R2 0.001 0.009 0.002 0.001 0.001 0.015 0.046 0.017 0.014 0.015

Notes: This table shows the results of a regression of counts of injuries on indicators for the presence of a hazard in a given
county/cluster. Counts of injuries are aggregated to the county/cluster level. Injuries data are sourced from SHELDUS, and
run from 2000 through 2020.
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Table IA.9: Differences in Fatalities According to Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought -0.015 0.477*
(0.014) (0.281)

Heat 2.179*** 3.208***
(0.614) (0.358)

Wildfire 0.180** 0.913***
(0.078) (0.236)

Flooding 0.097** 0.236***
(0.039) (0.037)

Hurricane 0.520 2.058**
(0.377) (0.807)

Log GDP 0.033 0.025 0.030 0.030 0.035 0.110*** 0.087*** 0.094*** 0.110*** 0.112***
(0.025) (0.025) (0.025) (0.024) (0.027) (0.019) (0.017) (0.019) (0.018) (0.018)

Log Population 0.007 0.006 0.009 0.009 0.003 0.087*** 0.074*** 0.098*** 0.081*** 0.080***
(0.020) (0.020) (0.020) (0.020) (0.023) (0.016) (0.016) (0.018) (0.016) (0.016)

Average Wages -0.000 -0.000 -0.000 -0.000 -0.000 -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -0.469*** -0.370*** -0.463*** -0.481*** -0.481*** -2.281*** -1.869*** -2.216*** -2.265*** -2.248***
(0.148) (0.135) (0.148) (0.152) (0.156) (0.182) (0.144) (0.175) (0.179) (0.174)

Observations 134,771 134,771 134,771 134,771 134,771 32,492 32,492 32,492 32,492 32,492
R2 0.001 0.007 0.001 0.001 0.002 0.034 0.089 0.040 0.036 0.040

Notes: This table shows the results of a regression of counts of fatalities on indicators for the presence of a hazard in a given
county/cluster. Counts of fatalities are aggregated to the county/cluster level. Fatalities data are sourced from SHELDUS,
and run from 2000 through 2020.
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Table IA.10: Differences in Property Damages by Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought 0.790** 2.215***
(0.317) (0.247)

Heat 0.559*** 1.049***
(0.176) (0.182)

Wildfire 1.757*** 2.036***
(0.151) (0.115)

Flooding 1.417*** 1.129***
(0.0586) (0.0376)

Hurricane 3.142*** 2.823***
(0.212) (0.301)

Log GDP 0.439*** 0.443*** 0.427*** 0.412*** 0.463*** 0.603*** 0.610*** 0.581*** 0.604*** 0.615***
(0.0600) (0.0601) (0.0594) (0.0602) (0.0590) (0.0594) (0.0594) (0.0586) (0.0588) (0.0593)

Log Population -0.267*** -0.274*** -0.258*** -0.241*** -0.297*** -0.0147 -0.0224 0.00402 -0.0478 -0.0268
(0.0601) (0.0602) (0.0599) (0.0594) (0.0594) (0.0577) (0.0578) (0.0575) (0.0571) (0.0576)

Average Wages -0.0000776*** -0.0000780*** -0.0000767*** -0.0000789*** -0.0000767*** -0.000140*** -0.000143*** -0.000135*** -0.000145*** -0.000142***
(0.0000163) (0.0000164) (0.0000155) (0.0000173) (0.0000156) (0.0000197) (0.0000197) (0.0000192) (0.0000194) (0.0000196)

Observations 130538 130538 130538 130538 130538 31145 31145 31145 31145 31145
R2 0.0160 0.0152 0.0222 0.0749 0.0492 0.185 0.182 0.197 0.212 0.187

Notes: This table shows the results of a regression of log property damages on indicators for the presence of a hazard in a
given county/cluster, with controls included as regressors. Damages, as well as control variables, are aggregated to the
county/cluster level. Property damages data are sourced from SHELDUS, and run from 2000 through 2020. Wages data are
sourced from BEA. Population data are sourced from the US Census Bureau. Wages data are sourced from the QCEW.
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Table IA.11: Differences in Crop Damages by Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought 0.806** 3.317***
(0.379) (0.257)

Heat 1.371** 0.636
(0.632) (0.460)

