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Abstract 

A unified theory of estimation and inference is developed for an autoregressive process with root in  

(-∞, ∞) that includes the stationary, local-to-unity, explosive and all intermediate regions. The 

discontinuity of the limit distribution of the t-statistic outside the stationary region and its dependence on 

the distribution of the innovations in the explosive regions (-∞, -1) ∪ (1, ∞) are addressed simultaneously. 

A novel estimation procedure, based on a data-driven combination of a near-stationary and a mildly 

explosive artificially constructed instrument, delivers mixed-Gaussian limit theory and gives rise to an 

asymptotically standard normal t-statistic across all autoregressive regions. The resulting hypothesis 

tests and confidence intervals are shown to have correct asymptotic size (uniformly over the space of 

autoregressive parameters and the space of innovation distribution functions) in autoregressive, predictive 

regression and local projection models, thereby establishing a general and unified framework for 

inference with autoregressive processes. Extensive Monte Carlo simulation shows that the proposed 

methodology exhibits very good finite sample properties over the entire autoregressive parameter space 

(-∞, ∞) and compares favorably to existing methods within their parametric (-1, 1] validity range. We 

demonstrate how our procedure can be used to construct valid confidence intervals in standard 

epidemiological models as well as to test in real-time for speculative bubbles in the price of the 

Magnificent Seven tech stocks. 
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1 Introduction
Imposing short memory assumptions in macroeconomic and �nancial models is convenient

since it delivers standard econometric inference on the models� parameters with conventional

asymptotic distributions. However, such stationarity assumptions are often empirically unrealistic

and a variety of stochastic trends has been found in many macroeconomic and �nancial time series.

Whenever a nonstationary regressor is included in a regression model, the additional signal

from the strong time dependence present in the regressor, while facilitating more precise point

estimates, usually makes the series non-ergodic, thus invalidating standard central limit theory

(CLT). Consequently, OLS-based test statistics have di¤erent distributional limits depending on

the persistence degree of the regressor and the critical values required by practitioners to construct

con�dence intervals (CIs) or run hypothesis tests on the model�s parameters are vastly di¤erent.

As a result, misspecifying the type of regressor invalidates inference resulting in size distortions

which do not improve with the sample size and lead to erroneous empirical conclusions.

In this paper, we focus on a single regressor generated by the prototypical time series model,

a �rst-order autoregressive (AR) process with root in (�1;1). We consider inference in several
regression models where this regressor enters on the right-hand side: a pure autoregression, a

predictive regression and a local projection model. Even in these simple setups, di¤erent per-

sistence degrees of the regressor create discontinuities in the OLS limit distributions with limits

involving stochastic integrals in the vicinity of (negative and positive) unit root as well as limits

of unknown distributional form which depend on the distributions of the innovations in explo-

sive regions. The discontinuities in the limits of OLS-based test statistics, well-documented in a

series of classical papers (e.g. Mann and Wald (1943) for autoregressions with stationary roots,

Anderson (1959) for explosive roots, Phillips (1987a) for unit-roots and Chan and Wei (1987) for

local-to-unity roots) present a major challenge for inference. Even robust standard procedures

such as bootstrap have been shown to be invalid in presence of unit roots (Basawa et al. (1991)).

Given the inference challenges arising from nonstationarity, a strand of the literature is dedicated

to designing screening procedures for researchers to detect possible nonstationarities in the data

(e.g. unit root and cointegration testing) and account for or remove them, e.g. by di¤erencing

or detrending. Pre-testing not only leads to size pile-up but, as Cavanagh et al. (1995) show,

two-step procedures with highly persistent regressors are invalid unless the latter have an exact

unit root. Such fundamental issues with pre-testing have led to the design of new inference pro-

cedures in order to achieve valid inference in these nonstandard setups. Early work on obtaining

CIs for an AR coe¢ cient in (�1; 1], thereby accommodating stationary and unit-root processes,
includes Stock (1991), Andrews (1993), Hansen (1999), Romano and Wolf (2001), Mikusheva
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(2007) and Andrews and Guggenberger (2009, 2014). The literature on inference in predictive

regressions was developed in parallel proposing di¤erent solutions to the inference problem with

a nonstationary regressor. Notable contributions include Campbell and Yogo (1996), Jansson and

Moreira (2006), Elliott, Müller and Watson (2015) and Cavaliere and Georgiev (2020). One com-

mon feature of most existing inference procedures is that their proposed solution is designed for

a model-speci�c nonstandard environment by modifying existing test statistics and designing new

and often complicated procedures which perform well in the presence of the particular type of

persistence considered and are often invalid and work poorly outside the region considered.

In this paper, we propose a new inference procedure based on instrumental variable (IV) esti-

mators which makes use of usual IV-based standard errors and standard normal (N (0; 1)) critical

values. The new methodology approaches the classical inference problem from a new angle: rather

than providing new test statistics designed to work in the various nonstandard setups, the novel

approach constructs a new process from the data, designed to automatically adjust the regressor�s

persistence to a level where standard (mixed) Gaussian central limit theory applies. We establish

a uni�ed asymptotic inference framework with regressor covering the entire autoregressive spec-

trum (including stationary, local-to-unity, explosive processes and all intermediate and oscillating

regions) and simultaneously providing a solution for autoregressive, predictive regressive and local

projection models. Our novel procedure thus places all these potentially nonstandard processes

and models under a common econometric inference framework which delivers N (0; 1) t-statistic

regardless of the regressor�s stochastic properties, with uniform validity over the AR parameter

space and the space of distribution functions of the innovations.

The key idea of the approach is to �lter the regressor through a process that acts as a proxy,

arti�cially constructed from the data as a combination of moderately stationary and mildly explo-

sive process and is employed as an instrumental variable. In the case of a stationary regressor, this

instrument reduces to the process itself, so that our IV estimators are asymptotically equivalent

to OLS, thereby inheriting all optimality properties of OLS in the stationary region. Outside the

stationary region, the instrument is designed to automatically adjust the persistence of the original

regressor to a level where CLT applies. Using the same instrument, we can provide a solution to

the inference problem in all three regression models considered. In particular, we show that the

resulting IV estimators are asymptotically mixed-Gaussian regardless of the true unknown sto-

chastic integration order of the regressor and, consequently, self-normalised test statistics based on

these IV estimators deliver standard asymptotic inference. Moreover, we show that the resulting

hypothesis tests and con�dence intervals have correct asymptotic size uniformly over the space of

AR parameters, the distribution functions of the innovations and the initial condition.
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Developing the limit theory in full generality and establishing the theoretical properties of the

new IV estimators and the uniformity of the resulting critical regions is dense and technical and is

deferred to Section 3; the inference procedure that we propose, however, is based on simple closed-

form linear estimators and standard test statistics and requires nothing else than N (0; 1)-critical

values, rendering the procedure extremely easy and straightforward to implement.

While a univariate AR(1) setup for the regressor is simple and stylised, the inference problem

arising from the discontinuities of the OLS limit distribution is fundamentally similar in models

with more complex dynamics and larger dimensions. The central idea of controlling the regres-

sor�s persistence through �ltering rather than modifying existing test procedures is general and

can be applied to regressors with more complex dynamics. Moreover, the procedure�s linearity

and tractability make it easily scalable to multivariate setups, which is in contrast to existing

approaches. In addition to providing the �rst uniform and distribution-free procedure for models

with a general AR regressor, the current paper, therefore, also lays the basic foundation for the

application of this novel methodology to processes with richer dynamics and larger dimensions.

The remainder of the paper is organised as follows: Section 2.1 presents the regression models

considered, Section 2.2 introduces the novel IV procedure and informally discusses its properties.

Sections 2.3 and 2.4 provide a discussion of the advantages of the proposed methodology relative

to existing approaches in the literature and its empirical relevance. Development of the asymptotic

theory appears in Section 3. Theorem 1 establishes the asymptotic mixed-Gaussianity property

of the IV estimators and the N (0; 1) limit distribution of the associated t-statistics. The main

results of the paper on uniform asymptotic inference in the autoregressive, predictive regressive

and local projection models appear in Theorems 2, 3 and Corollary 1 respectively. Section 4

discusses practical implementation of the procedure and conducts Monte Carlo experiments to

assess the �nite sample properties of our CIs and hypothesis tests in comparison to the leading

existing inference procedures. Section 5.1 applies the results of Theorems 2 and 3 to construct

CIs for the parameters of an SIR model and Section 5.2 demonstrates how our procedure can be

used to test in real-time for speculative bubbles in asset prices of popular tech stocks and Section

6 concludes. Some auxiliary results as well as all mathematical proofs are provided in the online

Appendix, which also contains additional simulation comparisons.

2 The IV Methodology

2.1 The Regression Models
Let xt be a �rst order AR process with an intercept of the form:

xt � � = � (xt�1 � �) + ut; t 2 f1; :::; ng ; � 2 R: (1)
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We consider three regression models where the process for xt in (1) enters as a regressor. The �rst

model is the pure AR model in (1) in which the key parameter of interest is � 2 R: The second
model is a predictive regression (PR) of the form:

yt =  + �xt�1 + "t; (2)

where xt is generated by (1). While the object of interest in this model is � and � is a nuisance

parameter, the asymptotics and hence, the validity of inference procedures on � is driven by the

degree of persistence of xt. Finally, the third model we consider is a local projection (LP) model

of the form

xt = rhxt�h + vh;t (3)

with xt generated by (1) and the object of interest is the impulse response at horizon h given by

rh = �h:

A complete set of assumptions for the models (1), (2) and (3) is provided in Section 3 (Assump-

tions 1-4). Here, we simply mention that the autoregressive parameter � may take any real value

(Assumption 1), (ut) and ("t) are (possibly conditionally heteroskedastic) martingale di¤erence

sequences and that (ut) may exhibit linear short memory autocorrelation when xt�1 is a predictive

regressor in (2) (Assumptions 2 and 4). We employ a drifting sequence of parameters approach to

establishing uniform asymptotic size properties of con�dence intervals and critical regions. To this

end, we consider sample-size dependent sequences of AR roots (�n)n2N and innovations (un;t)t2N,

("n;t)t2N (Assumptions 5 and 6). Autoregressive processes with roots satisfying �n ! � 2 R, may
be categorised into three broad classes according to their stochastic properties.

