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Abstract 

We study the effect of climate risk on how firms organize their supply chains. We use transaction-level 

data on U.S. manufacturing imports to construct a novel measure of input sourcing risk based on the 

historical volatility of ocean shipping times. Our measure isolates the unexpected component of shipping 

times that is induced by weather conditions along more than 40,000 maritime routes. We first document 

that unexpected shipping delays induced by weather shocks have significant negative effects on 

importers’ revenues, profits, and employment. We then show that more exposed firms actively diversify 

the risk of weather delays by using more routes and sourcing from more foreign suppliers, although their 

total imports decline. To rationalize these findings, we introduce shipping time risk into a general 

equilibrium model of importing with firm heterogeneity. Our quantitative analysis predicts substantial 

costs for the U.S. economy associated with different sources of supply chain risk. 
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1 Introduction

The past decades have seen a dramatic transformation in the international organization of

production, with intermediate inputs accounting for two-thirds of global trade and complex

global value chains spanning multiple countries (Johnson and Noguera (2012), Antràs and

Chor (2022)). For many firms, the timely delivery of their inputs is a crucial element of the

production process (Hummels and Schaur (2010), Hummels and Schaur (2013)). However,

the increased reliance on imported inputs has exposed firms to a host of supply chain risks

that can adversely impact the timeliness of their inputs. Salient recent examples include

the increased frequency of extreme weather events associated with climate change, the

geopolitical risk stemming from attacks by Houthi militias in the Red Sea, and the strain on

port infrastructure that followed the Covid pandemic (e.g., Brancaccio et al. (2024)). How

do these and other supply chain risks impact firms’ import behavior? Do firms adapt their

supply chains to hedge the delay risk stemming from these shocks? Answering these questions

is challenging due to the inherent difficulty in developing credible measures of firm-level risk.

We shed light on these questions by focusing on a specific but important source of risk:

weather shocks. We start by establishing that weather conditions have a significant effect on

the ocean shipping times of U.S. imports. To do so, we rely on transaction-level import data

on ocean shipments provided by the U.S. Census Bureau as well as detailed data on oceanic

wave conditions along more than 40,000 maritime routes. We exploit this relationship to

measure the component of shipping times that is induced by weather, which we interpret as

unexpected by U.S. importers given the unpredictability of high frequency ocean conditions.

Armed with this measure, we establish two key empirical results. We first show that

unexpected shipping delays induced by weather shocks have large and disruptive effects

on U.S. importers’ production levels and profit margins. Second, we build a measure of

risk based on the volatility of the weather-induced shipping times. As Figure 1 shows, the

standard deviation of wave height has increased in many locations over the past decade. We

show that firms systematically respond to this type of weather risk along different margins of

adjustment. More exposed firms rely on more routes and foreign suppliers, and they lower

both their imports and the concentration of expenditure across routes and suppliers. We

next incorporate risky shipping times into a quantitative model of firm-level importing, and

calibrate the model to match salient features of the data. We use our framework to quantify

the impact of three scenarios of heightened risk: climate change, geopolitical tensions in the

Red Sea, and port congestion. Overall, we find that these shocks trigger an important risk

diversification response by importers, but nevertheless reduce U.S. real income by 0.4% to

1.33%.
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Figure 1: Change in Standard Deviation of Wave Height 2011-2023

Source: WaveWatch III Global Wave Model, University of Hawaii. Notes: We compute the standard

deviation of average daily wave height across all days of each year at each coordinate in the oceans and then

average across years in 2011-2013 and in 2021-2023. The figure shows the percentage change at each grid

point between these two periods.

The cornerstone of our analysis is the U.S. Census Bureau’s Longitudinal Firm Trade

Transactions Database (LFTTD), which provides transaction-level data recording the identity

of the U.S. importer and its foreign supplier, as well as information about the product, quantity,

and value transacted for the universe of U.S. imports. Importantly, the data record the

delivery time between the foreign port of exit and the U.S. port of entry and, for ocean

shipments, the vessel identity. Since our customs data do not contain details on each vessel’s

journey across the ocean, we propose an algorithm that uses the vessel name, foreign port

stops, and U.S. port of entry to determine the intermediate stops a vessel made on its way to

the U.S. We then construct the shipment route by finding the shortest maritime route for

each trip segment of the vessel’s journey using data from Eurostat’s SeaRoute program.1 We

compute the weather conditions along each shipment’s route using detailed hourly data at

the 0.5 degree level on oceanic wave conditions, measured with the average wave height and

direction from the National Oceanic and Atmospheric Administration (NOAA).

Our methodology relies crucially on the measurement of the components of shipping times

that are unexpected to importers. We use a rich set of fixed effects and controls to remove

components that are presumably known at the time the inputs are bought, including the

1Ganapati et al. (2024) show that vessels on average follow the optimal maritime routes very closely.
Moreover, we confirm, using AIS tracking data, that the major routes we construct are close to the actual
routes that vessels follow.
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identity of the supplier, the route, the vessel, the month, and the shipping charges. We

then isolate the variation in the residualized shipping times that is induced by weather

conditions, i.e., which is explained by the realized wave height and direction observed along

the route of each transaction. To interpret the variation in the weather-induced shipping

times as unexpected, our identifying assumption is that the realized weather conditions along

the entire maritime route are not anticipated by the importers when they make the orders,

beyond seasonal patterns that are picked up by route-month fixed effects. We view this

assumption as plausibly satisfied in the data. On the one hand, most maritime shipments to

the U.S. involve multi-week ocean crossings, and import orders are placed typically many

weeks before production finalizes and goods are shipped (see Deloitte (2024)). On the other

hand, weather forecasts are reasonably accurate for about 7 days into the future, and only

general patterns can be predicted beyond 2 weeks—with ocean wave height being particularly

hard to predict given the chaotic nature of ocean dynamics (Alley et al. (2019), Zhang et al.

(2022) and Mishra et al. (2022)).

We analyze the effects of shipping delays induced by weather shocks on firms’ outcomes.

We identify for each year the shipments that were extremely delayed, which we define as

having a weather-induced delivery time larger than the 95th percentile of its distribution for

a given route. We estimate panel regressions for the years 2011-2016 and document that

U.S. importers with a higher share of delayed inputs due to weather experienced significant

declines in sales, profits and employment. A one standard deviation increase in the share

of input costs that are weather-delayed reduces firms’ sales by 6.5%, profits by 3.5% and

employment by 1% in the same year. These large negative effects highlight the substantial

impact of supply chain disruptions on firms’ production, and suggest that firms are typically

not able to fully hedge their supply chain risk with insurance or financial instruments. We

next study whether U.S. importers adjust their sourcing strategy and import demand ex-ante

to reduce the potential impact of weather shocks.

To explore whether importers hedge against weather shocks, we build a measure of risk

based on the volatility of weather-induced shipping times. In particular, we measure the

riskiness of each foreign supplier-route-product combination as the standard deviation of

the weather-induced shipping times over 3-year rolling windows. We construct a shift-share

exposure to risk for each importer as a weighted average of the risk of its suppliers and routes

over the previous 3 years, using pre-determined import shares as weights. We then estimate,

for the years 2011-2016, panel regressions of firms’ sourcing behavior on risk exposure at the

importer-product-year level and include a rich set of fixed effects and controls. Our results

indicate that U.S. importers diversify weather-induced risk along the extensive and intensive

margins. Going from the 25th to the 75th percentile of the shipping risk distribution increases
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the number of routes used and the number of foreign suppliers by 7.7% and 4.9%, respectively.

Moreover, it reduces the total value imported by 5.1%. Thus, importers with ex-ante riskier

supply chains spread their input expenditures among more routes and foreign suppliers, and

import less overall. Importantly, the negative effect of risk on imports is estimated conditional

on the negative effect that longer shipping times have on import demand, indicating that

uncertainty has an additional detrimental impact on international trade.

To rationalize these findings, we incorporate shipping risk into a standard model of

importing with firm heterogeneity, along the lines of Blaum et al. (2018), Gopinath and

Neiman (2014), and Halpern et al. (2015). Firms can source their inputs domestically or from

foreign suppliers. We follow Hummels and Schaur (2013) in their treatment of timeliness by

assuming that input qualities are reduced when inputs take longer to arrive, for example due

to spoilage, absence of key inputs, etc. The key departure from the literature is that firms

are uncertain about shipping times at the time of placing orders. While firms are risk-neutral,

the presence of market power with elastic demand introduces curvature in revenues, making

expected revenues fall with more volatile input qualities.2 Firms can diversify their shipping

time risk by sourcing from multiple foreign suppliers, or equivalently by using multiple

routes, albeit this strategy is limited by per-supplier fixed costs. We provide conditions under

which firms increase their number of foreign suppliers and reduce their import values after a

mean-preserving spread to supplier qualities.

We consider a calibrated version of the model to assess whether the theory can come to

terms with the empirical evidence. Firms are heterogeneous both in their productivity and

in the shipping time risk they face. Our calibration targets the effect of shipping time risk

on the extensive margin of importing to capture the role of risk, and we require the model

to match the negative association between sales and shipping times observed in the data to

discipline the role of supplier timeliness. To speak to aggregate effects, we also target the

joint distribution of firm size and risk observed in the data, namely, that larger importers are

matched with safer foreign suppliers. The calibrated model replicates well the key moments

of shipping time risk and import demand. We can therefore use the model as a laboratory to

evaluate the impact of any scenario involving a change to shipping time risk on U.S. firms.

We assess the impact of various risk-related scenarios that have recently received significant

attention, namely, climate change, geopolitical tensions in the Red Sea, and port congestion.

The volatility of ocean wave height has increased on average by 0.34% per year between

2011-2023, consistent with work suggesting an increasing likelihood of extreme wave heights

2The imperfect substitutability between labor and material inputs, and between domestic and foreign
materials, also introduce curvature in the revenue function.
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(Young et al. (2011)). We evaluate the effects of an increase in the volatility of ocean wave

heights that continues along this trend over the next 50 years on the U.S. economy in our

model. In a second exercise, we investigate how the re-routing of commercial ships following

the Houthi attacks around the Suez Canal affects the U.S. economy, through an increase

in both the average and volatility of navigation time. In a third exercise, we consider the

greater variability of waiting times at ports associated with the rise in port congestion that

took place in the post Covid period of 2021-2022. For all exercises, we find that, despite a

strong risk diversification response along the extensive margin, imports fall substantially,

as firms reduce their risk exposure by substituting towards domestic production. This shift

increases production costs and prices, reducing U.S. real income by 0.4% to 1.33%.

Related Literature. Our paper contributes to several strands of the literature. First, it

relates to work that investigates the importance of shipping times for international trade,

both in theory and in the data (Evans and Harrigan (2005), Hummels and Schaur (2010) and

Hummels and Schaur (2013)). While these seminal papers focus on the role of the level of

shipping times, i.e., their first moment, we study the effect of the variance of shipping times,

i.e., the second moment. Our empirical results show that uncertainty around shipping times

has an additional negative effect on import demand. We propose a theory of the firm that

incorporates this mechanism in a way that is both tractable and amenable to quantitative

analysis.

Second, we contribute to a broader literature that analyzes the impact of uncertainty

on firms. Most of the international trade literature on this topic has focused on exports

and FDI (e.g., Ramondo et al. (2013), Fillat and Garetto (2015), Esposito (2022), Baley

et al. (2020) and De Sousa et al. (2020)). In contrast, we analyze risk on the input side

and how it affects firms’ sourcing decisions. Only a few papers have studied the effects of

sourcing uncertainty on international trade (e.g., Gervais (2018), Grossman et al. (2023),

and Handley et al. (2024)). Our contribution to this literature is to develop a novel and

plausibly exogenous measure of firm-level shipping time risk using weather shocks, which

we use to study the causal impact of risk on importers in the United States. We combine

weather data with comprehensive firm-level administrative data and show that importers

actively adjust the intensive and extensive margins of importing in response to weather risk.3

Complementary to our work are Balboni et al. (2023) and Castro-Vincenzi et al. (2024), who

study how firms diversify their sourcing locations in Pakistan and India, respectively. In

contrast to our focus on maritime shipping risk and international trade, these works focus on

3The diversification mechanism we highlight is complementary to firms’ use of inventories, as shown by
Alessandria and Ruhl (2021) and Carreras-Valle (2021).
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adaptation to flood risk and on domestic trade.

Third, we contribute to work that studies the effects of supply chain disruptions on firms

(Carvalho et al. (2021), Barrot and Sauvagnat (2016), Boehm et al. (2019), Khanna et al.

(2022), Alessandria et al. (2023), Lafrogne-Joussier et al. (2023)).4 Relative to this literature,

we provide a new way to identify supply shocks using readily available weather data, rather

than large, aggregate shocks—such as the Japanese earthquake or the Covid lockdowns. Our

measure therefore lends itself to a wide range of applications that require exogenous shocks

to firms.

Finally, we use our empirical findings to calibrate a model to shed light on the long-run

implications of climate risk. Existing models of firm-level input sourcing typically abstract

from supplier risk considerations—e.g., Gopinath and Neiman (2014), Halpern et al. (2015),

Antras et al. (2017) and Blaum et al. (2018). Our contribution is to extend a sourcing model

to allow for risk and to quantify the impact of risk in general equilibrium. Therefore, our

calibrated model can serve as a laboratory to estimate the impact of any type of sourcing

risk on U.S. importers.

The remainder of the paper proceeds as follows. Section 2 describes our data and

measurement of shipping times, while Section 3 discusses our empirical results. Section 4

presents the model, which we calibrate to perform our quantitative analysis in Section 5.

Section 6 concludes.

2 Data Construction

In this section, we describe how we measure shipping times, routes, and weather conditions

for every import transaction headed to the U.S. Our novel methodology allows us to infer

vessels’ shipping routes from Census data and to combine these with the observed weather

conditions at granular locations in the oceans for over 40,000 distinct shipping routes. These

will be the building blocks of our measure of shipping time risk, which we exploit in the

empirical analysis of Section 3.

4Also related is work that studies the effects of climate shocks on firms, e.g., Pankratz and Schiller
(2024) and Dunbar et al. (2023). More broadly, we contribute to a large literature that studies firm-to-firm
relationships, see e.g., Dhyne et al. (2021), Bernard et al. (2019), Esposito and Hassan (2023), Heise (2024).
This literature does not typically focus on uncertainty.
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2.1 Census Data

Our empirical analysis relies on the Longitudinal Firm Trade Transactions Database (LFTTD)

of the U.S. Census Bureau. This dataset comprises the entire universe of international trade

transactions made by U.S. firms. We focus on all the import transactions during the period

1992-2016. Each transaction is associated with an identifier of the U.S. importer, the HS-10

product code traded, the mode of transportation (vessel, air, etc.), as well as the value,

weight, and quantity shipped. The data also report an identifier of the foreign seller and

an indicator of whether the transaction is between related parties.5 We calculate prices as

the value of the shipment divided by the quantity shipped and keep both related party and

arm’s-length transactions.