Wildfire -0.062 0.541*
(0.308) (0.313)

Flooding 0.062 0.140
(0.226) (0.160)

Hurricane 4.066*** 3.385***
(0.532) (0.738)

Log GDP 0.904*** 0.948*** 0.954*** 0.957*** 1.032*** 3.292*** 3.451*** 3.443*** 3.459*** 3.424***
(0.218) (0.211) (0.211) (0.211) (0.205) (0.237) (0.250) (0.248) (0.248) (0.248)

Log Population -1.209*** -1.251*** -1.252*** -1.254*** -1.361*** -2.940*** -3.048*** -3.037*** -3.055*** -3.042***
(0.227) (0.223) (0.223) (0.223) (0.218) (0.233) (0.246) (0.245) (0.246) (0.245)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.001*** -0.001*** -0.001*** -0.001*** -0.001***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant 11.264*** 11.274*** 11.212*** 11.187*** 11.091*** -2.897*** -3.624*** -3.649*** -3.699*** -3.384***
(1.029) (0.980) (0.978) (0.987) (0.944) (0.862) (0.913) (0.897) (0.894) (0.890)

Observations 14,220 14,220 14,220 14,220 14,220 3,040 3,040 3,040 3,040 3,040
R2 0.054 0.044 0.043 0.043 0.089 0.178 0.112 0.112 0.111 0.122

Notes: This table shows the results of a regression of log crop damages on indicators for the presence of a hazard in a given
county/cluster, with controls included as regressors. Damages, as well as control variables, are aggregated to the
county/cluster level. Crop damages data are sourced from SHELDUS, and run from 2000 through 2020. Wages data are
sourced from BEA. Population data are sourced from the US Census Bureau. Wages data are sourced from the QCEW.
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Table IA.12: Differences in County-Level Damage Scaled by the Sample Median By Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought 0.583 -0.334
(0.365) (0.235)

Heat -0.118 0.399***
(0.184) (0.148)

Wildfire 0.598*** 0.737***
(0.152) (0.120)

Flooding 0.627*** 0.606***
(0.062) (0.039)

Hurricane 1.157*** 0.788**
(0.230) (0.343)

Log GDP 0.503*** 0.517*** 0.511*** 0.505*** 0.523*** 0.801*** 0.796*** 0.785*** 0.788*** 0.798***
(0.058) (0.059) (0.059) (0.060) (0.059) (0.062) (0.062) (0.061) (0.061) (0.062)

Log Population -0.393*** -0.410*** -0.405*** -0.399*** -0.419*** -0.320*** -0.320*** -0.310*** -0.329*** -0.320***
(0.062) (0.064) (0.064) (0.064) (0.064) (0.059) (0.058) (0.058) (0.058) (0.058)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -3.329*** -3.322*** -3.297*** -3.391*** -3.342*** -8.519*** -8.456*** -8.424*** -8.359*** -8.474***
(0.226) (0.226) (0.223) (0.227) (0.226) (0.243) (0.241) (0.237) (0.240) (0.239)

Observations 134,771 134,771 134,771 134,771 134,771 29,667 29,667 29,667 29,667 29,667
R2 0.014 0.012 0.013 0.025 0.017 0.137 0.137 0.139 0.148 0.137

Notes: This table shows the results of a regression of log of all (property and crop) damages, scaled by the sample median, for
both county-level aggregates on indicators for the presence of a hazard in a given county/cluster along with an interaction of
the damage indicator with the log of damage of that county’s spatial cluster excluding that county. Damages are aggregated
to the county/cluster level, and are in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000
through 2020. Standard errors are double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1%
significance, respectively.
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Table IA.13: Differences in County-Level Damage Scaled by Hazard-Specific Medians By Hazard Type

Counties Clusters

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought 0.583 -0.334
(0.365) (0.235)

Heat -0.118 0.399***
(0.184) (0.148)

Wildfire 0.598*** 0.737***
(0.152) (0.120)

Flooding 0.627*** 0.606***
(0.062) (0.039)

Hurricane 1.157*** 0.788**
(0.230) (0.343)

Log GDP 0.503*** 0.517*** 0.511*** 0.505*** 0.523*** 0.801*** 0.796*** 0.785*** 0.788*** 0.798***
(0.058) (0.059) (0.059) (0.060) (0.059) (0.062) (0.062) (0.061) (0.061) (0.062)