De�nition 1 (AR classi�cation). Let �n ! � 2 R and c := limn!1 n (j�nj � 1) exist in
[�1;1]. The AR process xt in (1) belongs to one of the following classes:
C(i) near-stationary processes if c = �1;

C(ii) near-unit-root processes if c 2 R;
C(iii) near-explosive processes if c =1:

Each class C(�) above may be further partitioned into a regular subclass C+(�) when � � 0 and

an oscillating subclass C�(�) when � < 0. We further denote by C1(�) and C�1(�) the subclasses
of C(�) where � = 1 and � = �1 respectively.
Unit root and local-to-unity processes are included in class C(ii). Purely stationary processes

satisfying �n ! � 2 (�1; 1) are included in C(i) and purely explosive processes �n ! � 2
(�1;�1) [ (1;1) are included in C(iii). In all three regression models (1), (2), (3) consid-
ered, the limit distributions of the OLS estimators for �; � and rh are vastly di¤erent depending

on the true unknown persistence level of the regressor xt: Consequently, OLS-based inference re-

quires di¤erent critical values for each autoregressive category of De�nition 1: (i) the OLS-based

5



t-statistic is standard normal only if xt belongs to C(i); (ii) if xt has an exact (positive or negative)

unit root, i.e. xt belongs to C(ii) with c = 0, the t-statistic has a limit distribution that takes the

form of a Dickey-Fuller ratio; (iii) if xt is local but not exact unit root (c 6= 0 in C(ii)), the limiting
distribution of the t-statistic features a ratio of stochastic integrals which depend on c; and (iv)

if xt is an explosive process with j�j > 1 then the distributional limit of the OLS t-statistic (when
it exists) is of unknown form entirely driven by the distribution of the innovations1, rendering

OLS-based inference infeasible.

The processes in C1(i) and C1(iii) (usually referred to as moderately stationary and mildly

explosive respectively) and their oscillating counterparts C�1(i) and C�1(iii) provide a crucial

building block in the construction of our instrumentation procedure. Processes in the above

classes satisfy a CLT2, in stark contrast to local to unity processes in C(ii) and to purely explosive

processes. Our instrument process is constructed to belong approximately to one of the classes

C1(i), C�1(i), C1(iii), C�1(iii), thereby inheriting their desirable asymptotic properties.

2.2 The IV Approach
The idea behind our novel data-generated IV estimation procedure is to �lter the regressor

xt in (1) through a time series that acts as an instrument constructed to behave asymptotically

as: a moderately stationary process belonging to C1(i) (C�1(i)) when xt belongs to C+(i) (C�(i));

a mildly explosive process belonging to C1(iii) (C�1(iii)) when xt belongs to C+(iii) (C�(iii)); a

random linear combination of the two when xt belongs to the near-unit-root class C+(ii) (C�(ii)).

The choice of instrument process is motivated by two considerations: (i) it is built to mimic closely

the actual process xt; rendering the instrument relevant, (ii) the instrument�s persistence is arti�-

cially controlled so that the instrument inherits the desirable asymptotic properties of moderately

stationary/mildly explosive processes C1(i) and C1(iii) and their oscillating counterparts.

We denote the OLS estimator for � and the resulting residuals by

�̂n =
�Pn

t=1 x
2
n;t�1

��1Pn
t=1 xn;txn;t�1 and ûn;t = xn;t � �̂nxn;t�1; (4)

where xn;t := xt � n�1
Pn

t=1 xt: Next, we de�ne the event

Fn = fn (j�̂nj � 1) � 0g ; (5)

its complement �Fn, and the events F+n = Fn\f�̂n � 0g, F�n = Fn\f�̂n < 0g, �F+n = �Fn\f�̂n � 0g
and �F�n = �Fn\f�̂n < 0g. We employ the disjoint events

�
F+n ; F

�
n ;
�F+n ;

�F�n
	
as an automatic data-

1For purely explosive regressors with i.i.d. innovations, no CLT applies and sample moments converge as L2-
bounded martingales to random variables whose distribution depends on the distribution of the innovations. For
non-identically distributed innovations, a limit of the OLS t-statistic may not exist; see Anderson (1959).

2Class C1(i) was introduced by Phillips and Magdalinos (2007) and generalised by Giraitis and Phillips (2006)
and Andrews and Guggenberger (2012). While persistent, processes in C1(i) are ergodic and obey a CLT. Although
processes in C1(iii) are not ergodic, sample moments satisfy CLT to a mixed-Gaussian distribution (established by
Phillips and Magdalinos (2007) and extended in various directions by Aue and Horvath (2007), Magdalinos (2012)
and Arvanitis and Magdalinos (2019)).
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driven selection of the instrument process from one of the classes3
�
C1(i), C�1(i), C1(iii), C�1(iii)

	
.

Letting rvt := vt + vt�1, we de�ne quasi-innovations ~un;t and an AR root �nz as:

~un;t = �xn;t1F+n +rxn;t1F�n + ûn;t1 �F+n + ûn;t1 �F�n (6)

�nz = '1n1F+n + '�1n1F�n + '2n1 �F+n + '�2n1 �F�n (7)

where ('1n)n2N and
�
'�1n
�
n2N are chosen sequences in C1(i) and C�1(i) (so that '1n " 1 and

'�1n # �1 with the rate of C(i)); ('2n)n2N and
�
'�2n
�
n2N are chosen sequences in C1(iii) and

C�1(iii) (so that '2n # 1 and '�2n " �1 with the rate of C(iii)). The choice for �nz and the practical
implementation of the procedure are discussed in detail in Section 4.1. Finally, we construct our

instrument process by accumulating the stochastic sequence ~un;t in (6) according to an AR(1)

process initialised at ~z0 = 0 with arti�cial root �nz set automatically by (7):

~zn;t = �nz~zn;t�1 + ~un;t =
Pt

j=1 �
t�j
nz ~un;j: (8)

We employ the process for ~zn;t as an instrumental variable in the three regression models (1),

(2) and (3). In particular, the resulting IV estimator for �n in (1) after instrumenting xt�1 by

~zn;t�1 takes the form of a standard IV estimator:

~�n =
�Pn

t=1 xn;t�1~zn;t�1
��1Pn

t=1 xn;t~zn;t�1: (9)

For the PR model (2), instrumenting xt�1 by ~zn;t�1 gives rise to the estimator
~�n =

�Pn
t=1 xn;t�1~zn;t�1

��1Pn
t=1 yn;t~zn;t�1: (10)

In the LP model, we instrument xt�h by ~zn;t�h and the resulting IV estimator for the impulse

response at horizon h is given by

~rh;n = (
Pn

t=1 xt�h~zn;t�h)
�1Pn

t=1 xt~zn;t�h: (11)

The underlying reason why such an instrument process ~zn;t works in all these models is three-fold:

(i) it is designed to always be relevant since it is constructed to track the series xt through the

accumulation of the quasi-innovations ~un;t and the data-driven root �nz (e.g. when xt oscillates,

the instrument is automatically designed to oscillate), hence the denominators of all three IV

estimators converge in distribution to a:s: nonzero random variables; (ii) it inherits the desirable

asymptotic properties of moderately stationary/mildy explosive processes, so the resulting numer-

ators of the IV estimators always satisfy a martingale CLT; (iii) the possibly random limits of

the denominators are independent from those of the numerators. These statements are formally

established in Lemmata 3-5 of the Appendix. Consequently, the IV estimators in all three models

are asymptotically mixed-Gaussian along all classes C(i)-C(iii) and independently of the distrib-

ution of the innovations, a result established in Theorem 1 of Section 3. While the data-driven

combination of moderately stationary and mildly explosive instrument processes in (8) to unify

3Successful instrumentation requires asymptotic separation between processes for xt in C(i) and C(iii), this is
formally established in Lemma 2 in the Appendix.
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inference is intuitively appealing, the asymptotic validity of such an approach is not obvious and

is justi�ed in Lemma 2. The asymptotic mixed-Gaussianity (AMG) property of the estimators,

established in Theorem 1 requires the asymptotic instrument selection result of Lemma 2 and the

limit distribution theory of Lemmata 3-6 of the Appendix as building blocks.

Having the limit distributions of the IV estimators, we consider the usual IV-based t-statistics

(with or without heteroskedasticity-consistent standardisation); the precise formulae for the test

statistics of the AR, PR and LP models can be found in Section 3.2 in equations (16), (23) and

(18) respectively. Crucially, the asymptotic mixed-Gaussianity of the IV estimators in Theorem 1

guarantees that these self-normalised t-statistics are asymptotically standard normal along all AR

classes C(i)-C(iii). Moreover, we show that the proposed IV-based test statistics have correct size,

uniformly over the parameter space of AR roots and sequences of innovation distribution functions,

and give rise to CIs with uniformly correct asymptotic coverage. This is the fundamental result

of the paper, and it is established in Theorem 2 for the AR model in (1), Theorem 3 for the PR

model in (2) and Corollary 1 for the LP model in (3). The main practical implication of this

result is that critical values from N (0; 1) can be used to construct valid con�dence intervals and

hypothesis tests regardless of the true unknown stochastic nature of the regressor xt and without

the need to pre-test or restrict the parameter space of admissible processes. To our knowledge, this

is the �rst work to consider econometric inference for a general AR(1) process with unrestricted

root, providing uni�ed and distribution-free procedure for processes exhibiting arbitrary stochastic

characteristics ranging from stationarity to (oscillating) explosivity and anything in-between.

Before the technical development of Section 3, we provide a brief discussion of how the approach

compares to existing approaches and its empirical relevance in Sections 2.3 and 2.4 respectively.

2.3 Comparison with Existing Approaches
Early work on obtaining CIs for the AR model (1) with root � 2 (�1; 1], thereby accommo-

dating the stationary region C(i) and the positive pure unit root part (� = 1; c = 0) of C(ii),

includes Stock (1991), Andrews (1993), Hansen (1999) and Romano and Wolf (2001). Mikusheva

(2007) develops the �rst general methodology for establishing uniform asymptotic validity of CIs

in the AR model (1) with root in (�1; 1] thereby accommodating C(i) and the entire left half of
the positive local-to-unity (c � 0; � = 1) region C(ii) by providing a correction of Stock (1991)�s
method. Subsequent work by Andrews and Guggenberger (2014) establishes methodology for CI

construction with correct asymptotic size uniformly over the above regions under the potential

presence of conditional heteroskedasticity of unknown form.

The literature on obtaining CIs and testing procedures that achieve valid inference for � in the

PR model (2) was developed in parallel. Early work that allows the regressor in (2) to fall in the
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positive local-to-unity region C(ii) include Campbell and Yogo (1996), Jansson and Moreira (2006)

and Phillips and Magdalinos (2009). Procedures that can accommodate regressor�s persistence in

the stationary region C(i) as well as (parts of) the positive local-to-unity region C(ii) include Elliott

et al. (2015), Kostakis et al. (2015), Magdalinos and Phillips (2020), Hu et al. (2021) as well as

the bootstrap methods of Cavaliere and Georgiev (2020). None of these inference procedures for

� in the PR model (2) have been shown to have uniform validity over the considered regions of

persistence degree �.