The LFTTD contains several additional variables that are critical to construct our measure

of risk. First, each customs record reports the export and the import dates (after customs are

cleared), which allows us to construct shipping times. Second, for seaborne imports, we also

observe the foreign port of departure, the U.S. port of arrival, and the vessel name. We use

this information to construct shipping routes, as explained below.6 Since in some cases an

import transaction spans multiple customs records, we collapse the data to the supplier (x) -

product (h) - foreign country (c) - origin port (pe) - destination port (pi) - foreign export

date (te) - import date (ti) - vessel (v) - importer (f) - related party status (a) level. We

call such an observation a transaction. We describe in detail the data cleaning process in

Appendix A.1.

We merge the LFTTD data with the Longitudinal Business Database (LBD), which

reports the annual employment and the industry of each U.S. establishment.7 Given our

focus on supply chains, we restrict our analysis to firms that operate in the manufacturing

sector, whose imports are most likely intermediates into production. We also obtain firms’

total sales, cost of materials, and employee compensation from the Census of Manufactures

(CMF) in census years (1992, 1997, etc.) and from the Annual Survey of Manufacturers

(ASM) for non-census years. We construct profits as sales minus cost of materials and payroll.

5The foreign seller is identified by a Manufacturer ID (MID), which is an alphanumeric code that combines
information on the seller’s country, name, street address, and city. We follow Kamal et al. (2015) and
Kamal and Monarch (2018) in combining sellers with the same street address and city into one. We use the
concordance by Pierce and Schott (2012) to transform the HS-10 codes into time-consistent product codes.
Note that we do not observe domestic suppliers, only foreign ones. See Appendix A.1 for more details.

6Less information is available for other modes of transportation. For non-vessel imports we only have the
shipping company name rather than the name of the individual truck, train, or plane, and we only know the
country of departure rather than the precise departure location.

7We prepare the LBD by collapsing these data to the firm-level, and construct the firm’s main industry
in each year as the 6-digit NAICS code associated with the highest employment. We use the time-consistent
industry codes constructed by Fort and Klimek (2018).
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Table 1: U.S. Import Transaction Summary Statistics

All Seaborne
Total Imports 10,540 4,250

Unique Importers (f) 171,400 92,300

Unique Exporters (x) 815,000 407,400

Number of Transactions (millions) 109 35.8

Number of U.S. Ports of Entry (pi) 302

Number of Foreign Ports (pe) 1,795

Number of Origin-Destination Port Pairs 43,080

Unique Vessels (v) 401,700

Source: LFTTD and authors’ calculations. Table summarizes U.S. imports from 1992 to 2016. Values in the
first row are reported in billions of 2009 dollars.

Table 1 reports summary statistics of our dataset. The first column considers all manufac-

turing imports over the period 1992-2016. The second column shows the sample of seaborne

trade only, which we use to construct our measure of shipping risk below. Our dataset covers

about 10.5 trillion dollars of imports (in 2009 dollars), of which about 40 percent are by

vessel. For vessel-based transactions, we observe 302 U.S. ports and nearly 1,800 foreign

ports, as well as more than 400,000 unique vessels, which are crucial pieces of information to

construct shipping routes, to which we turn to next.

2.2 Construction of Shipping Times and Routes

Shipping Times For all shipments, irrespective of their mode of transportation, we calculate

the shipping time as the difference, in days, between the import date in the U.S. and the

export date from the foreign country. We show statistics of the distribution of shipping

times in Table 2. Vessel shipments take on average 16 days to arrive to the U.S., which is

substantially more than all other modes of transportation. Air and truck shipments arrive

in the U.S. on average within the same day, while train shipments arrive on average in 4

days. Importantly, there is a high degree of dispersion in vessel shipping times. There is less

dispersion for other modes of transportation, which have a median shipping time of zero.8

Routes and Journeys For seaborne shipments, we develop an algorithm to construct ocean

shipping routes and vessels’ journeys between ports from the information on the port of entry

8Of course, predictable factors such as the origin country or the time of year affect vessel shipping times
to the U.S. We show additional statistics on shipping times and their determinants in Appendix A.2.
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Table 2: Shipping Times by Mode of Transportation

Avg. Std. P5 P25 P50 P75 P95 Total Value
Time Time

Vessel 16.4 23.5 3.5 10 13.5 20.5 33.3 4,250

Train 4.4 6.2 0 0 0 8.5 16.9 1,450

Truck 0.1 0.4 0 0 0 0 0 2,210

Airplane 0.5 0.9 0 0 0 1 2.3 1,610

Source: LFTTD. Table summarizes the distribution of shipping time and value across different regions and
modes of transportation. Values are reported in billions of 2009 dollars.

and port of origin. We assign each transaction in the customs data to a trip, defined as a

journey of a vessel that begins with the loading of cargo at a foreign port and ends (possibly

after some intermediate stops) with the unloading of cargo at a U.S. port. As a starting

point, we sort all transactions involving a given vessel by their foreign departure date. We

then take all the vessel’s transactions and assign them to a single trip (‘‘Trip 1’’). Next,

we find the earliest arrival date of the vessel in the U.S. for this trip. If there exists any

transaction of the same vessel with an export departure date abroad that is later than this

earliest arrival date in the U.S., we assign these transactions to a new trip (‘‘Trip 2’’). We

continue splitting trips into sub-trips until no further splits are possible.9 We then use the

dates of import and export to construct the sequence of ports visited by each shipment, e.g.

Le Havre - Birmingham - New York - Newport News. We refer to a leg of the trip between

two ports as route segment.

We determine the path taken by the vessel across the ocean on any route segment using

Eurostat’s SeaRoute program. This program computes the shortest maritime paths using the

network of global shipping lanes and observed vessel movements from satellite data.10 Our

sample includes around 10,500 route segments and 43,000 routes, i.e., distinct ordered sets of

route segments ending in any U.S. port. We show that, for a selected sample, these routes

closely follow actual vessel movements reported by AIS data (Appendix A.3).11 The upper

panel of Figure 2 illustrates the route segments in our data.

For shipments arriving with modes of transportation other than vessel, we only know the

country of departure rather than the precise departure port. We therefore approximate the

9In some instances, the arrival date may be misreported. In Appendix A.1 we explain how we identify
such cases and how we refine our algorithm to redefine the trips.

10The shipping lanes are from the Oak Ridge National Labs CTA Transportation Network Group, Global
Shipping Lane Network: http://geocommons.com/datasets?id=25.

11This evidence is consistent with Ganapati et al. (2024), who show that vessels typically follow the
minimum-distance routes fairly closely. In addition, two-thirds of world trade in manufacturing travels on
container ships, which typically follow fixed itineraries (i.e. the so-called ‘‘bus system’’, see Brancaccio et al.
(2020) and Heiland et al. (2022)), which are more likely to be picked up by the Eurostat’s SeaRoute program.
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Figure 2: Weather Conditions and Routes

(a) Network of Shipping Routes

(b) Volatility of Wave Height

Notes: The upper panel shows the network of shipping routes constructed in our data. The bottom panel

shows the standard deviation of wave height across all days from 2011-2016 and some selected shipping

routes.
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shipping route as a foreign country of origin and a U.S. entry point (e.g., airport or border

crossing) pair.12 Since we cannot compute the weather conditions for these transactions, we

will assume that their shipping risk is zero for the empirical analysis we do in Section 3.13

Our measures of shipping times and routes are the building blocks of our empirical

analysis. The key advantage of relying on the U.S. Census transaction-level data to obtain

these measures is its comprehensive nature and extreme detail, which allows for a systematic

analysis of the role of shipping risk in the full economy. However, there are a number of

limitations due to the nature of the available data. First, we do not have information on the

voyage from the manufacturer’s production facilities to the foreign port, nor on the journey

from the U.S. port of entry to the importer’s plant. Hence we do not capture the risks

associated with those parts of the trip. However, typically goods spend several weeks on

the vessel to the U.S. and thus this part of the journey is likely a large fraction of the total

travel time. Second, we do not know whether goods are reloaded from one vessel to another,

i.e., ‘‘trans-shipped’’ (Ganapati et al., 2024).14 For the products that are trans-shipped we

only observe the journey on the last vessel to the U.S., implying that we underestimate the

overall shipping delay risk faced by importers.

2.3 Construction of Weather Conditions

To obtain exogenous variation in shipping times we rely on information on oceanic weather

conditions, which we obtain from the WaveWatch III model maintained by the University

of Hawaii based on NOAA data. These data report the height and direction (in degrees) of

significant waves at hourly or three-hourly frequency for geo-locations at 0.5 degree distances

in the oceans during the period 2011 to 2016.15 There is an extensive literature showing

that oceanic wind conditions and waves affect navigation speed (e.g., Filtz et al. (2015)

and Viellechner and Spinler, 2020) and increase accident risk (Heij and Knapp, 2015).16

We aggregate the hourly information to the daily level and compute the daily average of

12In our sample, there are 11,500 distinct non-seaborne routes.
13We will analyze below to what extent importers use other modes of transportation, in particular shipments

by airplane, to mitigate shipping risk.
14This is because the port of exportation that we observe in the data is the foreign port where goods are

loaded onto a vessel headed to the U.S. Note that any intermediate stops the vessel makes on its journey are
captured in our customs data, as explained above, as long as some cargo that is bound for the U.S. is loaded.

15Significant waves are the waves that a trained observer would see when looking at the ocean. Significant
wave height is the average height of the highest third of the waves. If both swell and wind-waves are
present, it equals the square root of the sum of the squares of the swell and wind-wave heights. See
https://www.ndbc.noaa.gov/waveobs.shtml.

16Ocean currents are also important determinants of navigation speed, but they can be perfectly predicted,
and therefore are absorbed by the route-month fixed effects we use in our methodology.
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significant wave height and direction for each geo-location in the oceans.17

We combine the weather information with the route segments for seaborne shipments

constructed earlier. Since the effect of waves on vessel speed depends on the direction of

travel, we compute for each route coordinate a relative wave direction. This relative direction

is computed by taking the absolute difference between the direction of the waves and the

estimated direction of vessels at that point. We estimate vessels’ direction using the latitude

and longitude of subsequent route coordinates. A greater relative direction means that the

waves are less aligned with vessels’ likely course.18 For each route segment, we compute the

average weather (i.e., wave height and relative direction) for each day by averaging across

all segment coordinates.

In the final step, we merge the route and weather information with the trade transaction

data. For each day a vessel spends on a segment, we merge in the corresponding segment-level

average weather. We then take an average across the day-level weather measures for each

transaction. Our final dataset thus contains, for each transaction, an average wave height

and an average relative wave direction along the entire route.19

To illustrate the source of our exogenous variation, the blue and green shading in the

bottom panel of Figure 2 report the standard deviation of the average daily wave height for

each grid point in our data. The red lines indicate some shipping routes used by U.S. importers.

There are significant differences across locations. Routes across the Atlantic and Pacific have

higher wave height volatility than routes along the coast of South America. Importantly,

there is variation even across routes that are relatively close to each other. Vessels traversing

the Northern Atlantic Ocean on their way to the East Coast face a significantly higher

standard deviation of wave height than vessels that travel further South.20

17We aggregate the data from the hourly to the daily level to reduce computational requirements. If
information is unavailable at a geo-location, we take a simple average of the weather in the surrounding grid
points. Note that, while we have weather conditions in the oceans, we do not have weather information for
some of the more interior bodies of water such as the Great Lakes, the Mediterranean sea, and the Baltic Sea.
Consequently, for trip segments in these regions the weather is missing.

18For example, a wave direction of 75 degrees for a vessel traveling at direction 90 degrees would be
translated into a wave direction of abs(90− 75) = 15 degrees. When this absolute difference exceeds 180, we
subtract 180 to get the minimum distance. For instance, if a vessel travels North and the waves go West, the
relative direction would be abs(0− 270)− 180 = 90 degrees.

19Since we do not know a vessel’s precise location on each day, we cannot use the actual weather in a
vessel’s vicinity and instead use the average segment-level weather. In robustness analysis below, we impute
a vessel’s location and use the weather only near the vessel’s imputed location. The results are similar.

20Appendix A.4 provides some summary statistics on wave height. We also show that there are significant
differences in weather in the Northern Atlantic and Northern Pacific across seasons.
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Table 3: Summary Statistics on Foreign Sourcing

Mean St. Dev. P50 P95
Number of Routes 2.23 4.08 1 6.77

Number of Suppliers 1.90 3.84 1 5.39

HHI across Suppliers 0.88 0.21 1 1

HHI across Suppliers and Routes 0.81 0.27 1 1

Source: LFTTD and authors’ calculations. Table reports the mean and standard deviation across importer-
product-year tuples in our 1992-2016 sample period. Values are expressed in thousands of 2009 dollars.

3 Empirical Analysis

In this section, we investigate how U.S. importers cope with the risk stemming from shipping

delays. We start by documenting that importers rely on multiple foreign suppliers and

shipping routes to source their products. We then establish that extremely long shipping

times induced by weather conditions (‘‘shipping delays’’) have negative and significant

consequences on importers’ performance. Lastly, we document that U.S. manufacturing

importers adjust their sourcing strategy and import demand in response to shipping risk.

3.1 Multi-Route and Multi-Supplier Sourcing

We show in Table 3 that firms rely on multiple routes to source the same HS-10 product

within the same year. The average firm uses 2.2 routes per product and year, across all

modes of transportation. The large standard deviation compared to the mean indicates that

there is substantial heterogeneity across buyers. While the median importer uses only one

route for a given product, firms at the 95th percentile use nearly 7. Table 3 shows that firms

also rely on multiple foreign suppliers to source the same HS-10 products. Firms sourcing a

given product from multiple suppliers account for almost 89% of imports. We argue below

that one reason to use multiple routes and suppliers is to hedge against shipping delay risk

(Section 3.4). In addition, although input expenditures are, on average, highly concentrated

among routes and suppliers, the degree of this concentration varies substantially.

3.2 Measuring Unexpected Shipping Times

A central goal of our methodology is to measure shipping delays, that is, instances where

goods arrive later than expected. However, we do not observe the shipping times expected

by the importers, only the realized ones. To isolate the component of shipping times that is

13



unexpected, we propose a two-step approach. In the first, we regress the observed shipping

times on a rich set of fixed effects and observables to capture determinants of the shipping

times that are likely anticipated by importers, such as the route, season, supplier, or shipping

charges. To remove any additional unobserved determinants of shipping times, in a second

step, we regress these ‘‘residualized’’ shipping times on the weather conditions observed

along the maritime route. We treat the predicted effects from this regression as the weather-

induced unexpected shipping times. We include the residualization in the first step to remove

predictable effects of weather on shipping times. For example, shippers could systematically

use different vessels on routes on which weather conditions are more severe.21

Our measurement of unexpected shipping times relies on the assumption that, at the time

of placing orders, importers do not fully anticipate the weather conditions along the entire

maritime route beyond the usual seasonal patterns, which are picked up by the route-month

fixed effects in the residualization. We believe that this is a reasonable assumption as import

orders are placed typically many weeks before production finalizes and goods are shipped (see

Deloitte (2024)). Moreover, most shipments to the U.S. require multi-week ocean crossings

where weather conditions cannot be perfectly predicted, even by shipping companies relying

on sophisticated weather forecasting technology.22 Importers may also be uncertain about

the exact shipping date of their orders.