Log Population -0.393*** -0.410*** -0.405*** -0.399*** -0.419*** -0.320*** -0.320*** -0.310*** -0.329*** -0.320***
(0.062) (0.064) (0.064) (0.064) (0.064) (0.059) (0.058) (0.058) (0.058) (0.058)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Constant -3.329*** -3.322*** -3.297*** -3.391*** -3.342*** -8.519*** -8.456*** -8.424*** -8.359*** -8.474***
(0.226) (0.226) (0.223) (0.227) (0.226) (0.243) (0.241) (0.237) (0.240) (0.239)

Observations 134,771 134,771 134,771 134,771 134,771 29,667 29,667 29,667 29,667 29,667
R2 0.014 0.012 0.013 0.025 0.017 0.137 0.137 0.139 0.148 0.137

Notes: This table shows the results of a regression of log of all (property and crop) damages, scaled by the sum of
hazard-specific medians for all hazards included in each cluster, for both county-level aggregates on indicators for the presence
of a hazard in a given county/cluster along with an interaction of the damage indicator with the log of damage of that
county’s spatial cluster excluding that county. Damages are aggregated to the county/cluster level, and are in
inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000 through 2020. Standard errors are
double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.
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Table IA.14: Differences in County-Level Damage By Cluster-level Damage Controlling for Cluster-Level Observables

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 -3.142*** -2.202**
(0.924) (0.982)

Drought=1 × Cluster Log Damage 0.260*** 0.215***
(0.0655) (0.0647)

Heat=1 -0.481 -0.489
(0.686) (0.669)

Heat=1 × Cluster Log Damage 0.0851* 0.0728
(0.0480) (0.0472)

Wildfire=1 -0.659 -0.343
(0.466) (0.486)

Wildfire=1 × Cluster Log Damage 0.130*** 0.110***
(0.0336) (0.0354)

Flooding=1 -0.0803 0.0224
(0.207) (0.177)

Flooding=1 × Cluster Log Damage 0.0603*** 0.0608***
(0.0154) (0.0132)

Hurricane=1 0.534 0.699*
(0.488) (0.423)

Hurricane=1 × Cluster Log Damage 0.0226 0.00600
(0.0268) (0.0296)

Cluster Log Damage 0.532*** 0.498*** 0.552*** 0.518*** 0.548*** 0.511*** 0.517*** 0.482*** 0.542*** 0.510***
(0.0114) (0.0108) (0.0116) (0.0112) (0.0117) (0.0114) (0.0133) (0.0131) (0.0116) (0.0116)

Log GDP 0.221*** -0.0130 0.246*** -0.00644 0.241*** 0.00541 0.247*** 0.00601 0.259*** -0.00384
(0.0502) (0.0809) (0.0518) (0.0832) (0.0506) (0.0833) (0.0533) (0.0857) (0.0521) (0.0830)

Average Wages -0.0000430*** -0.0000468*** -0.0000446*** -0.0000423*** -0.0000443*** -0.0000455*** -0.0000469*** -0.0000425*** -0.0000452*** -0.0000405***
(0.0000161) (0.0000152) (0.0000163) (0.0000140) (0.0000156) (0.0000134) (0.0000167) (0.0000139) (0.0000162) (0.0000142)

Log Population 0.170*** -0.0117 0.136*** 0.0382 0.138*** -0.0206 0.122** 0.0491 0.121** 0.0418
(0.0501) (0.208) (0.0514) (0.217) (0.0505) (0.215) (0.0528) (0.232) (0.0517) (0.216)

Cluster Log GDP 0.250*** -0.113 0.277*** -0.0977 0.279*** -0.0773 0.308*** -0.0831 0.277*** -0.107
(0.0756) (0.0711) (0.0795) (0.0728) (0.0791) (0.0725) (0.0810) (0.0712) (0.0789) (0.0739)

Cluster Average Wages 0.0000319* 0.000104*** 0.0000378** 0.000107*** 0.0000353** 0.000103*** 0.0000266 0.000101*** 0.0000392** 0.000108***
(0.0000171) (0.0000189) (0.0000177) (0.0000196) (0.0000174) (0.0000193) (0.0000180) (0.0000191) (0.0000173) (0.0000197)