The literature on local projections and direct forecasting has also considered inference issues

stemming from having a persistent regressor. For the LP model (3), Olea and Plagborg-Moller

(2021) propose a lag-augmentation approach for inference on the impulse response parameter rh

when the regressor xt�h may belong to C(i) and the positive part of C(ii). The lag-augmentation

approach, in similar spirit to our IV approach, modi�es the regressor (by adding an additional lag)

rather than the test procedures; however, it achieves valid inference at a considerable power loss

(the rate of convergence in C(ii) is
p
n compared to a rate close to the n-OLS rate for our procedure;

see (26) and Section 4.3.3 for Monte Carlo comparisons). Moreover, adding an additional lag is a

device which cannot provide a solution for regressors in C(iii).

It is worth providing a brief comparison of our approach with the IVX procedure4 of Phillips

and Magdalinos (2009). Filtering in (8) is similar in spirit to the IVX procedure and one of the

pieces of our instrument process ~zn;t; assigned to the event F+n = fn (j�̂nj � 1) � 0g \ f�̂n � 0g
is precisely the IVX instrument of the aforementioned paper. However, the IVX instrument only

achieves robust inference in C(i)-C(ii) for the case � > 0; it is invalid for oscillating processes in C(i)

and C(ii) when � = �1. For such cases, our novel instrument in (8) is designed to userxn;t instead
of �xn;t as �residuals�for the instrument construction5 and employs an oscillating root '�1n ! �1
so that the instrument process emulates the oscillation of the original process xn;t. Moreover,

the IVX procedure of Phillips and Magdalinos (2009) is not suited for inference in near-explosive

classes C+(iii) and C�(iii), and the two new mildly explosive pieces of our instrument process are

designed for conducting inference in those regions. This is particularly relevant for one-sided unit

root tests routinely used for detection of speculative bubbles in asset prices (see Section 5.2 for

power comparisons of our novel IV procedure with the IVX). The mildly explosive part of the IV

estimators in this paper di¤er from the IVX estimator in two important ways: �rst, the instrument

construction is based on the OLS residuals ûn;t which (unlike �xn;t and rxn;t) approximate well
the true innovation process in (1) in class C(iii); second, mildly explosive roots are employed in

4The IVX procedure has been extended in a number of directions by Breitung and Demeterscu (2015), Yang,
Long, Peng and Cai (2020), Magdalinos and Phillips (2020), Demeterscu, Georgiev, Rodrigues and Taylor (2022).

5If � = �1, rxt = ut +Op
�
n�1=2

�
behaves asymptotically as an innovation.
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the instrument generation. Finally, the IVX approach has not been shown to achieve uniform

inference; in fact, we are the �rst to show that with a modi�cation of the parameterisation for

�n to allow for arbitrary drifting sequences, the IVX-based inference can be made uniform (this

is an immediate corollary to Theorem 3, see Remark 3 of Section 3.3). But the genuine novelty

of our approach relative to IVX lies not so much in the construction of the three new instrument

pieces, but in the data-driven combination of the novel mildly explosive instruments for regions

C(ii) and C(iii) with the moderately stationary instruments for C(i) and C(ii) in order to achieve

correct asymptotic inference for an AR root anywhere on the real line without a priori knowledge

of which persistence region the true process belongs to.

One disadvantage that all approaches discussed above share is that they impose restrictions

on the parameter space and hence the permitted degree of persistence: the negative local-to-unity

region C(ii) (around � = �1) and the whole near-explosive region C(iii) are not considered; the
right side of the positive local-to-unity (� = 1, c > 0) region C(ii) is also ruled out in most of the

literature. A serious di¢ culty stems from the fact that OLS-based inference on the parameters

in all three models considered with regressor in the purely explosive region only applies under

i.i.d. Gaussian innovations6. In particular, the limit distributions of the OLS estimator and the

associated t-statistic are not invariant to deviations from the assumptions of i.i.d. Gaussian errors

and zero initial condition; in general, they are of unknown form driven by the distribution of the

innovations in the autoregression (see Anderson (1959)).

The IV approach of this paper removes any restrictions imposed by the literature on the

parameter space of the AR root in all three models and can accommodate the entire spectrum of

AR roots � 2 R. In particular, we include: the negative part of local-to-unity region C(ii), the
right side of the positive local-to-unity C(ii) and the entire near-explosive C(iii) region. To our

knowledge, we provide the �rst procedure with general asymptotic validity in the purely explosive

region7. These advances are achieved with a minimum loss of rate relative to OLS (for example

in the purely explosive region our procedure preserves the exponential OLS rate of convergence).

Another disadvantage of existing procedures (with the exception of Mikusheva (2007) and An-

drews and Guggenberger (2009, 2014)) is that they provide pointwise and not uniform asymptotic

validity over their (restricted) parameter spaces. Our procedure has uniform asymptotic validity

and we achieve this without any parameter space restriction. In addition, we also prove uniformity

of our IV t-statistics over the space of a wide class of innovation distribution functions, to which

6Only under i.i.d. Gaussian innovations and zero initial condition, the normalised and centred OLS estimators
for all three models considered have Cauchy limits and the corresponding t-statistics are standard normal.

7See Remark 5 in Section 3.3 for details on how large sample distributional invariance through CLT is achieved
in C0(iii) for our IV estimators.
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OLS inference is not invariant in the purely explosive region.

A further drawback of existing approaches is that they impose restrictions not only on the

parameter space but also on the regression model considered, with existing approaches on inference

in the AR model (1) not applicable for the PR and LP models (2) and (3) and vice versa. One

advantage of the IV approach proposed in this paper is that it can resolve the inference problem

of a regressor with arbitrary persistence in all three regression models considered by employing

the same instrument process, thereby removing the disconnect between di¤erent methods and

literatures in these seemingly di¤erent model setups.

Finally, practical implementation for most existing approaches in the literature involves numer-

ical approximations, rendering available approaches either computationally intensive or di¢ cult

for practitioners to understand and implement. It is therefore unsurprising that these robust ap-

proaches are rarely employed in the empirical time series literature. A major advantage of the

proposed IV procedure is that it is linear and closed-form and it does not require programmes

for numerical approximations or tables with nonstandard critical values. Beyond the simple con-

struction of the instrument process in (8), it requires nothing other than standard IV estimation,

t-statistics and N (0; 1) critical values.

Extensive Monte Carlo experimentation reveals good �nite sample properties for the proposed

IV-based hypothesis tests and CIs that provide correct inference in (�1;�1] [ (1;1) where no
existing alternative approach has general asymptotic validity, while also, in most cases, outper-

forming (in terms of power) existing leading procedures for inference in: the AR model (Andrews

and Guggenberger (2014)), the PR model (Elliott et al. (2015)) and the LP model (Olea and

Plagborg-Moller (2021)) in their parametric validity range (�1; 1].

2.4 Empirical Relevance
The AR(1) regressor process considered in this paper is the baseline time series model employed

for empirical analysis in macroeconomics and �nance and the empirical relevance of having a simple

inference procedure with general applicability for such a regressor without restricting its stochastic

order of integration cannot be overstated. The generality of our methodology makes it suitable for

a variety of empirical applications; we provide a brief discussion of its empirical relevance below.

Many macroeconomic series, while persistent, maybe near-stationary and, in this baseline case,

our procedure is asymptotically e¢ cient because it is equivalent to OLS; this is in contrast to most

existing robust procedures which in this case su¤er from considerable power loss (see Section 4

for power comparisons). This is empirically important, since our procedure can provide sharper

inference (shorter CIs and more powerful tests) than alternative robust procedures in the baseline

case of any ergodic time series linear regression, while, in contrast to OLS, remaining correct as

11



we approach the nonstationary regions.

Local-to-unity processes in C(ii) have played a fundamental role in the development of the

theory of cointegration8 and causal inference in systems of macroeconomic and �nancial variables.

In applied macroeconomics, unit root (as well as cointegration) tests have been employed to test for

the existence of long-run equilibrium relationships as well as a variety of macroeconomic theory-

implied hypotheses involving unit roots. Examples of such hypotheses include: the Permanent

Income Hypothesis, the Uncovered Interest Rate Parity Hypothesis, the Expectation Hypothesis of

the Term Structure, as well as E¢ cient Market Hypothesis. See Rossi (2007) for a detailed review

on the how these hypotheses can be formulated in terms of the tests on the slope parameter � in

the PR model in (25), as well as long-horizon versions of it.

Local projections have been utilised to recover e¤ects of fundamental shocks. Allowing for a

general process xt in the framework of (3) permits for the e¤ect of shocks to be short-lived, longer-

lived but temporary, permanent or near-permanent, or even continuously increasing, without

restricting the parameter space of permitted IRFs. Moreover, once we leave the mean-reverting

framework of purely stationary processes, conducting correct inference at longer horizons becomes

relevant, since the IRF rh may not be zero as h!1.
In �nance, the PR model in (2) is the workhorse reduced-form model for testing for risk

premia or time-varying expected returns. In that literature, the interest has been on testing for

predictability of �nancial returns: for example: (i) stock returns by the dividend yield (Fama

and French (1988)), (ii) bond returns by bond yield spreads (Keim and Stambaugh (1986)), (iii)

changes in spot exchange rates by exchange rates spreads (Fama (1984)). These are the classic

contributions that have generated a vast empirical literature that continues to the present day

(e.g. see Goyal et al. (2024) for a recent study on equity risk premia). The predictability of

returns has been interpreted as evidence for either market ine¢ ciency or time-varying expected

returns (see Fama (1991)). While returns are not highly autocorrelated, the candidate lagged

explanatory variables considered are highly persistent series. As a result, including a persistent

stochastic regressor leads to spuriously discovering evidence of strong predictability (i.e. OLS-

based tests on � incorrectly reject the null � = 0 with large size distortions, a problem which

does not improve with the sample size). Consequently, more persistent series are more likely to

be found signi�cant in the absence of actual predictability leading to wrong empirical conclusions.

More recently, Fama-type predictive regressions have been considered in the presence of possibly

8While the setup of the PR model in (2) is of a predictive regression, our approach can easily handle the simple
cointegrating regression (by amending the innovation assumption). We choose to abstract from this, since our
assumptions on "t rule out the spurious regression case. In fact, the instrumental procedure of this paper can be
amended to also provide correct inference in the spurious regression case, for breivity, we leave this for future work.
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mildly explosive regressors, see for example, Pavlidis et al. (2017). Our procedure provides an

inference solution for predictability testing in such asset returns applications: it does not su¤er

from size distortions (see Section 4 for empirical size), while remaining uniformly valid when there

is uncertainty surrounding the regressor�s order of integration.