Step I: Residualization. We focus on vessel shipments only and treat shipments using all

other modes as riskless. Consider a buyer f that orders a vessel shipment s of product h

from seller x in time period t. The seller can either be a related party or at arm’s length, and

this is captured by the index a. The shipment arrives to the U.S. on vessel v via route r,

which consists of a combination of the port of origin and destination. A given shipment s

has a weight of W s and total shipping charges (freight costs plus insurance) are Cs dollars.23

The time it takes for the shipment to arrive in the U.S., T sxhrtvfa, is a stochastic variable with

the following law of motion:

21Another advantage of the residualization is that we can perform it on the full sample from 1992 while
we have weather data only for 2011-2016. In a robustness exercise below, we use the risk measure obtained
from the residualization step, and show that our results carry over to the longer sample starting in 1992.

22Forecasts are reasonably accurate only until around 7 days into the future, and only general weather
trends can be predicted beyond 2 weeks (see Alley et al. (2019) and Ritchie (2024)). Zhang et al. (2022) and
Mishra et al. (2022) argue that despite advancements in machine learning and predictive modeling, accurately
forecasting ocean wave height remains a difficult problem due to the chaotic and non-linear nature of ocean
dynamics.

23The rationale to include the shipment weight and freight rate is that they have a significant effect on
shipping times, as we show in Table A.2 in Appendix A.2.
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ln(T sxhrtvfa) = π̄x + ᾱh + γ̄rt + ξ̄v + δ̄f + ω̄a (1)

+ πx + αh + γrt + ξv + δf + ωa + η ln (Cs) + ρ ln (W s) .

The terms with upper bars capture a long list of deterministic components that might be

known to the buyer at the time of ordering. For instance, π̄x may reflect the ability of a

supplier to arrange logistics with shipping companies, while ᾱh may capture the fact that

some products are harder to ship or take longer to get cleared at customs. γ̄rt captures

route characteristics in a given month t (e.g., April 2015), such as weather on the route or

characteristics of the ports of departure or entry, e.g. the average time it takes to unload

a shipment and clear customs.24 Shipping times are also determined by random shocks

(πx, αh, γrt, ξv, δf , ωa) which are realized after import orders are placed. We compute the

residuals t̃s from regressing the observed shipping times on the set of fixed effects and

observables that are specified in equation (1).

Step II: Weather Conditions. While our residualization removes various plausibly known

components of shipping times, some of the remaining variation could still be anticipated by

the importers even conditional on shipping charges. For example, shipping contracts could

involve negotiations over dimensions beyond freight cost, such as promises of future business,

which could be correlated with shipping times in a known way. We therefore focus on the

variation in navigation times induced by weather along the shipping route.

Following the literature on ocean shipping, we measure weather conditions with significant

wave height and relative direction (Filtz et al. (2015)). We regress the transaction-level

residualized shipping times obtained from the previous step on these variables and their

interaction, for the years 2011-2016 for which we have weather data:

t̃s = β1Height
s + β2Direction

s + β3Height
s ·Directions + ϵs, (2)

where, for each shipment s in the LFTTD, t̃s is the residualized log shipping time, Heights is

the average wave height along the shipment’s route in meters, and Directions is the average

relative wave direction in degrees, relative to the vessel’s direction of travel.

Table 4 presents the results from the regression. The first column includes only wave

24Similarly, ξ̄v may capture the speed or weight of a vessel. The buyer component δ̄f captures buyer
characteristics that may affect shipping times, such as its ability to arrange logistics with the supplier. The
relationship status component ω̄a may capture that it is easier to arrange transport when the partners are
related rather than at arms’ length.
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Table 4: Effect of Weather on Shipping Times

Dep. Var: t̃s t̃s t̃s

Wave Heights −0.025∗∗∗ −0.026∗∗∗ −0.029∗∗∗

(0.000) (0.000) (0.001)

Directions −0.010∗∗∗ −0.020∗∗∗

(0.000) (0.000)

Wave Heights× 0.003∗∗∗

Directions (0.000)

R-Squared 0.013 0.013 0.013
Observations 5,728,000 5,728,000 5,728,000

Source: LFTTD and authors’ calculations. Number of observations has been rounded to the nearest 1000 as
per U.S. Census Bureau Disclosure Guidelines. The variable wave height is expressed in meters, while the
variable direction is expressed in hundreds of degrees. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and
10% level, respectively.

height as regressor, the second column adds the relative wave direction, and the third column

adds the interaction term. Higher waves reduce shipping times: as shown in the final column,

a one standard deviation increase in wave height (1.5m) reduces shipping time by nearly 4

log-points. Shipping times are also reduced when waves are against the direction of travel:

waves that are opposite to the vessel’s direction of travel (180 degrees) reduce the shipping

time by 4 log points. While the positive effect of wave height and direction on vessel speed is

possibly surprising, we find similar results when we run these regressions with satellite data

(Appendix A.3). These data do not rely on an imputation of routes and report information on

waves and vessel speed at exact vessel locations in the ocean, indicating that our results are

not driven by our imputation methodology. The results are also in line with earlier findings

that have shown a positive effect of wave height on speed (Filtz et al. (2015)), and could

be consistent with vessels increasing cruising speed when passing through areas with bad

weather. The predicted values from the regression in column (3), t̃s,weather, constitute our

measure of unexpected shipping times due to weather.

3.3 Shipping Delays and Importers Performance

We define a weather-induced delay as a case where a transaction’s weather-induced unexpected

shipping time, t̃s,weather, is above the 95th percentile of the shipping times distribution within

the corresponding product-route. For each importer, we then compute the weighted share of

these weather-delayed inputs as:

FracDelayedweatherft =

∑
sD

s,weather
ft · Imp Valuesft

Total Input costsft
, (3)
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Table 5: Effect of Extreme Delays on Firms’ Outcomes

(1) (2) (3)
Weather Shocks

Dependent Variable (in logs): Sales Profits Employees
Frac Delayed −2.434∗∗∗ −1.298∗∗ −0.390∗

(0.513) (0.502) (0.231)

Importer FE Y Y Y
Year FE Y Y Y
R-Squared 0.97 0.92 0.98
Observations 40, 500 40, 500 40, 500

Residualized Only
Dependent Variable (in logs): Sales Profits Employees
Frac Delayed −2.270∗∗∗ −1.197∗∗∗ −0.348∗∗

(0.386) (0.405) (0.152)

Importer FE Y Y Y
Year FE Y Y Y
R-Squared 0.94 0.92 0.98
Observations 40, 500 40, 500 40, 500

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level. Mean of FracDelayedweatherft is 0.0038 and standard

deviation is 0.0266. R2 is the overall fit inclusive of the fixed effects. ∗∗∗, ∗∗, and ∗ denote significance at the
1%, 5%, and 10% level, respectively.

where Ds,weather
ft is an indicator that shipment s to importer f was delayed in year t,

Imp Valuesft is the import value of such shipment, and Total Input costsft are the importer’s

total production costs (materials, including domestically sourced inputs, plus labor) in the

year.25 Intuitively, this measures the share of an importer’s input expenditures that are

subject to extremely long shipping times in a given year. We then estimate the following

panel regression for the years 2011-2016:

ln(Y o
ft) = α + β1FracDelayed

weather
ft + γf + δt + ϵft, (4)

where Y o
ft is either the sales, operating profits (sales minus materials and labor costs), or

number of employees, and γf and δt are firm and year fixed effects, respectively. Our

identifying assumption is that, conditional on firm fixed effects, the fraction of inputs that

is subject to extreme shipping delays due to weather is orthogonal to any unobservable

characteristics that may affect an importer’s post-delay performance. Our construction of

weather shocks in the previous section aims to satisfy this assumption. The top panel of

Table 5 reports the results. Standard errors are clustered at the firm-level.

Shipping delays significantly disrupt production levels and profit margins. Increasing the

25Data on production costs is taken from the manufacturing census or the ASM. Note that for non-census
years we only have this information for the subset of firms that are in the ASM.
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fraction of delayed shipments by one standard deviation (2.66 percentage points, which is

almost a ten-fold increase from the average fraction delayed, 0.38%) is associated with a drop

in sales by 6.5%, a fall in profits by 3.5%, and in employment by 1.0%. Therefore, extreme

unexpected delays have a large and significant impact on U.S. importers. Our large effects of

shipping delays are also consistent with evidence that the shipping risk is borne primarily

by the buyer (see Herghelegiu and Monastyrenko (2020) and Eurosender (2023)) and that

insurance for supply disruption events is limited and expensive (Heckmann (2016)).26

In the bottom panel of Table 5 we re-run the regressions using the residualized shipping

times from Step 1 instead of the weather-induced shipping times from Step 2 to construct

delays. This specification picks up all types of delays, including those unrelated to weather

such as port delays or strikes, but requires a stronger identification assumption. Specifically,

we now have to assume that any delays we capture with the residuals t̃s are unanticipated

by the importers. While this assumption is not as clearly satisfied as for weather shocks,

we find relatively similar coefficients. A one standard deviation increase in the fraction of

delayed shipments is associated with a drop in sales by 6%, a fall in profits by 3.2%, and in

the number of employees by 0.9%.

In Appendix B.1, we construct an alternative measure of weather shocks. Instead of

averaging over the weather conditions of the entire route, we predict where on the route the

vessel is on each day and only use local weather conditions around this location. We then

construct weather-induced shipping delays with this measure. We find similar results using

this alternative risk measure.

3.4 Shipping Time Risk and Import Demand

Having shown that shipping delays have large negative consequences on U.S. importers, we

now investigate whether firms take actions to actively diversify this source of risk. To do

so, we compute a measure of exposure to shipping time risk based on the volatility of the

weather-induced shipping times experienced by importers. We then document how sourcing

patterns are affected by exposure to such risk.

We start by computing the standard deviation of the weather-induced residualized shipping

26Note that most importers are relatively small. Our estimates of the impacts of shipping delays on sales
are in line with the effects of other supply chain disruptions found in a recent literature. Carvalho et al.
(2021) estimate an elasticity of sales of -3.6% following a shock hitting a domestic supplier. Barrot and
Sauvagnat (2016) find that when one of their suppliers is hit by a major natural disaster, firms experience
an average drop by 2 to 3 percentage points in sales growth. Khanna et al. (2022) find that firms with one
standard deviation higher supplier risk (which they define as the exposure of suppliers to different lockdown
policies across India) decreased their output by up to 2.7% after the lockdowns.
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times over three-year rolling windows, denoted by ̂StdT imexhrt−3,t−1, at the supplier-product-

route-year (x, h, r, t) level.27 While weather risk varies at the route-level, we compute our

measure at the supplier-product-route level to allow for variation in risk across suppliers and

products within the same route.28 We aggregate this risk measure at the importer-product-

year level by taking a weighted average over the importer’s suppliers and routes over the

previous three years, i.e.,

̂StdT imefht−3,t−1 ≡
∑
x,r

ωfxhr,t−3,t−1
̂StdT imexhrt−3,t−1, (5)

where the weights ωfxhr,t−3,t−1 are firm f ’s import shares of product h from each supplier-route

over the years t− 3 to t− 1. Our measure is akin to a shift-share exposure measure (as in

Bartik (1991)), where the supplier-route-product level standard deviations are the ‘‘shift’’,

and the import shares are the pre-determined ‘‘shares’’.

Armed with our measure of risk, we estimate the following panel specification:

ln(Yfht) = α + β1 ln( ̂StdT imefht−3,t−1) + β2Xfht + γf + µh + δt + ϵfht, (6)

where Yfht is an import demand outcome of importer f in year t for product h. This regression

analyzes whether risk faced by the importer in the previous three years (t − 3 to t − 1)

affects the importer’s sourcing in the current year t. Our shift-share measure of risk helps

alleviate concerns of reverse causality, that is, the endogeneity of the risk measure through the

importers’ choice of routes and suppliers. Given the well-known stickiness in buyer-supplier

relationships (e.g., Martin et al. (2023), Heise (2024)), our panel specification with firm fixed

effects exploits variation over time in importers’ exposure to risk driven by within-route

changes in the volatility of weather shocks.29

We consider the following dimensions of sourcing as dependent variable: (i) the number of

routes, (ii) the number of foreign suppliers, (iii) the concentration of imports across routes as

measured by the Herfindhal–Hirschman index (HHI), (iv) the HHI of imports across suppliers,

and (v) the total value imported. Xfht is a vector of controls, and γf , µh and δt are importer,

27For non-vessel transactions, we set ̂StdT imexhrt−3,t−1 = 0 for each (x, h, r, t) cell. Cells with fewer than
10 transactions are dropped.

28For example, if suppliers use different shipping companies that vary in their ability to predict weather
conditions, then the supplier’s risk would not be correctly picked up by a route’s average risk level. Similarly,
a timely arrival could be more important for some products than others, leading firms to choose different
shipping companies or to invest more in forecasting.

29Note also that since the sum of the shares ωfxhr,t−3,t−1 for each firm-product is one, we do not need to
control for the sum of shares interacted with period fixed effects, as discussed in Borusyak et al. (2024).
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Table 6: Shipping Time Risk and Import Demand

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.127∗∗∗ 0.080∗∗∗ −0.075∗∗∗ −0.053∗∗∗ −0.084∗∗∗

(0.010) (0.009) (0.003) (0.003) (0.012)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.73 0.69 0.44 0.46 0.90
Observations 72, 500 72, 500 72, 500 72, 500 72, 500

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%,
and 10% level, respectively.

product, and year fixed effects, respectively.30

Our controls Xfht include the importer’s unexpected shipping time t̃s,weather, averaged

over the previous three years. This variable accounts for the direct negative effect of shipping

times on import demand, as documented in Hummels and Schaur (2013). The average

shipping time also controls for the fact that suppliers located in countries further away may

mechanically have more volatile shipping times purely because they have more scope for

delays. We also include the average unit value paid by the importer for product h in year t.

This variable controls for the fact that riskier suppliers may sell cheaper inputs, confounding

the relationship between risk an import demand we aim to estimate. Finally, we control for

importers’ size (proxied by the total imports of product h over the previous 3 years), and for

suppliers’ size (proxied by the total exports of the product over the previous 3 years) since

larger importers or exporters have more shipments, which could mechanically increase their

risk.31

Table 6 presents the findings, using the volatility of weather-induced shipping times for

the sample period 2011-2016. Standard errors are clustered at the firm level. Column 1

documents a positive and significant relationship between the number of routes used and

shipping risk. An increase in risk from the 25th to the 75th percentile of the weather risk

30In our baseline specification, we omit firm-product pairs with only one foreign supplier in year t since
the purchase volume may be too small to make diversification viable or the product may be too specialized.
We show below that our results are robust to including such firms.

31For example, exporters shipping greater volumes in a given period may need to send more shipments
with more vessels, which may introduce a predictable correlation between risk and exporter size. This effect
would not be not picked up by the exporter fixed effects in the residualization step. The reasoning is similar
for importers.
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distribution (61 log points) increases the number of shipping routes used by 7.7%. Column

2 shows that there is also a positive relationship between the number of foreign suppliers

and risk. An increase from the 25th to the 75th percentile of the risk distribution increases

the number of suppliers used by 4.9%.32 The fact that the coefficient on risk is larger in

column 1 than in column 2 is consistent with importers relying more on additional routes

than on additional suppliers as a vehicle to diversify weather risk, as this type of risk is

largely determined at the route level, and different suppliers may rely on the same routes.