Cluster Log Population -0.833*** -0.429*** -0.878*** -0.463*** -0.872*** -0.473*** -0.882*** -0.453*** -0.872*** -0.449***
(0.0770) (0.0734) (0.0811) (0.0746) (0.0809) (0.0745) (0.0825) (0.0728) (0.0808) (0.0756)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 91150 91112 91150 91112 91150 91112 91150 91112 91150 91112
R2 0.330 0.414 0.319 0.405 0.323 0.408 0.338 0.425 0.322 0.406

Notes: This table shows the results of a regression of log of all (property and crop) damages for both county-level aggregates
on indicators for the presence of a hazard in a given county/cluster along with an interaction of the damage indicator with the
log of damage of that county’s spatial cluster excluding that county. Damages are aggregated to the county/cluster level, and
are in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000 through 2020. Standard errors
are double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.
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Table IA.15: Differences in County-Level Property Damage By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 0.318 -0.162
(1.335) (1.087)

Drought=1 × Cluster Log Damage 0.008 0.023
(0.096) (0.079)

Heat=1 -0.082 -0.681
(0.680) (0.641)

Heat=1 × Cluster Log Damage 0.033 0.063
(0.045) (0.040)

Wildfire=1 -0.987 -0.461
(0.609) (0.575)

Wildfire=1 × Cluster Log Damage 0.199*** 0.152***
(0.045) (0.043)

Flooding=1 -0.367** -0.304*
(0.171) (0.181)

Flooding=1 × Cluster Log Damage 0.105*** 0.097***
(0.012) (0.013)

Hurricane=1 -1.746*** -1.587***
(0.655) (0.515)

Hurricane=1 × Cluster Log Damage 0.185*** 0.164***
(0.033) (0.033)

Cluster Log Damage 0.241*** 0.256*** 0.241*** 0.256*** 0.240*** 0.254*** 0.201*** 0.218*** 0.220*** 0.238***
(0.011) (0.008) (0.011) (0.008) (0.011) (0.008) (0.011) (0.009) (0.009) (0.009)

Log GDP 0.561*** 0.102 0.563*** 0.102 0.548*** 0.111 0.517*** 0.108 0.569*** 0.088
(0.058) (0.084) (0.058) (0.085) (0.057) (0.085) (0.057) (0.084) (0.058) (0.084)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000***
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.383*** -0.082 -0.387*** -0.077 -0.374*** -0.145 -0.339*** -0.105 -0.394*** -0.090
(0.059) (0.236) (0.059) (0.237) (0.058) (0.234) (0.058) (0.241) (0.059) (0.232)

Constant 2.854*** 5.874** 2.871*** 5.817** 2.926*** 6.449*** 3.342*** 6.363*** 3.122*** 6.396***
(0.293) (2.427) (0.292) (2.436) (0.284) (2.398) (0.280) (2.418) (0.274) (2.385)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 111,856 111,827 111,856 111,827 111,856 111,827 111,856 111,827 111,856 111,827
R2 0.158 0.300 0.158 0.300 0.166 0.305 0.212 0.341 0.174 0.308

Notes: This table shows the results of a regression of log of property damages for both county-level aggregates on indicators
for the presence of a hazard in a given county/cluster along with an interaction of log of the county-level damage with the log
of damage of that county’s spatial cluster excluding that county. Damages are aggregated to the county/cluster level, and are
in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000 through 2020. Standard errors are
double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.
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Table IA.16: Differences in County-Level Crop Damage By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 -4.764*** -2.126
(0.582) (1.288)

Drought=1 × Cluster Log Damage 0.332*** 0.204***
(0.044) (0.076)

Heat=1 -5.174* -6.180*
(2.751) (3.386)

Heat=1 × Cluster Log Damage 0.323* 0.355*
(0.180) (0.207)

Wildfire=1 0.040 -1.938
(1.392) (1.652)

Wildfire=1 × Cluster Log Damage 0.030 0.152
(0.104) (0.113)

Flooding=1 1.631*** 0.358
(0.456) (0.481)

Flooding=1 × Cluster Log Damage -0.117*** 0.005
(0.033) (0.035)

Hurricane=1 -0.825 -2.030
(1.436) (1.515)

Hurricane=1 × Cluster Log Damage 0.117 0.145
(0.086) (0.091)