In asset pricing models, the debate on whether asset prices follow a random walk dates back

to Kendall (1953). The E¢ cient Market Hypothesis implies they do, where explosive AR(1)

processes have been considered to allow for the formation of speculative bubbles (e.g. Blanchard

1979). The literature on testing and dating episodes of bubbles in �nancial and commodity prices

during periods of market exuberance includes, among others, Phillips and Yu (2011), Phillips et

al. (2011), Phillips et al. (2015a,b), Harvey et al. (2016), where under the null, asset prices follow

random walks, while under bubbly episodes, they exhibit explosivity. Existing approaches in this

literature model bubbles as mildly explosive episodes but assume away the purely explosive case

� > 1; due to the lack of asymptotic validity of existing test procedures in this region. There is also

a literature on testing for speculative bubbles in foreign exchange markets (Evans (1986), Pavlidis

et al. (2017)). Our test statistic for � in Theorem 2 is robust to this criticism and can be directly

utilised9 to deliver tests which remain valid even if the bubble period arises in the case � > 1: In

addition, it provides considerable power gains relative to the IVX procedure for one-sided bubble

alternative tests (see Section 5.2).

Finally, AR processes with coe¢ cients in the explosive region (1;1) have also been employed
for the modelling of other phenomena whose temporal evolution exhibits stochastic exponential

growth, from the rate of epidemic infection to modelling climate dynamics. For example, the

most widely used models in the epidemiological literature on disease transmission are versions of

the classic susceptible-infected-removed (SIR) model for disease transmission. Upon linearisation,

these models imply that the number of active infections evolves as an AR(1) process with an

explosive (stable) root whenever the basic reproduction number r0 is above (below) unity. In this

setup, our procedure can be employed to construct CIs and make correct probability statements

for r0 and other epidemiological parameters of SIR models without a priori knowledge on whether

the epidemic is in a controllable or uncontrollable stage, i.e. without restricting the parameter

space, which has important policy implications (see Section 5.1).

At this point, it is important to highlight that our procedure has an advantage over existing

procedures not only because it adds the missing part of C(ii) and the near-explosive regions C(iii)

to the analysis but, crucially, because our data-driven instrument removes all limit discontinuities

in the null limit distribution and achieves uniform inference. It is not possible to distinguish an

9It is straightforward to extend our procedure to recursive schemes for bubble detection which explicitely model
the switching between bubble and non-bubble periods, as in Phillips et al. (2011).
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exact unit root from a local-to-unity process (see Cavanagh et al. (1995)), but it is also virtually

impossible in small samples to di¤erentiate between an AR root exactly one and a root close, but

not equal, to unity, for example � in (1� �; 1 + �) for a small � > 0: Since most macroeconomic

and �nancial time series exhibit persistence close, but not necessarily exactly equal, to that of

a unit root, not restricting the true value of � to be contained inside the interval (�1; 1], as is
the case with all existing approaches, is essential in practice and useful beyond considering purely

explosive processes per se, since it allows the construction of CIs for processes with any root close

to unity. In contrast, all existing approaches can only provide truncated CIs that remove the part

of the parameter space not considered. To our knowledge, no existing procedure can achieve valid

inference when the true value for � lies in (1� �; 1 + �) even for small � > 0, since the asymptotics

in this case could be driven by either stationary, local-to-unity or explosive behaviour. Having a

robust procedure that can achieve correct inference without restricting the parameter space of �

and without prior knowledge on the exact stochastic integration order of the process is invaluable

for econometric analysis with any persistent economic series.

Oscillating processes with roots in [�1; 0] arise naturally in series which exhibit seasonality at
certain frequency. Seasonal unit root tests are routinely used to test hypotheses on whether shocks

have permanent e¤ect on the seasonal pattern of the series (e.g. Hylleberg et al. (1990), Chambers

et al. (2014)). Oscillating explosive processes with � 2 (�1;�1) are of limited empirical relevance
for economics, we choose to include them in the analysis in order to cover the entire parameter

space (�1;1).

3 Theoretical Development

3.1 Assumptions
We consider the AR(1) process xt in (1) with root �, innovation sequence (ut)t2N and initialisa-

tion X0 := x0 � �. For the PR model, we consider yt in (2) with slope � and innovation sequence
("t)t2N : Assumptions 1-3 specify the AR(1) model (1). Assumption 4 relaxes Assumption 2 on the

AR innovations (ut) when (1) is employed as a predictor in the PR model (2). De�nitions 2 and

3 provide explicit expressions for the parameter spaces of the AR and PR models respectively.

Assumption 1 (AR root). � 2 �� := [�M;M ] for some (arbitrarily large) M > 0.

Assumption 2 (AR innovation sequence). Given a �ltration (Ft)t2Z, ut in (1) is an Ft-
martingale di¤erence sequence such that for some �xed 10 �; B 2 (0;1)

lim inft!1 EFt�1 jutj � � a:s: (12)

and �2t := EFt�1 (u2t ) and �2 := E�2t satisfy one of the following conditions:
10We denote by � and B small and large positive constants, not necessarilty the same across equations.
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(i) �2t = �2 a:s: for all t and (u2t )t2Z is a uniformly integrable (UI) sequence.

(ii) �2t is generated by a stationary ARCH (1) process: ut = �t�t, Ft = �
�
�t; �t�1; :::

�
, (�t) is

an i.i.d. (0; 1) sequence with E (�41) � B, E (�41) � B, supt�1 �
2
t <1 a:s: and

�2t = $ +
P1

i=1 �iu
2
t�i; �i � 0; $ � �;

P1
i=1 �i � 1� �;

P1
i=1 i

��i � B: (13)

Assumption 3 (IC). X0 is F0-measurable and E jX0j� � B <1 for some � > 0.

Assumption 4 (PR innovation sequence). The innovation sequence (ut)t2N in (1) is a linear

process of the form ut =
P1

j=0 cjet�j, where, for some �xed �; B 2 (0;1), (cj)j�0 is a sequence
of constants satisfying

P1
j=0 j

1+�c2j � B, c0 = 1 and C� (1) =
P1

j=0 �
�jcj satis�es jC� (1)j � �

for j�j � 1. Given a �ltration (Ft)t2Z, the sequence vt := ("t; et)
0 is an Ft-martingale di¤erence

sequence such that (12) holds with ut replaced by et, E (vtv0t) = � for all t with minimal eigenvalue
�min (�) � � > 0, and one of the following conditions is satis�ed:

(i) EFt�1 (vtv0t) = � a:s: for all t and
�
kvtk2

�
t2Z is a UI sequence;

(ii)
�
"2t ;EFt�1 ("2t ) ; e2t ;EFt�1 (e2t )

�
t2Z is a strictly stationary process satisfying E"

4
0 � B, Ee40 �

B, supt2Z EFt�1 (e2t ) <1 a:s:, and (13) is satis�ed with (u2t ; �
2
t ) replaced by

�
"2t ;EFt�1 ("2t )

�
.

De�nition 2 (AR parameter space). Let �� be de�ned in Assumption 1 and consider the sets

�u =
�
(Ft)t2Z : Ft (x) = P (ut � x) for each t 2 Z and (ut)t2Z satis�es Assumption 2

	
and �X0 =

fFX0 : FX0 (x) = P (X0 � x) and X0 satis�es Assumption 3g. Denote the restriction of �u under
conditional homoskedasticity by �homu =

�
(Ft)t2Z 2 �u : �2t = �2 for each t 2 Z

	
. The parameter

space of the AR model in (1) is the Cartesian product � = �� � �u � �X0. We denote by

�hom = �� ��homu ��X0 the restriction of � under conditional homoskedasticity of (ut).

De�nition 3 (PR parameter space). The parameter space for the PR model (1)-(2) is given

by the Cartesian product �� = �� ��"u ��X0 where:
�"u =

n�
�Ft
�
t2Z :

�Ft (x; y) = P ("t � x; ut � y) for each t and ("t; ut)t2Z satis�es Assumption 5
o
with

��, �X0 as in De�nition 1. Denote by �hom"u =
�
(Ft)t2Z 2 �"u : EFt�1"2t = �2"

	
and ��hom =

�� ��hom"u ��X0 the restrictions of �"u and �� under conditional homoskedasticity of ("t).

Assumption 5 (Drifting sequence, AR). Each element �n =
�
�n; (Fn;t)t2Z ; Fn;X0

�
of �

satis�es the following: �n ! � 2 R; (unt;Fnt)t2Z in (24) is a martingale di¤erence array such that
lim infn!1 lim inft!1 EFn;t�1 jun;tj > 0 a:s:, �2n := E

�
�2n;t
�
! �2 > 0 and �2n;t := EFn;t�1

�
u2n;t
�

satis�es one of the following conditions:

(i) �2n;t = �2n a:s: for all t and max1�t�n E
�
u2n;t1

�
u2n;t > �n

	�
! 0 when �n !1.
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(ii) For each n, the process
�
un;t; �

2
n;t

�
t2Z is strictly stationary with �

2
n;t > 0 a:s:, supn�1 E

�
�4n;1

�
<

1, lim supn!1 supt2N �2n;t <1 a:s: and there exist b > 0 and sequences of positive numbers

( m)m2N and
�
~ n

�
n2N

satisfying  m ! 0 and ~ n ! 0 such that 11

supt2N
EFn;t�1�m ��2n;t � �2n

�
L2
� b

�
 m +

~ n

�
for all m;n � 1: (14)

When � 2 (�1; 1), v1 (�) := limn!1 Eu2n;1
�P1

j=0 �
jun;�j

�2
exists in (0;1).

Xn;0 !d X0 where X0 is a F0-measurable random variable with F0 = � ([n2NFn;0). When j�j > 1,
the sequence (Un)n2N de�ned by Un :=

Pn
j=1 �

�jun;j converges in distribution jointly with Xn;0.

Assumption 6 (Drifting sequence, PR). Each element ��n =
�
�n;
�
�Ft
�
t2Z ; Fn;X0

�
of ��

satis�es the following: �n ! � 2 R; the sequence (un;t)t2N in (24) is a linear process of the form
un;t =

P1
j=0 cn;jen;t�j, where (cn;j)j�0 is a sequence of constants satisfying supn2N

P1
j=0 j

1+�c2n;j <

1 for some � > 0 and
P1

j=0 �
�j
n cn;j !

P1
j=0 �

�jcj 6= 0 for j�j � 1. The autocovariance function
un (h) = E (un;tun;t�h) of un;t satis�es limn!1 un (h) =  (h), h 2 Z. Given a �ltration (Fn;t)t2Z,
the sequence vn;t := ("n;t; en;t)

0 is an Fn;t-martingale di¤erence array such that (12) holds with un;t
replaced by en;t, �n := E

�
vn;1v

0
n;1

�
! � > 0 and one of the following conditions is satis�ed:

(i) EFn;t�1
�
vn;tv

0
n;t

�
= �n a:s: for all t, max1�t�n E kvn;tk2 1

�
kvn;tk2 > �n

	
! 0 when �n !1.

(ii)
�
en;t;EFn;t�1e2n;t; "n;t;EFn;t�1"2n;t

�
t2Z is strictly stationary for each n with supn2N Ee

4
n;0 < 1,

supn2N E"4n;0 < 1, lim supn!1 supt2N EFn;t�1
�
e2n;t
�
< 1 a:s: and (14) is satis�ed with�

�2n;t; �
2
n

�
replaced by

�
EFn;t�1

�
"2n;t
�
;E"2n;0

�
; v2 (�) := limn!1 E"2n;1

�P1
j=0 �

jun;�j

�2
exists

in (0;1) when � 2 (�1; 1).