We next look at the relationship between shipping time risk and the concentration of

import value across an importer’s routes and suppliers. Column 3 shows a negative and

significant relation between shipping risk and the HHI over routes, suggesting that importers

with riskier routes feature a more diversified pattern of expenditure across their routes.

Column 4 shows that this effect is similar when we look at the concentration across suppliers.

Lastly, in column 5, we find a negative and statistically significant relationship between our

risk measure and total imports in each year. Quantitatively, we find that going from the 25th

to the 75th percentile of the risk distribution decreases the route HHI by 4.6%, the supplier

HHI by 3.2%, and total imports by 5.1%.

Taking stock, our empirical analysis shows that importers with riskier supply chains

spread their input expenditures across more routes and foreign suppliers, and reduce the

concentration of imports. We interpret these results as evidence of risk diversification

behavior, operating at both the extensive and intensive margins. In addition, we find that the

net effect of these different margins of adjustment is a significant reduction in total imports.

Importantly, the negative effect of risk on import demand is estimated conditional on the

negative effect that longer shipping times have on import demand, as already documented by

Hummels and Schaur (2013). We will incorporate these channels into a model with risky

shipping times in Section 4.

3.4.1 Selection Bias, Robustness, and Diversification via Air Shipping

Our empirical results show that firms that are more exposed to shipping time risk feature a

more diversified structure of import demand. The measure of risk exposure, however, takes

the firm’s set of suppliers and routes as given, raising the concern of selection bias. We

now discuss various forms in which this selection could affect our results. Consider first

the case where importers differ in their risk aversion. To the extent that more risk averse

32Note that we consider all the suppliers used in a year by each importer. Since the empirical analysis is
done at the annual level, we do not look at how different suppliers are sequentially added throughout a given
year. We will adopt this static approach also in our quantitative model in Section 4.
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Table 7: Shipping Time Risk and Import Demand, Robustness

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.071∗∗∗ 0.040∗∗∗ −0.042∗∗∗ −0.028∗∗∗ −0.091∗∗∗

(0.005) (0.004) (0.001) (0.001) (0.006)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.66 0.62 0.34 0.37 0.83
Observations 328, 000 328, 000 328, 000 328, 000 328, 000

Notes: Table reports the coefficients from running specification (6) using the standard deviation of the
residualized shipping times from Step I as our measure of risk, for the entire period 1992-2016. Number
of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure Guidelines.
Standard errors are clustered at the firm level. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%, and 10%
level, respectively.

importers feature safer suppliers/routes and also more suppliers/routes, this selection works

against our empirical findings. That is, it produces a negative relationship between shipping

time risk and the number of suppliers or routes. Consider next the role of firm size. In

the presence of fixed costs to adding suppliers and routes, larger firms would feature more

suppliers/routes. If in addition larger firms feature riskier suppliers and routes, this selection

could produce relationships as the ones documented in the previous section. We address this

issue by including firm fixed effects and controlling for past imports. Moreover, in our sample

we find a negative and significant correlation (-0.12) between size of the firm (proxied with

log sales) and our risk measure.

We next perform a number of robustness exercises with our weather risk measure. First,

in Table 6, we report the results using the volatility of residualized shipping times obtained

from Step I of our methodology. This measure has the advantage that we can use the whole

sample period 1992-2016 but, as discussed earlier, it comes at the expense of stronger required

exogeneity assumptions. Results are similar both qualitatively and quantitatively. An increase

from the 25th to the 75th percentile of the risk distribution (92 log points) increases the

number of routes used by 6.6% and the number of suppliers by 3.7%. Moreover, it decreases

the route HHI, supplier HHI, and total imports by 3.9%, 2.5%, and 10.5%, respectively.

Next, in Appendix B.2, we document that using an alternative measure of weather shocks,

which relies on predictions of where the vessel is on the route in each day and uses local

weather conditions, produces similar results. Our results also hold when we include firm-time

fixed effects, which control for firm-level shocks that may affect production choices, and also
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Table 8: Shipping Time Risk and Import Demand with Air Shipments

Dep. Var.: Air Shipments
Std Time 0.017∗∗∗

(0.004)

Avg Time −0.720∗∗∗

(0.334)

Importer FE Y
Product FE Y
Year FE Y
Controls Y
R-Squared 0.60
Observations 64, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level. ∗∗∗, ∗∗, and ∗ denote significance at the 1%, 5%,
and 10% level, respectively.

when we include in the sample firms sourcing from a single supplier, or when we focus only

on the risk of the importer’s main supplier rather than a weighted average across suppliers.

Importantly, we show that controlling for importers’ inventories, which have been recently

shown to be an important margin of adjustment to sourcing risk (see Alessandria et al. (2023),

Carreras-Valle (2021)), does not change our main findings.

Lastly, we analyze whether U.S. firms use different modes of transportation to diversify

shipping risk. We focus on air shipments, as over half of all importer-product-year combina-

tions are sourced by both vessel and plane (see Table 1). To do so, we construct a dummy

variable that is equal to one if a firm has obtained imports by air in year t, and estimate a

variant of our main specification, equation (6),

dfht = α + β1 ln( ̂StdT imefht−3,t−1) + β2Xfht + γf + µh + δt + ϵfht,

where dfht is a dummy that is equal to one if firm f uses air shipments for HS10 h in year t,

and ̂StdT imefht−3,t−1 is the same weather-based risk measure as before. The controls Xfht

are identical to the ones used before, except that the importer’s total log value of imports

is now split up into imports by vessel and imports by airplane to account for the relative

importance of both. Table 8 documents that higher shipping risk is associated with a higher

likelihood of using air shipments. An increase in risk from the 25th to the 75th percentile of

the weather risk distribution increases the likelihood of using air shipments by 1.0%. While

the effect is small since firms likely use air shipments for many other reasons, for example to

get seasonal goods quickly, our findings suggest that firms use air transportation to hedge
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ocean shipping risk.33

Overall, our findings suggest that U.S. importers systematically react to shipping risk

along different margins of adjustment. Importers with riskier suppliers or routes feature i)

more suppliers and routes, ii) less concentrated import expenditures, iii) lower imports, and

iv) use multiple modes of transportation.

4 A Model of Input Sourcing with Shipping Risk

To rationalize the empirical evidence on shipping time risk and import demand and to

quantify the aggregate implications of risk, we lay out a theoretical framework that builds on

the standard models of importing with firm heterogeneity in Halpern et al. (2015), Blaum

et al. (2018), and Gopinath and Neiman (2014). The key departure from this literature is

that inputs’ shipping times are a component of input quality, thus affecting production levels

in the spirit of Hummels and Schaur (2013), and that such shipping times are stochastic.

Imported inputs lower production costs due to production complementarities and differences

in qualities and prices, but require payment of fixed costs. In addition to these standard

forces, firms have incentives to increase the number of foreign inputs to mitigate the impact

of shipping time risk on expected revenues.

Section 4.1 outlines the environment of the model, while Section 4.2 characterizes the

firm’s problem. Section 4.3 provides theoretical results that describe the impact of risk on

import demand. Finally, Section 4.4 closes the model in equilibrium.

4.1 Environment

We consider a small open economy populated by a fixed mass of firms that produce dif-

ferentiated manufacturing varieties which are sold locally. Firms buy inputs from foreign

suppliers to whom they are exogenously matched. Each of these suppliers corresponds to a

different route in the empirical analysis of Section 3. At the time of placing orders, firms

are uncertain about the time it will take the inputs to arrive and, crucially, inputs arriving

late are less productive. Firms can diversify the risk of late deliveries by having multiple

foreign suppliers.34 For tractability, we assume that the suppliers of any given firm are

33This result is in line with the findings in Hummels and Schaur (2010), which show that firms use air
shipping to smooth demand volatility on international markets.

34Our model abstracts from firms’ use of inventories, which have been shown to be an important
diversification mechanism by Alessandria and Ruhl (2021) and Carreras-Valle (2021), among others. This is
because we document in Section 3 that our main results on the response of import demand to shipping risk
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ex-ante identical—but may differ ex-post in their realized shipping times—implying that the

extensive margin of trade can be summarized by the number of suppliers. While suppliers

are identical for a given firm, firms differ in the riskiness of their pool of foreign suppliers—a

feature that will be instrumental in Section 5 below for the model to come to terms with the

empirical patterns documented above.35

Firms combine labor, domestic, and foreign inputs according to the following nested

structure:

yf = φf l
1−γ

x ε−1
ε

D +

(
N∑
i=1

αixi

) ε−1
ε

γ ε
ε−1

(7)

where f denotes a firm, γ ∈ (0, 1) and ε > 1. The firm combines intermediate inputs with

labor l using a Cobb-Douglas aggregator, where efficiency φf is firm-specific. The intermediate

inputs, in turn, are a CES aggregator of a domestic input xD and a foreign input that is

sourced from N suppliers, with quantity xi and quality αi for supplier i. The N suppliers

are taken from a pool of unlimited foreign suppliers to whom the firm is matched to. As is

standard in the literature, we assume that the extensive margin of trade is limited by fixed

costs. In particular, each additional foreign supplier entails the payment of a fixed cost F in

units of domestic labor.36

A central element of our theory is the assumption that shipping delays are detrimental to

production. In particular, we assume that (i) longer shipping times reduce the qualities of

inputs, similarly to Hummels and Schaur (2013), and (ii) shipping times are stochastic and

unknown to firms at the time of placing orders. We parametrize the relationship between

supplier quality and shipping time as follows:

αi =

 ᾱi if di ≤ E [di]

e−τ ·di if di > E [di] ,
(8)

where di are the number of days it takes to ship the input of supplier i to firm f , ᾱi = e−τ ·E[di],

and E [di] is the expected shipping time. This formulation implies that if an input arrives

are large and significant even after controlling for firms’ inventories.
35Our theory takes the assignment between importers and their suppliers as exogenously given. In the

quantitative exercise of Section 5 below, we make this assignment to replicate the negative correlation between
firm size and supplier riskiness observed in the data and described above. A micro-foundation where firms
search for suppliers, and finding safer suppliers is more costly, would deliver this pattern.

36The production structure thus far is standard in the literature—it corresponds to the one in Gopinath
and Neiman (2014) or Blaum et al. (2018) when foreign inputs are perfect substitutes. We abstract from
love-of-variety effects to focus on the extensive margin of importing as a channel of risk diversification. For
tractability, we assume that the fixed costs of adding suppliers are not supplier-specific. For a treatment of
the case with supplier-specific fixed costs in a deterministic setting see Antras et al. (2017).
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earlier than or just as expected, i.e. di ≤ E [di], it has a constant level of quality ᾱi. Instead,

if an input arrives later than expected, i.e. if di > E [di], quality falls with shipping time at

an elasticity given by τ .37

We assume that, for each importer, the shipping days di are i.i.d. and denote their CDF

by Gf (·). This distribution is known to the firm at the time of placing input orders. We

allow this distribution to be firm-specific as, in our quantitative exercise below, firms differ

in the riskiness of their foreign suppliers.

We assume that firms are price takers in input markets. Thus, they can source any

quantity of the domestic and foreign inputs and labor at prices pD, pM , and w, respectively.

We assume that foreign input prices pM are the same across all suppliers and exogenously

given, and incorporate any variable trade costs. In output markets, firms are assumed to

compete under monopolistic competition.

There is a representative consumer who is endowed with L units of labor, owns the firms,

and consumes the locally produced manufacturing goods with preferences given by

C =

(∫
cf

σ−1
σ df

) σ
σ−1

, (9)

where σ > 1 and cf denotes final consumption of the good produced by firm f.38 In addition,

we assume a structure of roundabout production by which firms use the output of all other

domestic firms as inputs. In particular, we assume that the domestic bundle xD is produced

using the same CES aggregator as in (9).39

4.2 Firm’s Problem under Risk

We next describe the firm’s problem of choosing the quantity of imports and the number of

suppliers in the presence of risk. The total sales of firm f , which include demand from both

37The specification in equation (8) imposes that inputs arriving earlier than expected do not increase
production. This structure effectively limits the positive effect of very low shipping times on revenues, ruling
out risk loving behavior. This is useful to come to terms with the empirical evidence of Section 3. Note also
that the specification in equation (8) implies that the input qualities are bounded between 0 and 1. We can
therefore interpret αi as the fraction of the input quantity xi that is effectively used in production.

38For simplicity, we abstract from exporting, importing of final goods, and consumption of non-tradable
goods. Incorporating these elements, as in Blaum (2024), is feasible but would complicate the analysis without
adding additional insights.

39The assumption that the CES aggregators for the domestic bundle and consumer utility coincide is made
for tractability. Under this assumption, we do not need to treat sales to the consumer and to other firms
separately in the firm’s problem. See also Blaum et al. (2018); Gopinath and Neiman (2014); Adão et al.
(2020) for a similar assumption.
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consumers and other firms, are given by

Rf = y
σ−1
σ

f P
σ−1
σ S1/σ, (10)

where yf is given by equation (7), P is the price index associated with (9) and S denotes

total spending (including demand by firms and consumers). Both P and S are endogenous

variables determined in general equilibrium.

Firms are risk-neutral and choose the quantities of domestic and foreign inputs, as well as

the number of foreign suppliers, before the realization of uncertainty. The quantity of labor is

instead chosen after uncertainty is realized. This assumption simplifies the numerical solution

to the firm’s problem in the quantitative exercise below. Due to the ex-ante symmetry of

foreign suppliers, the firm sources the same quantity from all suppliers, i.e., xi = x for all i.

After maximizing out labor, the firm’s problem is given by

maxxD,x,N χfE


x ε−1

ε
D +

(
N∑
i=1

αi(di)

) ε−1
ε

x
ε−1
ε

ψ
− pDxD −NpMx− wNF, (11)

where χf and ψ depend on firm efficiency, general equilibrium variables and parameters,

and α(di) is given by (8).40 Note that the expectation operator is taken over the possible

realizations of di and thus depends on the distribution of shipping times Gf (·).

In choosing the number of foreign suppliers, firms trade off the diversification of shipping

risk against the payment of the fixed costs. Similarly, the choice of the quantity of the

imported input x is limited not only by its price but also by the associated shipping risk.

Before turning to the definition of the equilibrium, we illustrate how risk affects the firm’s

production choices in a simplified environment.

4.3 The Workings of Risk

Can the theory outlined so far come to terms with the evidence documented above on the

effect of shipping risk on import demand? To make progress, we now study the effects of

increased risk on supplier input quality. For tractability, we consider in this section a version

of the model without the domestic input and we abstract from general equilibrium forces.

In the quantitative exercise of Section 5 below, we allow for such effects and include the

domestic input in the production. All derivations of this section are contained in Section C.2

of the Appendix.