Cluster Log Damage 0.523*** 0.419*** 0.601*** 0.471*** 0.602*** 0.471*** 0.642*** 0.469*** 0.585*** 0.464***
(0.031) (0.024) (0.029) (0.026) (0.029) (0.025) (0.029) (0.031) (0.030) (0.026)

Log GDP 0.508*** 0.016 0.528*** -0.115 0.521*** -0.109 0.509*** -0.118 0.571*** -0.120
(0.094) (0.210) (0.107) (0.215) (0.107) (0.215) (0.103) (0.216) (0.108) (0.219)

Average Wages -0.000*** 0.000 -0.000** 0.000 -0.000** 0.000 -0.000** 0.000 -0.000** 0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.575*** -1.052 -0.632*** -1.041 -0.628*** -0.994 -0.606*** -0.975 -0.693*** -1.111
(0.101) (0.687) (0.116) (0.683) (0.116) (0.680) (0.112) (0.684) (0.118) (0.676)

Constant 2.363*** 15.136** 1.542** 16.201** 1.558** 15.645** 0.949 15.469** 1.748** 17.047**
(0.648) (6.847) (0.678) (6.599) (0.680) (6.642) (0.668) (6.717) (0.687) (6.721)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 12,367 11,775 12,367 11,775 12,367 11,775 12,367 11,775 12,367 11,775
R2 0.546 0.746 0.518 0.737 0.518 0.737 0.522 0.739 0.524 0.738

Notes: This table shows the results of a regression of log of crop damages for both county-level aggregates on indicators for
the presence of a hazard in a given county/cluster along with an interaction of the log of the county-level damage with the log
of damage of that county’s spatial cluster excluding that county. Damages are aggregated to the county/cluster level, and are
in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000 through 2020. Standard errors are
double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.
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Table IA.17: Differences in County-Level Injuries By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 0.066 0.018
(0.215) (0.213)

Drought=1 × Cluster Injuries -0.000 -0.000
(0.000) (0.000)

Heat=1 7.712*** 5.505***
(1.831) (1.287)

Heat=1 × Cluster Injuries 0.017 0.019
(0.013) (0.013)

Wildfire=1 1.586*** 1.559***
(0.572) (0.597)

Wildfire=1 × Cluster Injuries 0.000 0.000
(0.002) (0.002)

Flooding=1 -0.153*** -0.169***
(0.044) (0.036)

Flooding=1 × Cluster Injuries -0.001*** -0.001***
(0.000) (0.000)

Hurricane=1 -0.015 0.082
(0.228) (0.255)

Hurricane=1 × Cluster Injuries 0.007* 0.006
(0.004) (0.005)

Cluster Injuries 0.001*** 0.001** 0.001*** 0.000** 0.001*** 0.001** 0.001*** 0.001*** 0.001*** 0.001**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log GDP 0.173*** 0.048 0.132*** -0.005 0.155*** 0.048 0.175*** 0.049 0.174*** 0.042
(0.057) (0.082) (0.046) (0.081) (0.056) (0.082) (0.057) (0.084) (0.057) (0.082)

Average Wages 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000 0.000 -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population 0.032 -0.059 0.015 -0.066 0.047 -0.091 0.028 -0.062 0.030 -0.054
(0.041) (0.284) (0.040) (0.281) (0.041) (0.283) (0.039) (0.285) (0.039) (0.283)

Constant -2.522*** 0.315 -1.850*** 1.065 -2.457*** 0.658 -2.489*** 0.373 -2.524*** 0.347
(0.577) (2.784) (0.406) (2.721) (0.564) (2.789) (0.569) (2.775) (0.574) (2.778)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 139,912 139,904 139,912 139,904 139,912 139,904 139,912 139,904 139,912 139,904
R2 0.004 0.051 0.022 0.062 0.005 0.052 0.004 0.052 0.004 0.051

Notes: This table shows the results of a regression of injuries for both county-level aggregates on indicators for the presence of
a hazard in a given county/cluster along with an interaction of the log of the county-level damage with the log of damage of
that county’s spatial cluster excluding that county. Injuries data are sourced from SHELDUS, and run from 2000 through
2020. Standard errors are double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1%
significance, respectively.
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Table IA.18: Differences in County-Level Fatalities By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 -0.018 -0.030**
(0.011) (0.013)