Assumption 4 holds for the sequences (Xn;0)n2N and (Un)n2N :

Assumption 7 (AR categories). The limit c := limn!1 n (j�nj � 1) exists in R [ f�1;1g.

Remarks on Assumptions 1-7.

1. Assumption 1 accommodates all types of AR stochastic behaviour, including stationary

(� 2 (�1; 1)), unit root (� = 1) and explosive (� > 1) processes as well as their oscillating

unit root and explosive (� = �1 and � < �1) counterparts. The AR speci�cation (1), designed to
introduce an intercept while maintaining the stochastic structure of a nonstationary autoregression

by reducing the contribution of the intercept as � approaches unity, is standard in the literature:

see Andrews (1993), Mikusheva (2007), Andrews and Guggenberger (2009, 2014). It is well-known

that a process of the form xt = �+�xt�1+ut behaves asymptotically as a linear deterministic trend

11Condition (14) is a mixingale array condition: since �2n;t � �2n is Fn;t�1-adapted, condition (14) implies that�
�2n;t � �2n;Fn;t�1

�
is a mixingale sequence; see p.19 of Hall and Heyde (1980) or Andrews (1988).

16



when � = 112. Our procedure can accommodate such degeneracies of AR stochastic behaviour, in

the sense that Theorems 1-3 continue to hold (which is in contrast to existing robust procedures),

but we omit the details as such deterministic trends have limited relevance for economic modelling.

2. The martingale di¤erence (m.d.) condition of Assumption 2 on (ut) is standard for inference

with AR processes; when � is not the parameter of interest (as is the case for the PR framework),

(ut) is extended to a short memory linear process (Assumption 4).

3. The moment conditions imposed on (ut) vary according to its conditional variance with

uniform integrability of (u2t ) required under conditional homoskedasticity (Assumption 2(i) for

the AR and LP models and 5(i) for the PR model respectively) and Eu4t < 1 required under

conditional heteroskedasticity (Assumption 2(ii) for the AR and LP models and 5(ii) for the

PR model respectively). For the homoskedastic case, (12) and the Chebyshev inequality ensure

�2 > 0; for the heteroskedastic case, Theorem 2.1 of Giraitis et al. (2000) guarantees that (13) has

a unique strictly stationary causal solution with �2 = $=(1�
P1

i=1 �i). This ARCH(1) solution
encompasses the solution of any stationary GARCH(p; q) process with �nite second moment as a

special case: the summability condition
P1

i=1 i
��i � B for some � > 0 does not impose a restriction

on the ARCH(1) representation of a stationary GARCH(p; q) process, as the latter is known to
have exponentially decaying autocovariance function whereas the autocovariance function of an

ARCH(1) process satisfying
P1

i=1 i
��i < 1 has an autocovariance function  (�) that decays at

hyperbolic rate: j (k)j = O
�
k�1��

�
, see Proposition 3.2 of Giraitis et al. (2000). Consequently,

our heteroskedasticity conditions in Assumptions 2(ii) and 4(ii) hold when the conditional variance

is any stationary GARCH(p; q) process13 satisfying supt�1 �
2
t <1 a:s: and E (�41) � B.

4. Condition (12) in Assumption 2 and supt�1 �2t < 1 a:s: imply that the m.d. sequence

(ut;Ft) satis�es local Marcinkiewicz-Zygmund (MZ) conditions that ensure that, in the explosive
case j�j > 1, the denominator of the OLS estimator is asymptotically non-zero a:s:: see Corollary
2 of Lai and Wei (1983).

5. Assumption 3 accommodates � (u0; u�1; :::)-measurable random variables as initial condi-

tions and removes the condition X0 = 0 typically imposed in the explosive case: see Wang and

Yu (2015) for the e¤ect of X0 on OLS asymptotic inference when � > 1.

6. The parameter spaces of De�nitions 1 and 2 include the marginal distribution functions
12Since � = �1 does not increase the order of magnitude of the non-stochastic component of xt that is driven by

the intercept, no adjustment is required in the oscillating case.
13Within the ARCH(1) or GARCH(p; q) framework, Assumption 2(ii) is weaker than Assumption INNOV(iii) of

Andrews and Guggenberger (2012) which requires �nite 6 moments for (ut) with further moment conditions imposed
for the GARCH(1,1) example of their equation (5). On the other hand, the results of Andrews and Guggenberger
(2012) hold under a strong mixing condition with conditional heteroskedasticity not necessarily generated by an
ARCH(1) recursion.
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of the innovation sequences (ut) and ("t) and the distribution function of the initial condition

as (in�nite dimensional) nuisance parameters. Such analysis provides insight on the sensitivity

of autoregressive and predictive regression inference to the distributional characteristics of the

innovations and the intitialisation, an issue of particular relevance for explosive processes where

these characteristics are known to a¤ect standard OLS asymptotic inference.

7. Our development of critical regions (CRs) and CIs with uniform asymptotic properties over

the parameter spaces of De�nitions 2 and 3 employs a drifting sequence approach, see Andrews,

Cheng and Guggenberger (2020) for a general discussion. This requires the derivation of the

limit distribution of the t-statistics proposed in Section 3.2 over an arbitrary sequence of drifting

parameters from the parameter spaces of De�nitions 2 and 3. For presentational and notational

economy, convergence properties that hold only subsequentially are typically assigned to drifting

sequences in assumptions designed to prove intermediate results and we follow this convention in

Assumptions 5 and 6 used to establish Theorem 1. The existence of a limit for (�2n)n2N and of

v1 (�) and v2 (�) is ensured along a subsequence by the Bolzano-Weierstrass theorem; similarly,

the existence of a limit in distribution for (Xn;0)n2N and (Un)n2N is ensured along a subsequence

by tightness (implied by supn�1 E jXn;0j� <1 for some � > 0 and supn�1 E jUnj <1). The same
holds for Assumption 7 that strengthens14 the requirement �n ! � 2 R so that xt can be classi�ed
according to De�nition 1 (see Lemma 1(i) in the Appendix). It is important to note Assumptions

5-7 are only needed to establish Theorem 1, an intermediate result on the limit distribution of IV

estimators and t-statistics under drifting sequences of parameters, and are not used in the main

results of the paper on the uniform asymptotic validity of CRs and CIs (Theorems 1 and 2 and

Corollary 1).

8. Assumption 6 implies a short memory array condition: supn2N
P1

j=0 j
q jcn;jj <1 for some

q > 0, see (A.43) in the online Appendix. This together with the lack of negative memory conditionP1
j=0 �

�jcj 6= 0 for j�j � 1 and the mixingale array condition (14) of Assumption 6, imply a LLN
for the sample autocovariance of the array (un;t); see Lemma 1 of Magdalinos and Petrova (2024).

Under Assumption 6, we denote the autocovariance function and long-run variance of (un;t) by

un (�) and !2 = limn!1
P1

k=�1 un (k) = C (1)2 �2 respectively. When j�j � 1 we denote
�n =

P1
k=1 �

k�1
n un (k) and � = lim

n!1
�n =

P1
k=1 �

k�1 (k) ; (15)

with !2;� 2 R by Assumption 6, �n ! � 2 [�1; 1] and the dominated convergence theorem.
14When j�j = 1 Assumption 7 is more restrictive than �n ! � 2 R: e.g. �n = 1 + (�1)n =kn, kn ! 1 and

kn=n = O (1) satis�es �n ! 1 but c does not exist. However, Assumption 7 holds subsequentially; see Lemma 1(i).
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3.2 IV-Based Inference Procedures
Correct studentisation of the IV estimators ~�n; ~rh;n and ~�n depends on the conditional variance

of the innovations ut in (1) and "t in (2), with conventional studentisation employed under condi-

tional homoskedasticity (Assumptions 2(i) and 4(i)) and Eicker-White standard errors employed

under conditional heteroskedasticity (Assumptions 2(ii) and 4(ii)). Denoting X = (x1; :::; xn�1)
0,

~Z = (~z1; :::; ~zn�1)
0 andX = (x1 � �xn�1; :::; xn�1 � �xn�1)0, we de�ne t-statistics under the null based

on the IV estimator ~�n and conventional/Eicker-White standard errors as follows:

Tn = �̂�1n (X 0P ~ZX)
1=2
(~�n � �) and TEWn = Q�1=2n (~�n � �) (16)

where P ~Z = ~Z
�
~Z 0 ~Z
��1

~Z 0, Qn =
�
X 0 ~Z

��2Pn
t=1 ~z

2
n;t�1

�
û2n;t1Fn + �̂2n1 �Fn

�
, �̂2n = n�1

Pn
t=1 û

2
n;t

and ûn;t are the OLS residuals of (1). For the PR model in (1) and (2), we employ a similar

studentisation to (16) based on the IV estimator ~�n:
�Tn = �̂�1" (X 0P ~ZX)

1=2
�
~�n � �

�
and �TEWn = Q�1=2n;"

�
~�n � �

�
(17)

where Qn;" =
�
X 0 ~Z

��2Pn
t=1 ~z

2
n;t�1

�
"̂2n;t1Fn + �̂2"1 �Fn

�
; �̂2" = n�1

Pn
t=1 "̂

2
n;t and "̂n;t are the OLS

residuals of (2). For the LP model in (3), we de�ne the t-statistic based on the IV estimator ~rh;n:

Tn;h = Q
�1=2
n;h (~rh;n � rh) and TEWn;h =

�
QEWn;h

��1=2
(~rh;n � rh) ; (18)

where letting �2n = '2n1 f� � 0g+ '�2n1 f� < 0g,
Qn;h = vn

�
X 0 ~Z

��2
1Fn + �̂2n (X

0P ~ZX)
�1
�
j�2nj

�hPh�1
j=0 (j�̂nj j�2nj)

j
�2
1 �Fn (19)

with vn = �̂2n
Pn�2h+1

i=1

�Ph�1
t=0 �̂

t
n~zn;t+i

�2
and QEWn;h is de�ned in the same way as Qn;h with vn

replaced by vEWn =
Pn�2h+1

i=1 û2i

�Ph�1
t=0 �̂

t
n~zn;t+i

�2
. When h = 1, Tn;1 = Tn and TEWn;1 = TEWn , so

the LP t-statistics reduce to the t-statistics for the AR model.

The t-statistics in (16) may be used to construct critical regions (CRs):

Rn;� =
�
jTnj > ��1 (1� �=2)

	
and REW

n;� =
���TEWn �� > ��1 (1� �=2)

	
(20)

where � denotes the N (0; 1) cdf, and (1� �)% con�dence intervals (CIs) are given by:

In (~�n; �) = [~�n � cn (�) ; ~�n + cn (�)] and IEWn (~�n; �) =
�
~�n � cEWn (�) ; ~�n + cEWn (�)

�
(21)

with cn (�) = (X 0P ~ZX)
�1=2

��1 (1� �=2) �̂n and cEWn (�) = Q
1=2
n ��1 (1� �=2).