40See Section C.1 of the Appendix for details.
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After maximizing out labor and the foreign inputs, the firm’s problem simplifies to:

max
N

χ̃f
(
E
[
ᾱψ
]) 1

1−ψ︸ ︷︷ ︸
=R̃

− wNF, (12)

where ᾱ ≡ 1
N

∑N
i=1 αi is the average supplier quality, ψ ≡ γ(σ−1)

1+γ(σ−1)
∈ (0, 1), χ̃f is a constant

that depends on firm efficiency, general equilibrium objects and parameters, and R̃ is expected

revenues net of labor and foreign input variable costs. Expression (12) makes it clear that

volatility in the average supplier quality lowers expected revenues as ψ < 1. Relying on a

second order approximation of ᾱψ around E [α], the firm problem can be written as:

max
N

χ̃

(
(E [α])ψ − ψ

(1− ψ)

2
(E [α])ψ−2 1

N
V [α]

) 1
1−ψ

− wNF, (13)

where E [α] and V [α] are the mean and variance of the supplier-level quality.41 This expression

highlights the role of the mean and the variance of supplier quality, as well as of the number

of suppliers, in shaping expected revenues. In particular, dispersion in input qualities reduces

expected revenues. By increasing the number of suppliers N , the firm lowers the variance

of the average supplier quality V [ᾱ] = V [α] /N , thus reducing the amount of risk faced

and mitigating its effects on expected revenues. The following result formalizes the effect of

increased supplier risk for the case where N is continuous.

Proposition 1. (Effect of Risk on Inputs) Let N∗ be the optimal number of suppliers and

ϵN∗,V[α] =
∂N∗

∂V[α]
V[α]
N∗ be the elasticity of N∗ with respect to the variance of supplier-level quality

V [α]. Then ϵN∗,V[α] > 0 if and only if

1

N∗
V [α]

(E [α])2
<

2

ψ
. (14)

That is, under condition (14), a higher V [α] leads to an increase in N∗. Furthermore,

ϵN∗,V[α] < 1 regardless of whether (14) holds. It follows that a higher V [α] always reduces the

import value.

Proof. See Section C.2 of the Appendix.

The first part of Proposition 1 states that a mean preserving spread in the variance of

41Taking a second-order Taylor approximation of expected utility (in our case, the expectation of a concave
function) has a long-standing tradition in the finance literature, since Markowitz (1952) and Samuelson
(1970), and it has been recently used also in the literature on trade under uncertainty (see e.g. De Sousa
et al. (2020) and Esposito (2022)).
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supplier-level quality increases the number of suppliers, if condition (14) holds. There are

two opposite forces at work. When the variance of quality is higher, holding constant the

expected value, an increase in the number of suppliers leads to a larger reduction in the

variance of average supplier quality, V [α] /N, which is what matters for expected profits (13).

This force increases the returns to adding suppliers. At the same time, higher variance in

supplier-level quality reduces expected revenue, leading to a lower return to adding suppliers.

When supplier risk is a small part of expected revenue, as ensured by condition (14), the

negative level effect on expected revenues is dominated by the stronger reduction in the

variance of average quality. As a result, a mean preserving spread in the variance of supplier

quality increases the number of suppliers.

In the second part of the proposition, we turn our attention to import values. To

understand this result, note that import value N∗x∗pM , which is proportional to expected

revenue, is a decreasing function of the variance of average supplier quality V [α] /N∗—see

(13).42 An increase in the variance of supplier-level quality therefore lowers import value if

N∗ either decreases or if it increases less than proportionally with V [α]. The proposition

establishes that ϵN∗,V[α] < 1 and hence that import value necessarily falls with more volatility

in supplier quality.

Finally, we investigate the heterogeneity across importers in their response to risk.

Proposition 2. (Heterogeneity of the Effect of Risk) Consider the case without a domestic

input in production. Let M denote import value. Then:

∂

∂φ
ϵN∗,V[α] > 0 and

∂

∂φ
ϵM,V[α]≥ 0.

Thus, more efficient firms feature a greater change in the number of suppliers, and a smaller

reduction in total imports after an increase in V [α] .

Proof. See Section C.2 of the Appendix.

Intuitively, larger firms can more easily afford the fixed costs of adding suppliers when

faced with greater risk, and feature a larger increase (or a smaller decrease) in the number of

suppliers when faced with greater volatility in supplier quality. As a result, they manage to

attenuate the resulting increase in exposure to risk and see their import values fall by less.

42As shown in Appendix C.2, total import value is given by

NxpM ≈ (pM )
− ψ

1−ψ

(
ψχ̃

(
(E [α])

ψ − ψ
(1− ψ)

2
(E [α])

ψ−2 1

N
V [α]

)) 1
1−ψ

.
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Lastly, Proposition 2 also implies that larger firms feature a smaller decline in sales when

faced with heightened risk.

In connecting these results to our findings of Section 2, it should be noted that in the

empirical analysis we measure the volatility of suppliers’ log shipping times, not of input

qualities, which are unobservable. In our theory, a mean-preserving spread to the distribution

of shipping days affects both the variance and the mean of input qualities. In particular, the

expected input qualities can increase or decrease depending on parameters.43 In turn, the

effect of a given change in expected quality on the returns to adding suppliers also depends on

parameters.44 Ultimately, whether the theory can come to terms with our empirical findings

on shipping time volatility and import demand documented above is a quantitative matter

which we tackle in Section 5 below. There, we consider a calibrated version of the model

with a domestic input, general equilibrium, and firm heterogeneity. Before turning to this

analysis, we next show how the model is closed in equilibrium.

4.4 Equilibrium

Thus far we have studied the effects of increased shipping time risk for a firm when prices

are kept fixed. In going forward, we allow risk to affect aggregate equilibrium variables. We

abstract from aggregate risk by assuming that there is a continuum of firms of unit mass

within each type f.45 We consider an equilibrium where firms maximize profits, the consumer

maximizes utility, and goods markets clear. An equilibrium is fully characterized by the

aggregate domestic spending S and the price index P associated to consumer utility. Note that

the price of the domestic input bundle is given by pD = P as the domestic input aggregator

is identical to consumer preferences. We now describe how S and P are determined.

Consumer expenditure is given by:

PC = wL+Π, (15)

43Recall that input quality is a function of shipping days given by expression (8). When all the mass of
the shipping days distribution lies in the exponential region of the quality function, a mean preserving spread
to log shipping days leads to a mean preserving spread in log qualities. Consequently, both the variance and
the mean of input quality increase. When some mass lies in the flat region of the quality function, expected
quality may fall with a mean preserving spread to log days.

44Intuitively, a higher expected input quality affects the returns to adding suppliers in two ways. There is
a direct positive effect as suppliers are more productive. However, there is an additional effect as a higher
expected quality reduces the effective importance of the variance in expected revenue, thus reducing the
incentives to adding suppliers. For ease of exposition, we relegate a formal treatment of changes in expected
quality to Section C.3 of the Appendix, which provides a result characterizing this comparative static. We
will come back to this issue in the quantitative Section 5.

45In the quantitative exercise below, we assume that a firm’s type is determined by its efficiency and the
riskiness of its suppliers.
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where Π ≡
∫
πfdf are total profits and πf are expected profits of firm type f . Because there

is a unit mass of firms of each type, πf is also the aggregate profits of type f. Given the

roundabout structure by which firms use locally-produced manufacturing products as inputs,

aggregate domestic spending satisfies:

S = PC + pD

∫
xDfdf, (16)

where xDf is the demand for the domestic input of firm f . Standard calculations imply that

P =

(∫
pf

1−σdf

) 1
1−σ

, (17)

where pf is the expected price set by firm type f . An equilibrium is attained whenever (15),

(16), and (17) are satisfied and firms maximize profits.46,47

5 Climate Change, Geopolitical, and Infrastructure Risk

The theory developed in the previous section establishes that, when faced with greater

shipping time risk, firms may increase their number of suppliers and reduce their import

values, patterns that are aligned with the empirical evidence of Section 3. We now discipline

the model’s parameters with key moments of the data and establish that the model can

quantitatively come to terms with our empirical evidence (Section 5.1). We then employ the

model to quantify the consequences of climate change, geopolitical risks in the Red Sea, and

strains on port infrastructure (Section 5.2). These exercises highlight how our quantitative

model can be used as a laboratory to assess the impact of any risk event affecting ocean

shipping on U.S. imports and welfare.

5.1 Calibration

Our calibration strategy requires the model to replicate various moments related to suppliers’

shipping time risk. To assess whether the model can be consistent with the empirical evidence

46To compute an equilibrium, given a guess of (S, P ) we solve the firm’s profit maximization problem and
obtain input choices and expected prices and profits. We then find the level of spending and price index
(S′, P ′) implied by the right hand sides of expressions (16) and (17), respectively. An equilibrium is attained
whenever S = S′ and P = P ′.

47We do not impose labor market clearing and, as a result, trade balance may not be attained. In particular,
the trade balance is given by TB = − (L− Ld) , where Ld is the total labor demand. In other words, the
manufacturing sector can finance a trade deficit by being a net supplier of labor to the rest of the economy.
We thus normalize the wage to 1.
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of Section 3, we target our estimate of the effect of shipping time risk on the extensive margin

of importing.48 We also require that the model matches the sensitivity of sales to shipping

times. Finally, given our focus on aggregate effects in the counterfactuals below, we target

the joint distribution of firm size and supplier risk across importers. We next describe how

we parameterize such a distribution.

Parametrization of Firm Heterogeneity and Shipping Days To generate cross-sectional

variation in importer size and exposure to supplier risk, we allow for firm types to be

heterogeneous in two dimensions: efficiency φf and the standard deviation of shipping days of

their suppliers σdf . We assume that firm efficiency φf is drawn from a log-normal distribution

with standard deviation σφ (we normalize average efficiency). The distribution of suppliers’

shipping days di is also assumed to be log normal with type-specific standard deviation σdf ,

and the shipping days are i.i.d. across a firm’s suppliers. For computational simplicity, we

assume that there are two types of suppliers, low and high risk: σdf ∈ {σdL, σdH}.49 When

σdf = σdH , firm f is assigned to high risk suppliers. We allow the risk type and efficiency

to be correlated by assuming that a firm gets the high risk type with probability p which

satisfies:

p = κσ + ρφσφ, (18)

where κσ, ρφσ are parameters that control the prevalence of the high risk type and its

correlation with efficiency, respectively.50

Parameters, Moments, and Identification We directly measure the standard deviation of

log shipping days for each type, σdL and σdH , using the standard deviation of the weather-

predicted residualized log shipping times over three-year rolling windows, that is, the measure

of risk used in our empirical analysis of Section 3. We compute the average of this measure

within the groups of firms above and below the median risk. To isolate the role of supplier

risk, we set expected log shipping days µdf for each type to match a common average shipping

48In this way, the nature of the quantitative exercise is to assess whether the model is able to match our
empirical estimates of Section 3. Note, however, that we only target the estimate of risk on the extensive
margin of importing; we do not target the effect of risk on import values.

49Having more than two risk types is feasible but would complicate the numerical approach we use to
solve and calibrate the model. When solving the firm’s problem, expected revenues are computed for each
combination of input choices (the domestic input, the foreign input, and the number of suppliers) and risk
type.

50To ensure that p is bounded between 0 and 1 we impose:

p = max {min {κσ + ρφσφ, 1} , 0} .
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time.

The dispersion in firm efficiency σφ, the risk type assignment parameters κσ and ρφσ,

the fixed cost of adding foreign suppliers F, the elasticity of input quality to shipping time

τ , and the price of imported inputs pM are chosen to match the following moments of the

data: (i) the coefficient of variation of log sales, (ii) a share of 50% of high risk firms, (iii) the

correlation between log sales and our risk measure, (iv) the elasticity of the extensive margin

of importing with respect to shipping risk, (v) the elasticity of sales to shipping times, and

(vi) the aggregate import share. Given our weather-based measure of risk, we rely on the

number of routes as our measure of the extensive margin of importing in (iv).51 All moments

are measured from the same sample of U.S. manufacturing importers used in the empirical

analysis of Section 3.

While each moment is affected by all parameters in equilibrium, intuitively, σφ controls

the dispersion in firm size, κσ controls the share of firms of high risk, and ρφσ regulates the

correlation between firm size and risk. By affecting the cost of adding suppliers, F controls

the elasticity of the number of suppliers with respect to risk. Intuitively, a higher fixed cost F

makes it more costly to diversify risk by increasing the number of foreign suppliers to source

from, lowering the elasticity of N with respect to risk (Figure 3, left panel). The parameter

τ affects how qualities, and thus revenues, fall with longer shipping times (Figure 3, center

panel). Importantly, this negative association between shipping times and sales predicted by

the model is verified in the data. A panel regression of log sales on the average shipping time

of the firm’s suppliers yields a negative and statistically significant coefficient.52 By affecting

the relative price of imported inputs, pM controls firms’ expenditure on foreign inputs and

thus the aggregate import share (Figure 3, right panel).

Lastly, we take three parameters from the literature. We set the output elasticity of

materials to γ = 0.6 and the elasticity of substitution between domestic and foreign inputs to

ε = 2.38 as in Blaum et al. (2018); we set the demand elasticity to σ = 5, in line with the

average estimate for manufacturing differentiated goods in Broda and Weinstein (2006).

Calibration Results We report the calibrated parameter values in Table 9. The model

is able to closely match the targeted moments. The average fixed costs paid are $124,000

51Results are similar if, instead, we target the elasticity of the number of foreign suppliers with respect to
risk, reported in column (2) of Table 6, since its value is close to the elasticity of the number of routes with
respect to risk.

52The regression includes firm and year fixed effects and yields an estimated coefficient for average shipping
times of -0.28 with a standard error of 0.14 clustered at the firm level. In the model, we run this regression for
each of 1,000 simulated states of the world, where in each state we draw realizations of shipping days for each
supplier. We then take an average across states of the estimated regression coefficient for shipping times.
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Figure 3: Identification of Parameters

Notes: Each graph plots the target moment as a function of the relevant parameter, holding constant the other parameters at
their calibrated values. The elasticitiy of the number of suppliers (N) with respect to risk is the estimated coefficent of a
cross-sectional regression of log optimal N on the log of the standard deviation of shipping days, controlling for firm efficiency.
The elasticity of sales with respect to shipping time is the coefficient of a cross-sectional regression of log sales on the log of
shipping time.

dollars, which are line with the literature (Fieler et al. (2018); Antras et al. (2017)).53 An

important feature of our calibration is that the model matches perfectly the elasticity of

imports with respect to risk estimated in Section 3 (Table 6), despite not targeting this

moment directly (see bottom of Table 9). This feature, together with the close match of the

elasticity of the number of routes with respect to risk, implies that our quantitative model is

able to come to terms to the key empirical findings of Section 3.

5.2 Counterfactual Analysis

Armed with the calibrated model, we assess the impacts of three prominent risk-related

scenarios. We consider increases in risk associated with climate change, Red Sea attacks, and

port congestion. We also study the consequences of a complete removal of shipping time risk.