Drought=1 × Cluster Fatalities -0.001*** -0.001***
(0.000) (0.000)

Heat=1 1.563*** 1.376***
(0.281) (0.223)

Heat=1 × Cluster Fatalities 0.004 0.008
(0.013) (0.013)

Wildfire=1 0.179*** 0.146**
(0.063) (0.058)

Wildfire=1 × Cluster Fatalities 0.001 0.001
(0.003) (0.003)

Flooding=1 0.020 0.018
(0.015) (0.014)

Flooding=1 × Cluster Fatalities 0.005 0.005
(0.003) (0.003)

Hurricane=1 0.263 0.227
(0.206) (0.175)

Hurricane=1 × Cluster Fatalities 0.003*** 0.003***
(0.000) (0.000)

Cluster Fatalities 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.001*** 0.000 -0.000 0.000** -0.000
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.001) (0.000) (0.000)

Log GDP 0.046* 0.068 0.038 0.058 0.043 0.067 0.045* 0.072 0.045* 0.063
(0.026) (0.054) (0.026) (0.054) (0.027) (0.054) (0.026) (0.059) (0.027) (0.053)

Average Wages -0.000 -0.000* -0.000 -0.000 -0.000 -0.000* -0.000 -0.000* -0.000 -0.000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population 0.005 0.128* 0.002 0.115* 0.007 0.124* 0.007 0.124* 0.006 0.114
(0.022) (0.073) (0.022) (0.068) (0.022) (0.072) (0.021) (0.072) (0.022) (0.073)

Constant -0.636*** -2.247** -0.509*** -1.995* -0.629*** -2.203** -0.641*** -2.266** -0.632*** -2.029**
(0.166) (1.112) (0.149) (1.078) (0.166) (1.106) (0.166) (1.146) (0.167) (0.953)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 139,912 139,904 139,912 139,904 139,912 139,904 139,912 139,904 139,912 139,904
R2 0.003 0.031 0.010 0.036 0.004 0.031 0.007 0.034 0.005 0.032

Notes: This table shows the results of a regression of fatalities for both county-level aggregates on indicators for the presence
of a hazard in a given county/cluster along with an interaction of the log of the county-level damage with the log of damage of
that county’s spatial cluster excluding that county. Injuries data are sourced from SHELDUS, and run from 2000 through
2020. Standard errors are double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1%
significance, respectively.

49



Table IA.19: Differences in County-Level Total Damages Scaled by the Sample Median By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 -5.807*** -3.875***
(1.169) (0.990)

Drought=1 × Cluster Log Damage 0.432*** 0.318***
(0.080) (0.065)

Heat=1 0.286 -0.112
(0.744) (0.654)

Heat=1 × Cluster Log Damage 0.022 0.035
(0.050) (0.043)

Wildfire=1 -1.058 -0.624
(0.657) (0.608)

Wildfire=1 × Cluster Log Damage 0.200*** 0.157***
(0.048) (0.044)

Flooding=1 -0.168 -0.150
(0.182) (0.184)

Flooding=1 × Cluster Log Damage 0.091*** 0.087***
(0.013) (0.013)

Hurricane=1 -1.743*** -1.603***
(0.633) (0.555)

Hurricane=1 × Cluster Log Damage 0.182*** 0.161***
(0.032) (0.035)

Cluster Log Damage 0.248*** 0.262*** 0.262*** 0.274*** 0.261*** 0.272*** 0.227*** 0.240*** 0.243*** 0.257***
(0.011) (0.008) (0.011) (0.009) (0.011) (0.009) (0.012) (0.010) (0.010) (0.009)

Log GDP 0.644*** 0.070 0.696*** 0.069 0.682*** 0.081 0.664*** 0.072 0.708*** 0.056
(0.061) (0.086) (0.066) (0.090) (0.065) (0.090) (0.066) (0.091) (0.066) (0.090)

Average Wages -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000*** -0.000**
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.511*** -0.128 -0.583*** -0.088 -0.569*** -0.152 -0.549*** -0.102 -0.595*** -0.099
(0.065) (0.244) (0.071) (0.257) (0.070) (0.256) (0.071) (0.265) (0.071) (0.250)