Similarly, for the PR and LP models, we denote by �Rn;� =
��� �Tn�� > ��1 (1� �=2)

	
and

Rn;h;� = fjTn;hj > ��1 (1� �=2)g the CRs of the t-tests in (17) and (18) based on conventional stu-
dentisation and by ( �REW

n;� ;REW
n;h;�) their heteroskedasticity consistent counterparts with ( �Tn; Tn;h)

replaced by ( �TEWn ; TEWn;h ). Further denote by In(~�n; �), In(~rh;n; �), I
EW
n (~�n; �) and I

EW
n (~rh;n; �)

the CIs corresponding to �Rn;�, Rn;h;�, �REW
n;� and REW

n;h;� respectively.

Finally, it will be useful to consider a �nite sample correction to ~�n based on the fully-modi�ed

(FM) transformation of Phillips and Hansen (1990) that orthogonalises the innovations "n;t of (2)

with respect to the innovations un;t of (1): see the discussion in Remark 6 in Section 3.3. The
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FM-corrected IV estimator ~�n in (10) takes the form

��n =
�Pn

t=1 yn;t~zt�1 + �̂"u (�̂"=!̂n)xn;n�zn�11F+n

� �Pn
t=1 xn;t�1~zt�1

��1
(22)

where �̂2", !̂
2
n and �̂"u are consistent estimators of �

2
", !

2 and �"u = corr ("n;t; un;t). A computation

of the standard error of the estimator in (22) gives rise to the following �nite sample corrected

t-statistics using conventional and EW standard errors: letting �n = n�z21;n�1(1� �̂
2

"u)1F+n ,

T �n = �
�1=2
n (��n � �n) and T �EWn = Q��1=2n;" (��n � �n) ; (23)

where�n =
�
X 0 ~Z

��2 �
~Z 0 ~Z ��n

�
�̂2" andQ

�
n;" =

�
X 0 ~Z

��2 �Pn
t=1 ~z

2
n;t�1

�
"̂2n;t1Fn + �̂2"1 �Fn

�
��n�̂

2
"

�
.

We denote by (R�
n;�; In(�

�
n; �)) and (R�EW

n;� ; IEWn (��n; �)), the CR and CI based on T
�
n and T

�EW
n .

3.3 Main Theoretical Results
Writing (1) and (2) along sequences of drifting parameters in � and �� yields

xn;t = � (1� �n) + �nxn;t�1 + un;t; xn;0 = �+Xn;0 (24)

yn;t =  + �xn;t�1 + "n;t: (25)

We �rst derive the limit distribution of the IV estimators of Section 2.2 and the t-statistics of

Section 3.2 under the above triangular array speci�cation. Theorem 1 shows the consistency rate

of the IV estimators is given by

�n =

8>><>>:
n1=2

�
1� �2n�

2
1n

��1=2
; under C(i)

n1=2
�
1� �21n

��1=2
1Fn + 2n

1=2
�
�22n � 1

��1=2
1 �Fn ; under C(ii)�

�22n � 1
�1=2

(j�nj j�2nj � 1)
�1 (�2n � 1)

�1=2 j�nj
n ; under C(iii)

(26)

for the events Fn in (5), �1n = '1n1 f� � 0g+ '�1n1 f� < 0g, �2n = '2n1 f� � 0g+ '�2n1 f� < 0g.

Let W (t) denote a standard Brownian motion on [0; 1] and B (t) = !W (t). When c 2 R in
Assumption 7, de�ne the Ornstein-Uhlenbeck processes

Wc (t) =
R t
0
ec(t�s)dW (s) and Jc (t) =

R t
0
ec(t�s)dB (s) ; (27)

the random variables Kc =
R 1
0
Jc (r) dB (r) =

R 1
0
Jc (r)

2 dr, 	2 (c) = Wc (1) �
R 1
0
Wc (r) dr1 f� = 1g

and 	1 (c) = (�2 + 2��) =!2+Wc (1)
2�2Wc (1)

R 1
0
Wc (r) dr1 f� = 1g, the event Fc = fKc + c � 0g

and its complement �Fc:

De�ne by �0 the restriction of � when Ft (x) = ��2 (x) and by ��0 the restriction of �� when

Ft (x; y) = �� (x; y) for all t 2 Z where ��2 (�) and �� (�; �) denote the N (0; �2) and N (0;�) cdfs

with �2 and � de�ned in Assumptions 5 and 6.

Theorem 1. Consider the AR model (24), the PR model (25), the IV estimators ~�n, ~�n and �
�
n

in (9), (10) and (22), the t-statistics in (16) (17) and (23), and the normalisation sequence �n in

(26). For arbitrary sequences (�n)n2N in � and (�
0
n)n2N in �

hom satisfying Assumptions 5 and 7

and
�
��n
�
n2N in

�� and (��0n)n2N in ��
hom satisfying Assumptions 6 and 7, the following hold:

(i) limn!1 P�n (�n (~�n � �n) � x) = P�0 (L1 � x), limn!1 P��n
�
�n(~�n � �) � x

�
= P��0 (L2 � x)

x 2 R with �0 2 �0, ��0 2 ��0, L1 =d MN (0; V1), L2 =d MN (0; V2) and V1 and V2 given by:
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(a) Under C(i): V1 = 1 and V2 = �2"= (�
2 + 2��) with � de�ned in (15), when j�j = 1 or when

(un;t) and (vn;t) satisfy Assumptions 5(i) and 6(i).

(b)Under C(i) with � 2 (�1; 1): [V1; V2] = (1� �2)
�1
� (�)�2 [v1 (�) ; v2 (�)], � (�) =

P1
j;i=0 �

j+i (i� j)

when (un;t) and (vn;t) satisfy Assumptions 5(ii) and 6(ii).

(c) Under C(ii), V1 = 	(c)
�2 and V2 = (�2"=!

2)	 (c)�2, where 	(c) = 	1 (c)1Fc +	2 (c)1 �Fc :

(d) Under C(iii), L1 = Y=X, L2 = ~Y =X, V1 = �2=X2, and V2 = �2"=X
2, where Y =d N (0; �2),

~Y =d N (0; �2"), X is independent of
�
Y; ~Y

�
and X 6= 0 a:s:; when j�j = 1, X =d N (0; !2).

(ii) limn!1 P�0n (jTnj � x) = � (x) and limn!1 P�n
���TEWn �� � x

�
= �(x), x 2 R.

(iii) limn!1 P��0n
��� �Tn�� � x

�
= �(x) and limn!1 P��n

��� �TEWn �� � x
�
= �(x), x 2 R, �n(~�n �

��n)!P��n 0,
��T �EWn � �TEWn

�� = oP��n (1) and
��T �n � �Tn

�� = oP��0n
(1).

Theorem 2. Consider the AR process (1), the parameter spaces � and �hom of De�nition 2,

the critical regions in (20) and con�dence intervals in (21). For any � 2 (0; 1):
(i) limn!1 sup�2� P�

�
REW
n;�

�
= � and limn!1 sup�2�hom P� (Rn;�) = �

(ii) limn!1 inf�2� P�
�
� 2 IEWn (~�n; �)

�
= 1� � and limn!1 inf�2�hom P� [� 2 In (~�n; �)] = 1� �:

Theorem 3. Consider the PR model (1)-(2), the parameter spaces �� and ��hom in De�nition 3,

the critical regions �Rn;�, �REW
n;� , R�

n;� and R�EW
n;� and their associated con�dence intervals In(~�n; �),

IEWn (~�n; �), In (�
�
n; �) and I

EW
n (��n; �). For any � 2 (0; 1):

(i) the sequences sup�2��hom P�( �Rn;�), sup�2�� P�( �REW
n;� ), sup�2��hom P�(R�

n;�) and sup�2�� P�(R�EW
n;� )

all converge to � as n!1.
(ii) the sequences inf�2��hom P�[� 2 In(~�n; �)], inf�2�� P�[� 2 In(~�

EW

n ; �)], inf�2��hom P�[� 2 In(��n; �)]
and inf�2�� P�[� 2 In(�EW�

n ; �)] all converge to 1� � as n!1.

Corollary 1. Consider the AR(1) process (1) with � = 0 and rh = �h. The following hold for

the local projection CRs and CIs for any � 2 (0; 1) when h=n! 0:

(i) limn!1 sup�2� P�
�
REW
n;h;�

�
= � and limn!1 sup�2�hom P� (Rn;h;�) = �

(ii) limn!1 inf�2� P�
�
rh 2 IEWn;h (�)

�
= 1� � and limn!1 inf�2�hom P� [rh 2 In;h (�)] = 1� �.

Remarks.

1. Theorem 1 establishes the asymptotic mixed Gaussianity (AMG) property of the IV esti-

mators in (9), (10) and (22) under drifting sequences for each AR regime C(i)-C(iii) arising from

Assumptions 5, 6 and 7. In particular, the normalised and centred IV estimators ~�n and ~�n satisfy

�n (~�n � �n)!d MN (0; V1) and �n

�
~�n � �

�
!d MN (0; V2)

along arbitrary sequences (�n)n2N in � and
�
��n
�
n2N in

��, i.e. along: (a) the entire spectrum of

AR regressor processes, including stationary, non-stationary, explosive processes, all intermediate

regimes and their oscillating counterparts; (b) the space of distribution functions of (ut) for the
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AR model and the space of distribution functions of ("t; ut) for the PR model which allow the

innovations to be non-Gaussian, non-identically distributed, conditionally heteroskedastic and, in

the case of the PR model, to exhibit short memory linear autocorrelation for (ut); (c) the space

of distribution functions of an F0-measurable initial condition. The AMG property is derived via
central limit theory and does not depend on the cdf of the innovation sequences (ut) and ("t). The

only component that depends on the distribution of (ut) is the mixing variate X1 in the explosive

case j�j > 1 which does not the a¤ect the AMG property and, upon studentisation of ~�n; ~rh;n and
~�n, is scaled out of the limit distribution of the corresponding t-statistics. This AMG property of

the proposed estimators ~�n and ~�n is in sharp contrast to the OLS estimators which do not have

an AMG limit distribution in the local-to-unity case C(ii) and in the explosive case j�j > 1 when
limit distribution theory is entirely driven by the cdf of the innovations (ut) and ("t). The main

implication of the AMG property is that, upon studentisation, inference based on ~�n and ~�n in

(9) and (10) is asymptotically standard normal, uniform and distribution-free.