Climate Change. We simulate an increase in weather volatility due to climate change over

the next 50 years under the assumption that future weather conditions will continue to follow

their historical trend. For this exercise, we use the matched dataset of shipping routes and

weather conditions used in our empirical analysis, extended to 2023 to pick up a trend over a

longer period. We compute the standard deviation of wave height across the days of each

53We back out the average fixed costs from the ratio of average sales to average fixed costs and the
assumption that average sales are the same as in the data.
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Table 9: Calibrated Parameters and Targeted Moments

Parameter Moment Model Data

Fixed Cost per Supplier F 0.008 Elast. of N w.r.t. Risk 0.11 0.12
Elasticity of Input Quality τ 0.094 Sales Elast. w.r.t. Ship. Time -0.14 -0.28
Foreign Input Price p∗ 0.487 Aggregate Import Share 0.25 0.23
Std. Dev. Log Efficiency σφ 0.02 Coef. of Variation Log Sales 0.35 0.24
Prevalence of High Risk Type κσ 0.50 Share of High Risk Firms 0.56 0.50
Corr. High Risk and Efficiency ρφσ -0.02 Corr. Log Sales and Risk -0.19 -0.12

Std. Dev. of Shipping Times (High) σdH 0.29 Avg. ̂StdT ime above median 0.29 0.29

Std. Dev. of Shipping Times (Low) σdL 0.09 Avg. ̂StdT ime below median 0.09 0.09
Expected Log Shipping Days (High) µdH 2.73 Average Shipping Days 16 16
Expected Log Shipping Days (Low) µdL 2.77 Average Shipping Days 16 16

Not calibrated: Not targeted:
Elasticity Domestic-Foreign Inputs ε 2.38 Elast. of Imports w.r.t. Risk -0.08 -0.08
Demand Elasticity σ 5
Output Elast. w.r.t. Materials γ 0.6

Notes: The elasticities are coefficient estimates of cross-sectional regressions of log N , log sales, and log import

value on log of the standard deviation of shipping days (controlling for firm efficiency), or log shipping times.

The aggregate import share is the fraction of material expenditure accounted by foreign inputs. ̂StdT ime is

the measure of risk defined in Section 3.4. The moments in the data are measured in the 2011-2016 period.

Sources: U.S. Census Bureau and authors’ calculations.

year for each location on a shipping route, and then compute the annual growth rate of

these standard deviations between 2011 and 2023 (see Figure 1 in the Introduction). The

average annual growth rate across all locations is 0.34%. This number is in the ballpark of

the annual growth rate estimated in Young et al. (2011) for 1985-2008, and is more broadly

consistent with work suggesting an increasing likelihood of extreme wave heights (e.g., Shi

et al. (2024)).54 Compounding this growth over 50 years, we obtain a long-run growth rate

in the standard deviation of wave height of 18.5%.

Table 10 (first column) summarizes the aggregate effects of climate change. If current

climate trends persist and everything else is held fixed, the average number of suppliers

will be 24% higher 50 years from now. This happens as firms diversify the increased risk

of international shipping delays across multiple foreign suppliers (or routes, equivalently).

54The oceanography literature typically focuses on the mean and the 99th percentile of wave height as a
proxy for large events, rather than on predicting the standard deviation of wave height. Young et al. (2011)
find a near neutral trend in wave height at the mean, an annual increase of 0.25% at the 90th percentile,
and an increase of 0.50% per year at the 99th percentile of wave height. These patterns strongly suggest an
increase in the standard deviation of wave height. Under the assumption that weather conditions are log
normally distributed, these patterns suggest an increase in the standard deviation of wave height of 0.24%
per year, reasonably close to our estimate.
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Table 10: Counterfactuals

Variable Climate Change Red Sea Attacks Port Congestion Removing Risk

Average N 23.72% 2.79% 54.88% −6.98%
Total Import Value −2.89% −42% −8% 20.89%
Import Share −2.40% −33.95% −7.37% 13.31%
Price Index 0.43% - 1.46% −0.13%
Total Spending 0.19% - 0.8% 1.96%
Real Income −0.39% - −1.33% 2.07%

Notes: The first column reports aggregate statistics after we shock the model with an increase in σdf by

18.5%. In the second column we shock the model with an increase in µdf by 27% and in σdf by 14.85%. In

the third column we shock the model with an increase σdf by 14%. In the last column we set σdf = 0.

The increase in N is larger for firms that had riskier suppliers to begin with, i.e. firms with

σdf = σdH , which on average raise N by 45%. Instead, most of the small, low-risk firms have

no change in N because of the fixed costs of adding suppliers. The increase in the number

of suppliers is also larger for more productive firms (the correlation between the growth in

N and efficiency is 0.41 among high risk firms), consistent with our theoretical results in

Proposition 2.

Climate change also lowers manufacturing imports by 2.9%, corresponding to a decline

in U.S. imports of 46 billion dollars.55 Consistent again with Proposition 2, the reduction

in imports is smaller for larger firms (the correlation between import growth and efficiency

is -0.14), as these firms are better diversified than small firms to begin with. The decline

in imports is also stronger for high risk firms (-3.2%) than for low risk firms (-0.23%), as

expected. As importers substitute riskier foreign inputs with domestic ones, the heightened

risk implies higher production costs and prices (the price index increases by 0.43%) and lower

output. Despite an increase in total domestic spending stemming from the production of the

domestic input, U.S. real income is reduced by 0.4%.

Red Sea Attacks. In the second exercise, we evaluate the effects of the ongoing attacks by

Houthi militias against commercial ships traveling along the Red Sea waterway that started

in October 2023 (see Rodriguez-Diaz et al. (2024)). To incorporate the effects of the attacks

on shipping times into our model, we first compare the time it takes to travel to the U.S.

through the Suez Canal to the time it takes to travel via the Cape of Good Hope, avoiding

the Suez Canal. Since the routes used in our empirical analysis are imputed, we cannot use

55In 2016, the U.S. imported 2.2 trillion dollars of goods, of which $590 billion were consumer goods (see
https://www.bea.gov/index.php/system/files/2017-12/trad1216.xls, sheet 8). Classifying the remaining $1.6
trillion as intermediate imports and using the decrease of 2.9% from our counterfactual, we obtain a change
in intermediate imports of -$46 billion.
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them to study the difference in shipping times between two routes that start and end at

the same port. Instead, we use information from Searates, a shipping time calculator, to

compute the implied change in shipping time for each of the top-10 routes that head to the

U.S. through the Suez Canal.56 Shipping times increase by 27% on average across routes,

with the largest change for the routes starting from the Arabian Peninsula (a growth rate

of around 60%) and the smallest one for routes from South-East Asia to the East Coast (a

growth of around 6%). Since Searates reports only average shipping times, we obtain the

change in the standard deviation by relying on how the variability of shipping times changes

with the average length of the trip in our Census data. We find that the correlation between

the (log) mean and the (log) standard deviation of shipping times is 0.61, which reflects the

fact that delay shocks accumulate with longer distance. Using this estimate, a change in the

average shipping time µdf of 27% should be associated to a change in the standard deviation

σdf of 16.5%.

We feed both the change in the mean and in the standard deviation of shipping times

into our model. We find substantial impacts of the Red Sea attacks on total imports and the

import share, which contract by 42% and 34%, respectively (Table 10, column 2). We find

a moderate effect on the average number of suppliers, which grows by 2.79%. In assessing

these results, it should be noted that in this exercise we are increasing the average shipping

time, on top of increasing its variance. For import values, the increase in the mean and in the

variance of shipping times both tend to reduce import value (Proposition 1)—but they have

opposite effects on the number of suppliers, with longer shipping times reducing N. As in the

previous counterfactual, the import reduction is larger for riskier firms (-51.47%), but since

the shock also increases the average shipping time, the drop in imports is larger for more

efficient firms. Lastly, since the share of goods that are imported into the U.S. and travel

through the Suez Canal is only 2% of the total imports in our sample period, we assume for

this exercise that the aggregate variables determined in general equilibrium are unaffected.57

56Searates can be accessed at https://www.searates.com/distance-time. We find the top-10 maritime
routes by U.S. import value in 2011-2016. These are Jamnagar, India - New York; Kaohsiung, Taiwan -
Chicago; Yantian, China - Chicago; Singapore - New York; Singapore - New Orleans; Yantian - Detroit;
Hong Kong - Chicago; and three routes starting in the Middle East (the Census Bureau does not allow us to
reveal the identity of these three routes due to disclosure concerns).

57We note, however, the share of U.S. imports affected by a Suez Canal closure is likely higher: 3 of
the top 10 routes by import value going through the Suez Canal are from ports in the Middle East, which
ship mostly mineral fuels (HS27). It is likely that many of these fuel shipments originated in the Gulf are
transshipped through hubs such as Antwerp or Rotterdam. Other products significantly affected by a Suez
Canal closure are palm oil and coconut oil (64% of U.S. imports in 2011-2016 are via the Suez Canal) and
TV reception apparatuses (21%).

37



Port Congestion. In the third exercise, we evaluate the economic effects of the greater

variability of waiting times at ports due to the rise of port congestion that occurred globally in

the aftermath of the Covid pandemic. We capture congestion using the Average Congestion

Rate (ACR) measure developed by Bai et al. (2024), which reflects the average number of

hours a container ship waits at port before docking at the berth for the top-50 container

ports worldwide. Both the level and the volatility of wait times increased in the post-Covid

period, which raises the volatility of shipping times. In particular, we find that the standard

deviation of ACR went up by 14% in the post-Covid period of 2021-2022 relative to the

2017-2020 period. We feed this shock into our model as a change in the standard deviation

σdf of 14% for all firms, holding the mean fixed to isolate the effect of volatility.

The results in column 3 of Table 10 show a large effect of permanently higher port

congestion, with imports and the import share contracting by 8% and 7.4%, respectively,

and the number of suppliers (routes) increasing by 55%. The magnitude of these effects

follows from the large shock to risk that is fed into the model, and is consistent with firms

being able to use new routes by substituting towards additional ports, as in Brancaccio et al.

(2024). The results are driven mostly by the response of larger firms: firms above the median

efficiency more than double the number of foreign suppliers (routes), as they exploit their

scale to diversify risk along the extensive margin.

Removing Shipping Time Risk. We conclude this section by quantifying the effects of

a complete removal of shipping time risk (Table 10, column 4). When risk is removed,

there is a 7% reduction in the average number of foreign suppliers used by importers. This

happens because, without risk, foreign suppliers are as safe as the domestic ones, making

it no longer necessary to diversify the risk of international shipping delays across multiple

foreign producers. The reduction in N is larger for firms that had riskier suppliers to begin

with, i.e. firms with σdf = σdH , which on average reduce N by 18%. The decline in the

number of suppliers when risk is removed is stronger for larger firms (the correlation between

the growth in N and efficiency is -0.87 among high risk firms), consistent with Proposition 2.

The removal of shipping uncertainty also implies a substantial increase of 21% in aggregate

imports and of 13% in the aggregate import share. If shipping risk was removed in 2016, U.S.

manufacturing imports would go up by 334 billion dollars. Consistent again with Proposition

2, the increase in imports is larger for smaller firms (the correlation between import growth

and efficiency is -0.78), and it is stronger for high risk compared to low risk firms (29.32% vs

16.17%). Overall, removing shipping risk lowers production costs and prices, resulting in a

2% increase in U.S. real income.
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6 Conclusions

In this paper, we use U.S. Census shipment-level data combined with information on wave

height and direction from NOAA to construct a novel measure of supply chain risk based

on weather shocks. We document substantial negative effects of shipping delays on firms’

sales and employment, and study how exposure to shipping time risk correlates with the

pattern of import demand of U.S. manufacturing firms at the intensive and extensive margins.

Our results suggest that U.S. importers that are more exposed to shipping time volatility

feature lower imports, a larger number of routes and suppliers, and a lower concentration

of expenditure across routes and suppliers, which indicates that firms actively diversify this

source of risk. To rationalize this evidence, we introduce risky delivery times into a standard

quantitative model of firm-level importing. We show that an increase in shipping risk reduces

the import share and can substantially lower aggregate income.

Our findings carry relevance at a time of increasing climate and geopolitical risk, and

contribute to a rapidly growing literature discussing the implications of increasing fragmenta-

tion, re-shoring, and supply chain diversification. Our findings suggest that there may be

limits to firms’ willingness to concentrate their sourcing too strongly on any one country or

region if it comes at the expense of higher delivery risk. Shedding more light on the dynamics

of supplier selection and on how firms adjust their supplier portfolio as they grow remain

important questions for further research.
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Online Appendix (Not for Publication)

A Data Construction and Summary Statistics

A.1 Data Construction

In this section, we describe the steps taken to clean the LFTTD data. First, we drop all

transactions with an invalid date, zero or negative transaction value, missing vessel name, and

cases with a missing importer and exporter ID, as well as transactions that are likely to be

incorrectly recorded as indicated by a blooper ID. Second, we drop warehousing transactions

and observations where the foreign exporter is recorded as being in the U.S. Third, we use

the concordance by Pierce and Schott (2012) to generate time consistent 10-digit Harmonized

System (HS-10) codes, and calculate prices as unit values by dividing the value of shipment

by the quantity shipped. Fourth, we translate the nominal shipment values into real values

in 2009 prices using the U.S. GDP deflator.

Since the manufacturer ID (MID) differs across establishments of the same firm in different

locations and since logistics are likely arranged at the firm-level, we consider MIDs with the

same name and country component but with a different street address or city component to

belong to the same exporter. Specifically, we replace the MID with a shortened identifier

that contains only the country ISO code and the name portion of the ID.58 This approach

follows earlier work by Kamal et al. (2015) and Kamal and Monarch (2018). Kamal et al.

(2015) compare the number of MIDs in the Census data to the number of foreign exporters

for 43 countries from the World Bank’s Exporter Dynamics Database (EDD), which is based

on foreign national government statistics and private company data. They show that the

number of MIDs in the Census data matches well with the number of sellers in the EDD

when the street address or the city component are omitted. Kamal and Monarch (2018)

provide further support that the MID is a good identifier of foreign exporters.

The LFTTD also contains an indicator for whether a transaction is conducted between

related parties. Based on Section 402(e) of the Tariff Act of 1930, a related-party trade

is an import transaction between parties with ‘‘any person directly or indirectly, owning,

controlling, or holding power to vote, [at least] 6 percent of the outstanding voting stock

or shares of any organization.’’ To correct for missing or incorrect related-party flags, we

classify an importer-exporter pair as related if it had a related-party flag for any transaction

58While different establishments may have different efficiencies or distances to the port, we only observe
port-to-port shipping times.
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in the given year. Our final dataset includes all related-party trade, and we include the type

of relationship (arms’ length or related party) as one of the dimensions in the residualization

of shipping times.

Trips construction We provide some further details on how we construct vessels’ trips. As

described in the main text, we sort all transactions involving a given vessel by their foreign

departure date. We then take all the vessel’s transactions and split them into trips using the

arrival date in the U.S. and the export departure date abroad. Specifically, for each trip we

find the earliest arrival date of the vessel in the U.S., and assign transactions with a later

export departure date abroad to a new trip. In some cases, however, the U.S. arrival date is

possibly misreported. For example, if transactions 1-5 depart abroad on June 22 and arrive

in the U.S. on July 5, transaction 6 departs on June 23 and purportedly arrives on June 24,

and transactions 7-10 depart on June 25 and arrive on July 5, then the procedure described

above would assign transactions 1-6 to one trip and transactions 7-10 to another, even though

almost all shipments arrive on the same day in the U.S.. It seems likely that the arrival date

for transaction 6 is misreported. We therefore re-combine some of the previously separated

trips. For each of the trips assigned in the first step, we compare the latest importation date

in the U.S. to the earliest departure date abroad of the next trip. If the earliest departure

date abroad of the next trip is before the latest importation date of the earlier trip, then

the two trips must have been part of the same journey and we recombine these trips into

one. We again iterate through this procedure until no more trips can be combined. Our

resulting final dataset contains trips with completely non-overlapping foreign departure and

importation dates for each vessel.