Constant -6.902*** -3.107 -7.039*** -3.700 -6.997*** -3.150 -6.650*** -3.325 -6.818*** -3.181
(0.296) (2.474) (0.301) (2.525) (0.293) (2.500) (0.297) (2.537) (0.288) (2.460)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 115,739 115,712 115,739 115,712 115,739 115,712 115,739 115,712 115,739 115,712
R2 0.187 0.336 0.169 0.325 0.176 0.330 0.216 0.361 0.183 0.332

Notes: This table shows the results of a regression of log of total damages scaled by the sample median for both county-level
aggregates on indicators for the presence of a hazard in a given county/cluster along with an interaction of the log of the
county-level damage with the log of damage of that county’s spatial cluster excluding that county. Damages are aggregated to
the county/cluster level, and are in inflation-adjusted USD. Damages data are sourced from SHELDUS, and run from 2000
through 2020. Standard errors are double-clustered at the county- and month-level. *, **, and *** indicate 10%, 5%, and 1%
significance, respectively.

50



Table IA.20: Differences in County-Level Total Damages Scaled by Hazard-Specific Medians By Cluster-level Damage

Counties

(1) (2) (3) (4) (5) (6) (7) (8) (9) (10)

Drought=1 -6.851*** -2.533***
(1.213) (0.874)

Drought=1 × Cluster Log Damage 0.392*** 0.170***
(0.084) (0.054)

Heat=1 -0.038 -0.256
(1.277) (1.106)

Heat=1 × Cluster Log Damage 0.029 0.023
(0.082) (0.068)

Wildfire=1 -0.719 -1.358**
(0.710) (0.615)

Wildfire=1 × Cluster Log Damage 0.102** 0.123***
(0.051) (0.043)

Flooding=1 2.309*** 1.197***
(0.612) (0.435)

Flooding=1 × Cluster Log Damage -0.105*** -0.043
(0.040) (0.030)

Hurricane=1 -2.776*** -4.258***
(0.669) (0.700)

Hurricane=1 × Cluster Log Damage 0.088** 0.134***
(0.035) (0.038)

Cluster Log Damage 0.293*** 0.291*** 0.327*** 0.306*** 0.328*** 0.302*** 0.411*** 0.344*** 0.342*** 0.313***
(0.012) (0.011) (0.014) (0.011) (0.014) (0.011) (0.038) (0.027) (0.016) (0.012)

Log GDP 0.613*** -0.139 0.632*** -0.172 0.616*** -0.155 0.668*** -0.185 0.602*** -0.169
(0.092) (0.150) (0.115) (0.154) (0.115) (0.155) (0.109) (0.154) (0.114) (0.151)

Average Wages -0.000*** -0.000 -0.000*** -0.000 -0.000*** -0.000 -0.000*** -0.000 -0.000*** -0.000*
(0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000) (0.000)

Log Population -0.414*** 0.493 -0.445*** 0.577 -0.432*** 0.529 -0.484*** 0.644 -0.400*** 0.601
(0.098) (0.412) (0.124) (0.432) (0.124) (0.428) (0.118) (0.444) (0.123) (0.436)

Constant -8.582*** -7.675* -9.141*** -8.341* -9.103*** -8.037* -11.074*** -9.891** -9.350*** -8.602*
(0.406) (4.302) (0.451) (4.388) (0.444) (4.323) (0.671) (4.452) (0.477) (4.378)

County FE No Yes No Yes No Yes No Yes No Yes

Date FE No Yes No Yes No Yes No Yes No Yes

Observations 29,361 29,117 29,361 29,117 29,361 29,117 29,361 29,117 29,361 29,117
R2 0.259 0.473 0.232 0.469 0.236 0.471 0.242 0.472 0.243 0.482

Notes: This table shows the results of a regression of log of total damages scaled by the sum of all hazard-specific medians for
all hazards included in each cluster, for both county-level aggregates on indicators for the presence of a hazard in a given
county/cluster along with an interaction of the log of the county-level damage with the log of damage of that county’s spatial
cluster excluding that county. Damages are aggregated to the county/cluster level, and are in inflation-adjusted USD.
Damages data are sourced from SHELDUS, and run from 2000 through 2020. Standard errors are double-clustered at the
county- and month-level. *, **, and *** indicate 10%, 5%, and 1% significance, respectively.
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