2. Theorems 2 and 3 and Corollary 1 show that the t-statistics based on the IV estimators for

�, � and rh give rise to critical regions and con�dence intervals with uniform asymptotic properties

over the parameter spaces � for the AR and LP models and �� for the PR model. Theorem 2

shows that the critical regions REW
n and Rn have correct asymptotic size uniformly over � and

�hom respectively and that the corresponding con�dence intervals IEWn (~�n; �) and In (~�n; �) have

correct asymptotic coverage uniformly over � and �hom. In the terminology of Andrews, Cheng

and Guggenberger (2020), Rn and In (~�n; �) are uniformly asymptotically similar over �
hom and

REW
n and IEWn (~�n; �) are uniformly asymptotically similar over �. This is the �rst procedure

that provides a CR and CI with uniform asymptotic size and coverage rate for an arbitrary

autoregressive root. Theorem 3 and Corollary 1 establish the corresponding uniform inference

results for the PR and LP models respectively. The uniformity of Theorems 2 and 3 and Corollary

1 extends over the space of marginal cdfs (Ft) and
�
�Ft
�
of the innovations (ut) and ("t) and the

initial condition X0. To our knowledge, our inferential framework constitutes the �rst procedure

that achieves autoregressive inference with general asymptotic validity and, at the same time,

provides the �rst solution to the long-standing problem of lack of distribution-free inference in the

purely explosive region.

3. Theorems 2 and 3 provide, as an immediate corollary, the �rst proof of the uniformity

property of the IVX method of Phillips and Magdalinos (2009) and Kostakis et al. (2015) over a

parameter space consisting of the restrictions ��
���� = [�1 + �; 1] and ��hom���� = [�1 + �; 1] for

some � > 0; it also shows that with an Eicker-White standard error adjustment, this uniformity

property may be extended over the restriction of � when �� = [�1 + �; 1]. Additionally, Theorems
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2 and 3 establish the uniformity of the procedures of the current paper over the entire parameter

AR space and are the �rst to accommodate this level of generality in AR and PR inference. It

is worth noting that the uniformity properties of leading procedures in PR analysis, e.g. Jansson

and Moreira (2006) and Elliott et al. (2015), are unknown even over the restricted parameter

space �� = [�1 + �; 1]. Finally, the uniformity of the CRs and CIs of Theorem 3 over the space

�"u of cdfs of ("t; ut) implies their uniformity over corr ("t; ut), a nuisance parameter that is well-

documented to a¤ect the �nite sample performance of all known PR model tests.

4. The key element of the procedure that delivers the AMG property and the distributional

invariance to the innovations across the AR classes C(i)-C(iii) is the newly proposed combined

instrument ~zt in (6)-(8). The instrumentation of the procedure employs information from a non-

AMG procedure (OLS) to construct estimators that enjoy the AMG property across all AR classes.

In particular, our instrument employs information from the OLS estimator (through the events

Fn in (5)) to distinguish between the C(i) and C(iii) autoregressive classes, i.e. to separate the

cases c = �1 and c =1 in Assumption 7. Lemma 2 in the Appendix shows that this asymptotic

separation is achieved at arbitrary rate with probability tending to 1. When c = �1, ~zn;t takes
the form of a moderately stationary instrument which is: (i) regular ~z1t := ~zn;t1F+n when � = 1;

(ii) oscillating ~z�1t := ~zn;t1F�n when � = �1; (iii) ~z1t or ~z�1t when � 2 (�1; 1) ; in which case, the
IV estimators ~�n and ~�n based on either are asymptotically equivalent to the (asymptotically

normal) OLS estimator. When c = 1, ~zn;t takes the form of: (i) a mildly explosive instrument

~z2t := ~zn;t1 �F+n when � � 1 and (ii) an oscillating mildly explosive instrument ~z
�
2t := ~zn;t1 �F�n when

� � �1: Finally, when c 2 R, the autoregression is of the local-to-unity type C(ii), in which case,
~zn;t takes the form of: a random linear combination of ~z1t and ~z2t when � = 1 and of ~z�1t and ~z

�
2t

when � = �1. This random combination, re�ected in the random normalisation �n of Theorem

1(i), depends on the limit distribution of the OLS estimator �̂n through the events F
+
n and F

�
n in

(5) which, like the limit distribution of ��2n
Pn

t=1 xn;t�1~zn;t�1 in the denominator of (9)-(10), can

be expressed as non-stochastic functionals of the Brownian motion B (�) arising from the FCLT on
(un;t); the asymptotic independence between ��1n

Pn
t=1 ~zn;t�1un;t and B (�), established by Lemma

5 in the Appendix, implies that the additional randomness introduced by the combination of ~z1t

and ~z2t (and ~z�1t and ~z
�
2t when � < 0) does not a¤ect the AMG property of ~�n and ~�n.

5. It is worth providing a brief overview of how distribution-free asymptotic inference is

achieved in the explosive case j�nj ! j�j > 1. By employing the OLS residuals ût and a (regular
or oscillating) mildly explosive root '2n or '

�
2n for the construction of the instrument ~z2t, the

instrumentation of this paper and Lemmata 2 and 4 ensure that, under C(iii), the limit distribution

of ~�n is driven by the mildly explosive component (z2t in (A.5) or its oscillating counterpart z
�
2t)
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and inherits the desirable AMG property of mildly explosive martingale transforms even when xt

in (1) is a purely explosive process. The price paid for this asymptotic distributional invariance is

a reduction in the convergence rate of our IV estimators by an order of
�
�22n � 1

��1=2
compared

to the j�nj
n-OLS rate. Given that the above order satis�es o

�
n1=2

�
and that the exponential part

j�nj
n of the OLS rate is maintained in the convergence rate of Theorem 1(iii), the e¢ ciency loss

associated with employing the IV estimators ~�n; ~rh;n and ~�n is small compared to the bene�t from

an estimation procedure that gives rise to test statistics and CIs of general asymptotic validity. In

the case when j�nj ! 1, the limit distributions Y=X and !
�"
~Y =X are Cauchy.

6. While T �n and �Tn have the same limit distribution, the test based on �Tn may su¤er from

�nite sample distortion due to the fact that the estimation of the intercept  in (2) does not feature

in the �rst-order asymptotic theory. As documented by Kostakis et al. (2015), Hosseinkouchack

and Demetrescu (2021) and Harvey, Leybourne and Taylor (2021), this becomes an issue under

C+(ii) where estimation of the intercept features more prominently: in particular, the contribution

of the non-AMG term n�z1n�1�"n is not re�ected in the limit distribution of Theorem 1. While this

contribution is op (1), n��1n �z1n�1�"n = Op(n
�1=2 (1� '1n)

�1=2) under C+(ii), n�z1n�1�"n is asymp-

totically equivalent to (1� '1n)
�1 xn;n

Pn
t=1 "n;t and the correlation between xn;n and

Pn
t=1 "n;t

distorts mixed-Gaussianity in �nite samples. As a result, the t-statistic based on �Tn exhibits �nite

sample distortions when the following occur jointly: (i) the AR root of xt is very close to 1; (ii)

�"u = corr ("t; ut) is close to 1 in absolute value; (iii) '1n is chosen close to 1. The FM transforma-

tion of Phillips and Hansen (1990), "0t = "n;t � !�1E ("n;tun;t)un;t, orthogonalises n�1=2
Pn

t=1 "0t

and n�1=2
Pn

t=1 un;t asymptotically when xn;t is a unit root process and transforms the non-AMG

term n�z1n�1�"n into a AMG term n�z1n�1�"0n with a remainder that becomes smaller the closer xt

is to a unit root process, thereby addressing the issues in (i) and (ii) above simultaneously. The

estimator ��n arising from employing the FM transformation and the corresponding t-statistic T �n
have signi�cantly improved �nite sample properties whenever �n is close to 1 with large j�"uj,
while both �Tn and T �n perform equally well in all other cases. It is worth noting that the terms

arising from the estimation of the intercept in both IV and OLS, n�z1n�1�"n and n�xn�1�"n, have

reduced order of magnitude for an autoregressive root close to �1, so no �nite sample adjustment
is necessary under C�(ii).

7. Practical implementation of the test procedures of Theorems 1 and 2 and Corollary 1

requires a choice for '1n; '
�
1n; '2n and '

�
2n in (6) for the construction of the instrument ~zn;t. We

require a single instrument that will perform well across C(i)-C(iii) for all AR, PR and LP models.

We base our choice for '1n and '2n on the principle of controlling the worst �nite sample distortion

that occurs in the case of a unit root regressor with large correlation j�"uj (Remark 6 above). We
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conduct a grid search Monte Carlo to select the maximal values of '1n and '2n (by Theorem 1,

these achieve maximal power) subject to a satisfactory test size in the above least favourable case

and we set '�1n = �'1n and '�2n = �'2n; a detailed analysis of the choice of '1n and '2n can be
found in Section 4.1. We demonstrate that the proposed choice of instrument in Section 4.1 works

very well (in terms of size and power) in all three regression setups and across all AR regions.

8. The above methodology may be extended to multivariate AR/PR/LP models where both

xt and yt in (1) and (2) are vector-valued and the statistical problem consists of testing a set of q

restrictions on the parameters. A model along the lines of Magdalinos and Phillips (2020) (that

assumes away cointegrating relationships within the VAR(1) process xt) extended to account for

simple real eigenvalues for the AR matrix. The asymptotically N (0; 1) t-statistics of Theorem 1

replaced by asymptotically �2 Wald statistics based on the combined (vector-valued) instrument

(6)-(8) of Section 2.2. The fact that the methodology of this paper extends directly to multivariate

systems is a major advantage over existing methods, including Campbell and Yogo (2006) and

Elliott et al. (2015). A multivariate extension is not pursued here as it would be a deviation from

the main focus of the paper (the construction of CIs for �, � and rh with uniform asymptotic

validity). An additional advantage of our inference procedures in Theorems 2 and 3 and Corollary

1 is their simplicity and ease of implementation: they employ closed-form linear estimators and

N (0; 1) critical values, rendering implementation of the procedures by practitioners natural and

straightforward.

4 Monte Carlo Simulations
In this section, we design a Monte Carlo exercise to study the �nite sample properties of

the IV estimators introduced in this paper and how they compare to alternative approaches.