A.2 The Determinants of Shipping Times

In this section we examine the factors affecting vessel-borne shipping times to motivate our

residualization procedure to construct shipping risk for ocean shipments.

Table A.1 shows that shipping times depend on the region of origin. The table presents

the average shipping times and their standard deviation for vessel-based shipments by origin.

Shipments from Latin America and Canada tend to arrive fastest in the U.S., while shipments

from Oceania and Africa take the longest. There is a large standard deviation of shipping

times for all source countries.
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Table A.1: Shipping Times by Region

(1) (2) (3)
Avg. Std. Total Value
Time Time ($Bill.)

Canada 8.015 25.95 67

Latin America 5.014 25.91 257

South America 19.08 29.6 254

Europe 15.29 20.72 1,160

Asia 17.32 23.7 2,330

Oceania 26.75 25.2 53

Africa 27.37 26.89 113

Other 16.66 21.38 20

Source: LFTTD. Table summarizes the distribution of shipping time and value across different regions and
modes of transportation. Values are reported in billions of 2009 dollars.

We next investigate the role of the shipping route more formally by regressing each

transaction’s log shipping time separately on fixed effects for the foreign port of departure

(pe), U.S. port of entry (pi), and the port combination. These regressions yield an R2 of

0.24, 0.43, and 0.63, respectively, indicating that the route explains nearly two thirds of the

variation. Replacing the route with route-by-month fixed effects raises the R2 to 0.71.

We finally analyze the role played by the season of the year, related party status, shipping

weight, and charges, conditional on the shipping route, by running regressions of log shipping

time on these characteristics. We present the results in Table A.2. We include fixed effects

for the route in all regressions. In column 1, we test whether seasonality affects shipping

times by adding dummies for each quarter of the year. Shipping times for a given port pair

are nearly 3% shorter in the summer quarters of the northern hemisphere, highlighting the

potential role of weather in affecting shipping routes. In column 2, we find that related party

transactions have slightly longer shipping times relative to arms-length transactions. The

next columns find a positive relationship between shipping time and shipment weight, and a

negative one between shipping charges and delivery times, conditional on weight.

A.3 Analyzing Vessel Movements with AIS Data

In this section, we provide some further analysis of our constructed routes and of the effect of

weather conditions on shipping times using satellite Automatic Identification System (AIS)

data.
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Table A.2: Factors Affecting Shipping Times

Dep. Var.: Log Shipping Times (1) (2) (3) (4) (5)
Q2 −0.028∗∗∗

(0.000)
Q3 −0.029∗∗∗

(0.000)
Q4 −0.020∗∗∗

(0.000)
Related-Party 0.014∗∗

(0.000)
Log Shipment Weight 0.008∗∗∗ 0.010∗∗∗

(0.000) (0.000)
Log Shipping Charges 0.004∗∗∗ −0.003∗∗∗

(0.000) (0.000)
R2 0.616 0.616 0.616 0.616 0.617
Route FE Y Y Y Y Y
Observations (thousands) 35, 480 35, 480 35, 480 35, 480 35, 480

Notes: The unit of observation is an importer (f) - exporter (x) - HS10 (h) - vessel (v) - foreign country (c) -
origin port (pe) - destination port (pi) - foreign export date (te) - importation date (ti) combination. Rows
1, 2 and 3 represent quarter fixed effects in Column (1). Number of observations has been rounded to the
nearest 1000 as per U.S. Census Bureau Disclosure Guidelines. Standard errors are clustered at the country
level.

Vessel movements vs. routes As discussed in the main text, we construct the route taken

by vessels between ports across the ocean using Eurostat’s SeaRoute program. For a subset

of them, we compare these constructed routes to the actual vessel movements using AIS data

from MarineTraffic, a provider of ship tracking and maritime analytics services.59 These

data report the precise location of vessels on the oceans based on transceiver signals of ships.

We downloaded detailed geolocations with time stamps for 74 vessels traveling on 19 routes

between July 10 and July 16, 2023 and between August 21 and August 28, 2023. For each

vessel, we obtained origin and destination port as well as speed, direction, and weather at

different locations (latitudes and longitudes) with detailed time stamps along the route. We

obtained on average 121 different observations for each vessel along its route, with a range of

between 13 to 373 data points. While we have historical data for each vessel, allowing us

to observe each vessel from its departure port, the limited time of our data access did not

permit us to observe each vessel until its arrival at the destination. On average, we observe

83% of a vessel’s full voyage from origin to destination (median: 90%).

Figure A.1a plots some routes across the Atlantic from the SeaRoute program against the

observed locations of vessels traveling on these routes. The vessel locations are reasonably

close to the routes, though not perfect. In particular, the SeaRoute program suggests that

vessels traveling between Bremerhaven and New York mostly follow a route to the North of

59See https://www.marinetraffic.com.
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the United Kingdom, while the vessels we observe making the journey between these ports

followed a route to the South of Britain. In contrast, some vessels traveling to Jacksonville

followed the Northern route. Figure A.1b plots the routes across the Pacific. Here vessels

are closer to the routes near the end points, but follow a more Northern trajectory in the

middle. Finally, Figure A.1c plots vessel movements on South American routes. Overall, the

analysis shows that vessels tend to broadly follow the routes from the SeaRoute program,

but that there is substantial variation. This variation will introduce measurement error into

our weather variable that will bias our results towards zero.

Figure A.1: Vessel Movements vs Routes

(a) Atlantic Routes (b) Pacific Routes

(c) South American Routes

Source: MarineTraffic and authors’ calculations. Notes: The figure shows the locations of vessels traveling
between selected ports against the routes from the SeaRoute program used for the analysis.

Vessel Speed and Weather Conditions We examine the effect of weather conditions on

vessel speed in the AIS data. MarineTraffic provides for each vessel at each recorded location
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the course and speed, as well as the wind speed, wind angle, wave height, and wave direction.

We can therefore run similar regressions in these data as in the Census data to see whether

we find similar effects. Since we observe the vessel speed at each location, we use this variable

rather than the overall shipping time to analyze the contemporaneous effect of weather

conditions on speed. Specifically, we estimate:

ln(Speedijt) = β1Heightijt + β2Directionijt + β3Heightijt ·Directionijt + γi + ϵijt,

where i indexes the vessel, j the location, and t is the time stamp. Here, Speedijt is the speed

of the vessel at location j and time t, Heightijt is the height of the waves, Directionijt is the

wave direction relative to the direction of travel (where zero indicates that the waves are

in the direction of travel), and γi are vessel fixed effects.60 The first column of Table A.3

presents the results. As in the Census data, higher waves increase the vessel speed: a one

standard deviation increase in significant wave height from the mean increases vessel speed

(hence reduces shipping time) by about 4 log points. Also consistent with the Census data, a

greater wave angle relative to the direction of travel has a positive effect on speed. When the

waves are against the direction of travel (180 degrees), vessel speed is about 13 log points

higher, reducing the shipping time.

In the second column of Table A.3 we run a similar regression, but use wind speed and

wind direction instead of wave height and direction. Related work on shipping times such

as Filtz et al. (2015) also finds a strong relationship between vessel speed and wind speed

and direction, which we do not observe in the WaveWatch III data. Wind speed should

be positively correlated with wave height, and hence we might expect similar results also

with respect to this variable. As expected, we find that vessels are faster when wind speed is

higher and when the wind is in the opposite direction of the vessel’s course. A one standard

deviation increase in wind speed (6 knots) raises vessel speed by 1.4 log points. Wind against

the direction of travel (180 degrees) increases speed by 4 log points. Overall, the results are

therefore consistent with the relationships between wave height and shipping times that we

observe with the Census data.

60We observe each vessel only on one route and so these are effectively vessel-route fixed effects.
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Table A.3: Effect of Weather on Shipping Times

Dep. Var: Vessel speed Vessel speed

Wave Height 0.0584∗∗∗

(0.0122)

Direction 0.0007∗∗∗

(0.0002)

Wave Height×Directions −0.0002∗∗

(0.0001)

Wind Speed 0.0024∗∗

(0.0011)

Wind Direction 0.0003∗∗

(0.0001)

Wind Speed×Wind Directions −0.0000
(0.0000)

Vessel FE Y Y
Observations 8,902 8,842

Source: MarineTraffic. Notes: First column shows regression of log vessel speed on wave height and relative
wave direction. Second column shows regression of log vessel speed on wind speed and relative wind direction.
Direction of zero means that the waves or wind are in the direction of travel.

Vessel Speed In the last step, we verify our assumption that vessels travel at approximately

constant speed across the ocean using the AIS data, which we use to infer vessels’ approximate

location for our alternative weather shock measure in Appendix B.1. We use the 18 vessels

for which we observe the entire journey from origin to destination port. For these vessels, we

compute at each location the share of the journey completed, in terms of distance, as well as

the share of the journey passed in terms of total voyage time. We then plot in Figure A.2 a

bin scatter of the distance share against the share of voyage time. Overall, we find that the

fit line is approximately on the 45 degree line throughout the journey, indicating that our

assumption of constant speed is reasonable. Vessels are slightly slower at departure, and then

make up for this delay along the journey before slowing down again near the arrival port.
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Figure A.2: Vessel Distance Covered vs Voyage Time Elapsed

Source: MarineTraffic and authors’ calculations. Notes: The figure plots the share of the distance completed

against the share of voyage time elapsed for 18 vessels for which we have complete voyage information.

A.4 Weather Summary Statistics

In this section we provide some further details on the wave height variable. Table A.4

provides some summary statistics on the mean and standard deviation of the significant wave

height and its (absolute) direction across all days and route segments in the data. We find

that there is substantial variation across both height and direction variable. For example,

the mean wave height is 2.6 meters, but at the 95th percentile the wave height is 5.5 meters.

Figure A.3 further shows that there is also significant variation in the standard deviation

of wave height across seasons. For example, both the northern Atlantic and the northern

Pacific experience significant volatility in wave height in the fall, but very little in the

summer.
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Table A.4: Weather conditions: summary statistics

Mean Sd p1 p5 p50 p95 p99
Significant wave height (m)

All 2.6 1.5 0.1 0.6 2.3 5.5 7.3

North Atlantic 2.2 1.3 0.2 0.7 1.9 4.8 7.0

South Atlantic 2.7 1.3 0.3 1.1 2.4 5.2 6.8

North Pacific 2.3 1.2 0.2 0.7 2.1 4.6 6.5

South Pacific 2.9 1.4 0.3 1.1 2.6 5.7 7.4

Indian Ocean 2.9 1.6 0.1 0.6 2.7 5.9 7.7

Significant wave direction (degrees)

All 203 80 20 52 216 318 343

North Atlantic 182 102 11 31 191 333 350

South Atlantic 216 65 33 92 220 314 342

North Pacific 186 98 17 40 195 325 344

South Atlantic 215 67 34 83 223 314 339

Indian Ocean 209 62 28 81 218 295 326

Notes: The table shows summary statistics for the weather variables across all days and route segments in
the data.

Figure A.3: Standard Deviation of Wave Height in Different Seasons

(a) Winter (b) Spring

(c) Summer (d) Fall

Notes: The figure shows the standard deviation of wave height across all days from 2011-2016 for different

seasons. Seasons are based on the Northern Hemisphere, i.e. December, January and February are winter

months, March, April, and May are spring months, and so on.
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B Additional Results for Empirical Analysis

B.1 Effect of Weather on Shipping Times

One concern with our baseline methodology of averaging the weather across all locations of

each trip segment on each day is that some of these locations may be very far away from the

vessel’s current location. We use an alternative approach that estimates vessels’ location on

each segment and uses weather only from the surrounding area. Specifically, we decompose

each trip segment into smaller sub-segments of 1,000 km of length and assume that vessels

travel through these areas at constant speed.61 We then find for each day of the journey the

local weather in the vessel’s current sub-segment and average these local weather conditions

across the vessel’s journey. We use this variable to run regression (2) and obtain from this

regression an alternative measure of weather-induced shipping times t̃s,weather,alt. Table B.1

shows the coefficients from this regression, analogous to Table 4 in the main text. Overall,

the results are very similar.

We then construct weather-induced shipping delays analogously to Section 3.3 and re-run

the regression (4):

ln(Y o
ft) = α + β1FracDelayed

weather,alt
ft + γf + δt + ϵft,

where FracDelayedweather,altft is the fraction of imports subject to shipping delays constructed

with the alternative measure. Table B.2 shows the results. The coefficients are qualitatively

very similar, but slightly smaller than with the measure in the main text.

Table B.1: Effect of Weather on Shipping Times – Alternative Weather Conditions

Dep. Var: t̂sxhrtvfa t̂sxhrtvfa t̂sxhrtvfa
Wave Heights −0.014∗∗∗ −0.014∗∗∗ −0.009∗∗∗

(0.000) (0.000) (0.000)

Directions −0.004∗∗∗ 0.008∗∗∗

(0.000) (0.000)

Wave Heights× −0.006∗∗∗

Directions (0.000)

R-Squared 0.010 0.010 0.010
Observations 5,728,000 5,728,000 5,728,000

61We use AIS data in Appendix A.3 to show that this assumption approximately holds in vessel tracking
data.
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Table B.2: Effect of Extreme Delays on Firms’ Outcomes (Alternative Measure)

(1) (2) (3)
Weather Shocks (Alternative Measure)

Dependent Variable (in logs): Sales Profits Employees
Frac Delayed −1.864∗∗∗ −1.090∗∗ −0.369

(0.518) (0.529) (0.242)

Importer FE Y Y Y
Year FE Y Y Y
R-Squared 0.97 0.91 0.98
Observations 40, 500 40, 500 40, 500

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level. R2 is the overall fit inclusive of the fixed effects.

B.2 Robustness of the Risk Regressions

In this section, we show that our results on the impact of shipping risk on importers’ behavior

from Section 3.4 are robust to a variety of alternative specifications.

First, we replace the separate firm and time fixed effects in our baseline specification (6)

with firm-time fixed effects. This specification picks up changes in a firms’ sourcing strategy

that are common to all imported goods, and identifies our effect from within-firm variation

in sourcing behavior across goods. In this specification, firms that only import a single good

are therefore dropped. The results in Table B.3 are similar to the baseline and increase in

magnitude for all effects except for total imports. Going from the 25th to the 75th percentile

of the weather risk distribution is associated with a 10.3% increase in routes and a 7.2%

increase in the number of suppliers. The route HHI, supplier HHI, and import value drop by

5.5%, 4.0%, and 2.8%, respectively.

Next, we use the alternative measure of weather-induced shipping risk introduced in

Appendix B.1. As described above, we decompose each trip segment into smaller sub-segments,

assume that vessels travel through these areas at constant speed, and determine for each day

of a vessel’s journey the local weather conditions in a vessel’s current location. We then use

the weather-induced shipping times based on this measure, t̃s,weather,alt, to construct our risk

measure using the same steps as described in Section 3.4. Table B.4 shows the results from

running regression (6) with this alternative risk measure. The effects are similar to before.

Third, we show that our results also hold when we use only the riskiness of the importers’

main supplier to construct our measure of risk, rather than a weighted average across all

suppliers. Specifically, we compute the risk measure

̂StdT ime
main

fht−3,t−1 ≡
∑

r∈R(xmain)

ωx
main

fxhr,t−3,t−1
̂StdT imexhrt−3,t−1, (19)
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where the main supplier of good h is defined as the one with the largest shipment value to

importer f in the years t− 3 to t− 1. The weighted average is now taken only across the

routes r used by the main supplier, R(xmain) and the weights ωx
main

fxhr,t−3,t−1 are the import

shares of each route for the main supplier. The results of running specification (6) with

this measure are in Table B.5. Going from the 25th to the 75th percentile of shipping risk

increases the number of routes and suppliers by 5.7% and 4.8%, respectively, while the route

HHI, supplier HHI, and total import value fall by 3.9%, 3.7%, and 4.5%. Since we are not

able to compute shipping risk for all main suppliers (for example because they have fewer

than 10 transactions), the number of observations drops relative to the other regressions.

Table B.6 includes firms with only one supplier, which are dropped in the main specification.

These firms are therefore by definition not diversified in t. Here, we find that the relationship

between shipping risk and the number of suppliers and routes remains significantly positive,

but decreases slightly in magnitude. However, all results remain strongly significant.

Finally, in Table B.7 we include an additional control for the inventory-sales ratio. We

obtain the end of year value of the total inventory of materials for all firms in each census year

from the CMF, and for a subset of firms from the ASM in all other years. These inventories

contain domestically sourced supplies, and are therefore only a proxy of the inventory of

imported inputs. We find that the relationship between shipping risk and the number of

suppliers and routes strengthens once we include the inventory control. However, conditional

on shipping risk, a higher inventory-sales ratio decreases the number of routes used.

Table B.3: Firm-Time Fixed Effects

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.169∗∗∗ 0.117∗∗∗ −0.090∗∗∗ −0.066∗∗∗ −0.046∗∗∗

(0.011) (0.010) (0.004) (0.004) (0.013)

Importer-Year FE Y Y Y Y Y
Product FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.75 0.71 0.48 0.49 0.92
Observations 64, 000 64, 000 64, 000 64, 000 64, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.
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Table B.4: Alternative Measure of Weather Risk

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.181∗∗∗ 0.122∗∗∗ −0.091∗∗∗ −0.069∗∗∗ −0.038∗∗∗

(0.010) (0.010) (0.003) (0.003) (0.012)

Importer-Year FE Y Y Y Y Y
Product FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.76 0.71 0.49 0.49 0.92
Observations 64, 000 64, 000 64, 000 64, 000 64, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

Table B.5: Risk Measure Based on Main Supplier

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.094∗∗∗ 0.078∗∗∗ −0.064∗∗∗ −0.061∗∗∗ −0.074∗∗∗

(0.014) (0.011) (0.007) (0.005) (0.012)

Importer-Year FE Y Y Y Y Y
Product FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.76 0.70 0.56 0.53 0.93
Observations 46, 000 46, 000 46, 000 46, 000 46, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.

Table B.6: Including Firms with One Supplier

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.159∗∗∗ 0.098∗∗∗ −0.088∗∗∗ −0.056∗∗∗ −0.060∗∗∗

(0.010) (0.010) (0.004) (0.003) (0.011)

Importer-Year FE Y Y Y Y Y
Product FE Y Y Y Y Y
Controls Y Y Y Y Y
R-squared 0.75 0.72 0.57 0.56 0.90
Observations 96, 000 96, 000 96, 000 96, 000 96, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.
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Table B.7: Shipping Time Risk and Import Demand with Inventory-Sales Ratio

(1) (2) (3) (4) (5)
Dep. Var.: Number of Number of HHI over HHI over Value

Routes Suppliers Routes Suppliers Imported
Std Time 0.129∗∗∗ 0.083∗∗∗ −0.077∗∗∗ −0.056∗∗∗ −0.080∗∗∗

(0.011) (0.009) (0.004) (0.004) (0.0013)

Inventory- −0.036∗∗ −0.018 0.005∗ 0.003 −0.062
Sales Ratio (0.015) (0.013) (0.003) (0.003) (0.048)

Importer FE Y Y Y Y Y
Product FE Y Y Y Y Y
Year FE Y Y Y Y Y
Controls Y Y Y Y Y
Observations 55, 000 55, 000 55, 000 55, 000 55, 000

Notes: Number of observations has been rounded to the nearest 1000 as per U.S. Census Bureau Disclosure
Guidelines. Standard errors are clustered at the firm level.
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C Additional Results for Section 4

C.1 Derivation of equation (11)

The CES assumption implies that the optimal demand for variety of firm f is:

yf = p−σf A

where A = S
P 1−σ is a demand shifter which depends on income and price index. A firm f

producing a certain variety will have therefore total revenues equal to:

Rf =
(yf
A

)− 1
σ
yf = A

1
σ y

σ−1
σ

f = P
σ−1
σ S1/σy

σ−1
σ

f .

Firms maximize profits in two stages. In the first, firms choose N , x and xD under

uncertainty about the shipping times of their foreign inputs. After the uncertainty is realized,

firms choose the optimal level of labor conditional on the choices for N , x and xD. Combining

equations (7) and (10), firms’ profits in the second stage are given by

maxlp πf = φf
σ−1
σ l(1−γ)

σ−1
σ

x ε−1
ε

D +

(
N∑
i=1

αi

) ε−1
ε

x
ε−1
ε

γ ε
ε−1

σ−1
σ

P
σ−1
σ S1/σ−pDxD−NpMx−wl−wNF,

(20)

where we have used the fact that x = xi since the inputs are ex-ante symmetric, and αi

are the quality shocks which depend on the realized shipping times. The optimal choice of

production labor is:

lf =

γ̃φf σ−1
σ

x ε−1
ε

D +

(
N∑
i=1

αi

) ε−1
ε

x
ε−1
ε

γ ε
ε−1

σ−1
σ

P
σ−1
σ S1/σw−1


1

1−γ̃

(21)

where γ̃ ≡ (1− γ) σ−1
σ
. In the first stage, taking lf as given, the firm maximizes expected

profits. Plugging the expression for lf into equation (20), expected profits are

maxxD,x,N χfE


x ε−1

ε
D +

(
N∑
i=1

αi

) ε−1
ε

x
ε−1
ε

ψ
− pDxD −NpMx− wNF, (22)

where χf ≡
(
φf

σ−1
σ P

σ−1
σ S1/σ

) 1
1−γ̃

w− γ̃
1−γ̃

[
(γ̃)

γ̃
1−γ̃ − (γ̃)

1
1−γ̃

]
and ψ ≡ γ ε

ε−1
σ−1
σ

1
1−γ̃ .
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C.2 Derivations for Section 4.3

Derivation of expression (12). In the case without the domestic input, given the realization

of input qualities, firm profits are

π = P
σ−1
σ S1/σ

(
φl1−γ

(
N∑
i=1

αix

)γ)σ−1
σ

− wFN −NpMx− wl.

Letting γ̃ ≡ (1− γ) σ−1
σ
, the first order condition with respect to labor is

γ̃P
σ−1
σ S1/σφ

σ−1
σ lγ̃−1

(
N∑
i=1

αix

)γ σ−1
σ

= w

Solving for labor and plugging back into profits yields:

π =
(
γ̃

γ̃
1−γ̃ − γ̃

1
1−γ̃

)(
P

σ−1
σ S1/σφ

σ−1
σ

) 1
1−γ̃

(
N∑
i=1

αix

)γ σ−1
σ

1
1−γ̃

w− γ̃
1−γ̃ − wFN −NpMx.

Letting

χ ≡
(
γ̃

γ̃
1−γ̃ − γ̃

1
1−γ̃

)(
φ
σ−1
σ P

σ−1
σ S1/σ

) 1
1−γ̃

w− γ̃
1−γ̃

and ψ be defined as in the main text, the ex-ante firm profit maximization problem is:

max
x,N

χxψE

(
N∑
i=1

αi

)ψ

−NpMx− wNF.

The first order condition with respect to x gives:

ψxψ−1χfE

(
N∑
i=1

αi

)ψ

−NpM = 0 (23)

Using this condition to eliminate x yields expression (12) in the main text, where χ̃ ≡(
ψ

ψ
1−ψ − ψ

1
1−ψ

)
p
− ψ

1−ψ
M χ

1
1−ψ .

Derivation of expression (13). A second-order approximation of the function ᾱψ around

E [α] yields

ᾱψ ≈ (E [α])ψ + ψ (E [α])ψ−1 (ᾱ− E [α]) + ψ
(ψ − 1)

2
(E [α])ψ−2 (ᾱ− E [α])2 (24)
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Taking expectations on both sides gives

E
[
ᾱψ
]
≈ (E [α])ψ + ψ

(ψ − 1)

2
(E [α])ψ−2 E

[
(ᾱ− E [α])2

]
(25)

since E [ᾱ] = E [α]. Noting that V [ᾱ] = E
[
(ᾱ− E [α])2

]
and that V [ᾱ] = V [α] /N , we

plug this into equation (12) to obtain expression (13).

Proof of Propositions 1 and 2. For continuous N, the first order condition with respect to

N is given by:

G (N,V [α]) ≡ χ̃

(
(E [α])ψ − ψ

(1− ψ)

2
(E [α])ψ−2 1

N
V [α]

) ψ
1−ψ ψ

2
(E [α])ψ−2N−2V [α]−wF = 0.

Using the implicit function theorem:

∂N∗

∂V [α]
= −

GV[α]

GN

,

where Gy ≡ ∂G/∂y. Taking these partial derivatives and plugging them back into the previous

expression yields:

ϵN∗,V[α] =
∂N∗

∂V [α]

V [α]

N∗ = −

(
1−

ψ2

2
(E[α])ψ−2V[α]

N(E[α])ψ−ψ (1−ψ)
2

(E[α])ψ−2V[α]

)
(

ψ2

2
(E[α])ψ−2V[α]

N(E[α])ψ−ψ (1−ψ)
2

(E[α])ψ−2V[α]
− 2

) < 1 (26)

Note that the denominator is negative as GN < 0 follows from the second order condition at

the optimal N. The numerator is positive whenever condition (14) in the main text holds;

this establishes the first part of the proposition.

Relying on the first order condition with respect to x in (23), import values are given by:

NxpM = (pM)−
ψ

1−ψ

(
ψχ̃E

[
(ᾱ)ψ

]) 1
1−ψ

≈ (pM)−
ψ

1−ψ

(
ψχ̃

(
(E [α])ψ − ψ

(1− ψ)

2
(E [α])ψ−2 1

N
V [α]

)) 1
1−ψ

,

where the second line uses the approximation in (24). It follows that the effect of a mean

preserving spread on import values depends on its effect on the variance of average supplier
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quality V [α] /N . In turn, this effect is given by:

∂V [α] /N

∂V [α]
=

1− ϵN∗,V[α]

N
> 0

as ϵN∗,V[α] < 1 follows from 26. It follows that, regardless of whether the optimal N falls or

increases after a mean preserving spread, V [α] /N increases and import values fall.

To Proposition 2, note first that

∂N∗

∂φ
= −Gφ

GN

≥ 0

as Gφ > 0. That is, more efficient firms select a greater number of suppliers. Note next that

ϵN∗,V[α] depends on efficiency only through N. Using (26), it is straightforward to show that:

∂ϵN∗,V[α]

∂N∗ > 0,

which establishes the first part of the proposition. Note next that import value M ≡ Nxp∗ is

proportional to expected revenues, so that:

ϵM,V[α] ≡
∂ logM

∂ logV [α]
=
∂ log

(
Eᾱψ

)
∂ logV [α]

Note next that, relying on the approximation in (25), we have that:

∂
(
Eᾱψ

)
∂V [α]

= −ψ (1− ψ)

2
(E [α])ψ−2

{
1− ϵN∗,V[α]

N

}
It follows that:

ϵM,V[α] = −
ψ (1−ψ)

2
(E [α])ψ−2V [α]

N (E [α])ψ − ψ (1−ψ)
2

(E [α])ψ−2V [α]

{
1− ϵN∗,V[α]

}
≤ 0

Note that the right hand side of this expression increases with efficiency (as both N and

ϵN∗,V[α] increase). This completes the proof of Proposition 2.

C.3 The Effects of Changes in Expected Quality

In the main text, we study the effects of a mean preserving spread to input qualities. Because

our empirical exercises involve days and not qualities, it is necessary to also explore the

effect of changes in expected quality. A higher expected quality affects expected revenue in
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two ways. There is a direct positive effect that stems from output being increasing in input

qualities and is captured by the first term in expression (13). A second effect is that a higher

expected quality makes a given variance less important for expected revenue, as captured

by the second term in expression (13). In other words, the importance of the variance of

quality for expected revenues is mediated by the mean quality. By making a given variance

less detrimental, this effect reduces the incentive to adding suppliers. This negative effect

turns out to be dominated by the positive direct effect whenever the variance of quality is

large relative to its mean, as captured by the coefficient of variation. The following result

formalizes this argument.

Proposition 3. Consider the case without a domestic input in production. Let N∗be the

optimal number of suppliers. An increase in the mean of the supplier-level quality E [α],

holding constant its variance V [α], increases the returns to adding suppliers

∂2R̃

∂N∂E [α]

∣∣∣∣∣
N=N∗

> 0

whenever:
1

N∗
V [α]

(E [α])2
>

2− 3ψ

(1− ψ) (2− ψ)

2

ψ
. (27)

Note that, when ψ < 2/3, the right hand side of condition (27) is lower than the right hand

side of condition (14) in the main text.62 It follows that in the region of parameters where a

mean preserving spread to quality increases the returns to adding suppliers (i.e., condition

(14) is satisfied), there is a sub-region where an increase in expected quality increases the

returns to adding suppliers and a sub-region where the opposite happens.

Proof. Note that (13) can be written as:

∂R̃

∂N
= χ̃

ψ

2
N−2

(
(E [α])

3ψ−2
ψ − (E [α])

ψ−2
ψ ψ

(1− ψ)

2

1

N
V [α]

) ψ
1−ψ

V [α]

The marginal effect of a change in the mean of input quality, holding its variance constant,

on the returns to adding suppliers is:

∂2R̃

∂N∂E [α]
∝ ψ

1− ψ

(
(E [α])

3ψ−2
ψ − (E [α])(ψ−2) 1

ψ ψ
(1− ψ)

2

1

N
V [α]

) ψ
1−ψ−1

×

62This follows from the fact that
2− 3ψ

(1− ψ) (2− ψ)
< 1

for ψ ∈ (0, 2/3) .
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(
3ψ − 2

ψ
(E [α])

3ψ−2
ψ

−1 − (ψ − 2) (E [α])(ψ−2) 1
ψ
−1 (1− ψ)

2

1

N
V [α]

)
.

Because the first term on the right hand side is positive, the sign of this crossed derivative

depends on the sign of the second term, which is positive whenever:

1

N

V [α]

(E [α])2
>

2− 3ψ

(1− ψ) (2− ψ)

2

ψ

If ψ > 2/3, then the right hand side of this expression is negative and the inequality

holds. When ψ < 2/3, then the above condition is required for the crossed derivative to be

positive.
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