We �rst discuss the instrument selection and provide a simple guide on how to implement the

proposed inference procedure in Section 4.1. We demonstrate that with the above instrument

choice, our procedure exhibits good small sample properties for AR regimes covering the entire

range from stationarity to explosivity. In Section 4.2 we provide an illustration of the failure of

general asymptotic inference based on the OLS estimator in the explosive regions: we show that

misspecifying the variance of a single observation can have severe consequences for the size and

coverage rates of OLS-based inference that do not improve with the sample size, both in the AR

and PR models. On the other hand, we demonstrate that the IV procedure of this paper continues

to provide correct inference. Next, we compare the �nite sample properties of our procedure to

leading existing approaches: in Section 4.3.1, we provide a comparison of our CIs in (21) for the

AR parameter to Andrews and Guggenburger (2014) procedure; in Section 4.3.2, we compare the

size and power of our testing procedure in (23) in the PR setup to the procedure proposed by
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Elliott et al. (2015) and in Section 4.3.2 we compare our CIs based on (18) to the procedure in

Olea and Plogborg-Moller (2021) in the LP model. In the �rst two cases, we demonstrate that

the IV procedure delivers: (i) correct size across all autoregressive regimes considered, and (ii)

superior power in all cases of roots in [�1; 1] (including local-to-unity, near- and purely stationary
regions) except for the case of exact unit root, where the di¤erences in power are very small and

vanish as the sample size increases. In the LP case, our procedure is actually more powerful

than the lag-augmentation approach around unity. Crucially, our procedure also provides correct

inference on the right side of unity and on the left side of �1, in the local-to-unity, mildly and
purely explosive regions, where no existing alternative approach has general asymptotic validity.

4.1 Practical implementation and instrument selection
Practical implementation of our procedure requires a choice for '1n; '

�
1n; '2n and '

�
2n in (6) for

the instrument construction in (8). While theoretically, any values of '1n ! 1 in C1(i), '�1n ! �1
in C�1(i), '2n ! 1 in C1(iii) and '�2n ! �1 in C�1(iii) deliver correct asymptotic inference, �nite
sample performance may vary considerably with the choice for particular values. For simplicity

and symmetry, we set '�1n = �'1n and '�2n = �'2n: Choosing
'1n = 1� 1=nb1 ; '2n = 1 + 1=nb2 (28)

reduces the problem to selecting values for b1 and b2 in (0; 1) : We adopt a conservative approach:

(i) Remark 13 of Section 3.3 indicates that inference based on T �n su¤ers the worst �nite sample

distortion in the predictive regression case when �n = 1 with large correlation �"u between the

innovations "t and ut in (1) and (2)15; (ii) Theorem 1 shows that the power of the t-tests �Tn and

T �n is always increasing with b1 and is increasing with b2 in the regions C(i)-C(ii) (in C(iii) the

exponential rate �nn in �n is independent of b2, so the choice of b2 has only a minor e¤ect on power).

Given (i) and (ii), we base our selection of b1 and b2 on selecting the maximal values of b1 and b2 for

which the size in the worst case scenario (i) is controlled. This amounts to a two-dimensional grid

search problem outlined in detail in the Appendix. Imposing a 5.99% threshold on the empirical

size for a nominal 5% size for these most unfavourable cases yields the following selection in (28):

b1 = 0:85 and b2 = 0:7. We recommend this choice for the implementation of Algorithm 1 and use

it throughout the Monte Carlo section and the empirical application in Section 5. In Section 4.3.

we demonstrate that this choice works well for all AR speci�cations in all PR, AR and LP setups.

Implementation of our procedure can be summarised by the following algorithm.

� � Algorithm 1 ��

1. Given a sample for xt; compute the OLS estimator �̂n and the OLS-based residuals ût.

15When � = �1; such �nite sample distortions are not present since the oscillating behaviour of xt reduces the
order of magnitude of �xn and �z

�
1n, and, hence, the distorting e¤ect of the intercept.
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2. Select '1n; '
�
1n; '2n and '

�
2n (e.g. from (28) with the recommended b1 = 0:85 and b2 = 0:7),

compute �nz in (6) and build recursively the instrument ~zt in (8) initialising at ~z0 = 0.

3. Use the constructed instrument ~zt to compute the IV estimator ~�n in (9) for the AR setup,

the IV estimator ~rh;n in (11) for the LP setup, or, given a sample for yt; compute the IV estimator

��n in (22) for the PR setup.

4. Compute the IV-based t-statistic in (16) and the CI In (~�n; �) of Theorem 2 for the AR

setup, IV-based t-statistic in (18) and the CI In (~rh;n; �) of Corollary 1 for the LP setup or the

IV-based t-statistic in (23) and the CI In (�
�
n; �) of Theorem 3 for the PR setup; conduct inference

using N (0; 1) critical values.

� � � � � � � � � �

We �rst implement our choice of instrument in the PR model for AR regimes for xt in (1):

�n 2 {-1.06,-1.04,-1.02,-(1+10/n0.75),-(1+50/n),-(1+30/n),-(1+15/n),-1,-(1-15/n),-(1-30/n)

-(1-50/n),-(1-10/n0.75),-0.9,-0.7,-0.5, 0, 0.5, 0.7, 0.9, 1-10/n0.75 ,1-50/n,1-30/n,1-15/n, 1,

1+15/n,1+30/n, 1+50/n, 1+10/n0.75 , 1.02, 1.04, 1.06}, X0 = 0, � = �y = 0; (29)

"t � N (0; 1) ; ut � N (0; 1) ; �"u 2 f�0:9;�0:45; 0; 0:45; 0:9g : (30)

For each speci�cation, we compute the empirical size of the 95% two-sided test statistic in (23)

based on 5,000 simulated samples for sample sizes n 2 f200; 500; 1000g. Throughout the entire
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Monte Carlo section, we always use reduced16 sample sizes n 2 f100; 200; 500g for the explo-
sive speci�cations �n 2 �f1 + 50=n; 1 + 10=n0:75; 1:02; 1:04; 1:06g : Figure 1 displays the rejection
probability of our test procedure in (23) under the null � = 0 for the di¤erent AR regions with 95%

con�dence against the two-sided alternative � 6= 0 for di¤erent correlation between the innovations
�"u 2 f�0:9; 0; 0:9g : Figures 1 provides evidence that our procedure delivers satisfactory empirical
size throughout the di¤erent persistence regions converging to the nominal 5% as the sample size

increases. Section 1.3 of the Appendix contains the proportion of times each of the instruments is

chosen throughout the di¤erent AR speci�cations. As expected, the (oscillating) mildly explosive

instrument is never chosen in the stationary region C(i) even for small samples, and is chosen in

the (negative) pure unit root case around 33% of the time (since the OLS distribution in this case

is left-skewed with values below unity occurring with probability 2/3).

4.2 Invalidity of OLS in the explosive regions
In this section, we brie�y discuss the relative performance of OLS and our procedure in the

explosive regions (�1; 1)[ (1;1) and provide an illustration of the invalidity of OLS-based infer-
ence even in large samples. The lack of CLT for the numerator of the OLS estimators of �n and �

implies that the asymptotic distribution of the t-statistic based on the OLS is carried entirely by

the last few observations for the innovations, and a change in the distribution of the last innovation

in the sample, for example, distorts OLS-based inference even asymptotically. We simulate data

from the AR and PR model in (1) and (2), with "t � N (0; 1) ; ut�1 � N (0; 1) for t = 1; :::; n� 1
and we draw the last observation of the innovations from "n � N (0; �2") ; un�1 � N (0; �2) with

�" = � = 3 instead. In the presence of CLT (as is the case of our IV estimator), misspeci�cation of

any �nite number of terms will vanish asymptotically by virtue of uniform asymptotic negligibility

(u.a.n.) implied by the CLT. In the absence of u.a.n. and hence a CLT (as is the case with OLS),

this type of misspeci�cation can a¤ect the limit and invalidate inference. In Figure 2, we report

the 90%, 95% and 99% coverage rates of the IV and OLS estimators of �n respectively for di¤erent

sample sizes (as in Section 4.1, we work with the AR speci�cations in (29) and reduced sample

sizes for the explosive processes). We compute the coverage rates as the proportion of time the

true �n �nds itself in the 90%, 95% and 99% CIs implied by the IV and OLS respectively, based

on 5,000 replications. From Figure 2, it is clear that OLS su¤ers large �nite sample distortions

in the local-to-unity region, as well as in the mildly and purely explosive regions. For sample size

n = 100; the IV procedure is also a¤ected by this end-of-sample problem and this is expected since

our near-explosive instrument exhibits some explosive properties especially for small n.

16We do this for two reasons: (i) it facilitates comparison since the exponential rate of convergence for these
speci�cations implies extremely precise estimates with SEs of the range of 10�20 for n = 500, and (ii) it prevents
Matlab rounding such SEs to 0 (resulting to point CIs) without the need for committing excessive memory.
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However, as n increases, the coverage rates of the IV procedure converge to the nominal lev-

els, as Theorem 2 suggests. The coverage rates of OLS for the mildly explosive speci�cation

�n = � (1 + 10=n0:75) also improve as expected (although very slowly). Crucially, for the purely

29



explosive DGPs, the OLS distortions do not improve even for larger samples. For example, when

�n = �1:06; the 90% OLS CI contains the truth 70% of the time irrespective of increases in the

sample size. We �nd similar results in the PR setup. Figure 3 reports the rejection probability of

the OLS under the null � = 0 against a two-sided alternative for the same speci�cations and sam-

ple sizes. We present the rejection probability of the IV procedure for the choice of instrument in

Section 4.1 as well as two other choices of instrument, increasing �2 to 0:85 and 0:95 respectively.

From Figure 3, the empirical size of the OLS for the purely explosive regions is distorted and,

crucially, the distortions deteriorate as the sample size increases; the size of our procedure on the

other hand converges to the nominal size, as suggested by the theoretical results of Theorem 3.

4.3 Comparisons with existing methods

4.3.1 Inference in the AR model

In this section, we present a comparison of our procedure to current state-of-the-art methodology

in the literature of robust inference in AR, PR and LP models for � 2 (�1; 1]. We �rst evaluate
our proposed AR CIs in (21) and we compare them to the procedure by Andrews and Guggen-

berger (2014)17 (henceforth AG), which constructs the intervals by inverting the OLS t-statistic,

which under the null is asymptotically nuisance-parameter-free. In Figures 4 and 5, we report the

coverage rates and lengths of the 90%, 95% and 99% CIs respectively for the IV estimator and AG

17The Gauss code for the procedure was kindly provided by Patrik Guggenberger and translated into Matlab.
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procedure for �n for di¤erent AR regions and for di¤erent sample sizes. For the AG procedure,

we use the symmetric two-sided intervals imposing homoskedasticity as we found these to perform

best in terms of coverage especially in the local-to-unity regions. Figure 4 presents evidence that

our IV-based CIs are comparable to the CIs based on the AG procedure in [�1; 1], while also
providing correct coverage for �n in (�1;�1] [ [1;1) in the local-to-unity, mildly and purely
explosive regions. In terms of interval length, Figure 5 shows that our intervals are shorter18 than

those of AG (translating to higher power) for all speci�cations except for the exact (positive and

negative) unit root case j�j = 1; the di¤erences in length when j�j = 1 are not large and become
negligible for large samples.

4.3.2 Size and power comparison in the PR model

Next we generate data from the PR in (2) for the speci�cations of (29) and (30) in order to

evaluate the performance of the IV-based t-statistic in (23), by comparing it to the one-sided test

procedure by Elliott et al. (2015)19, which, in the presence of a nuisance parameter, is nearly-

optimal when the innovations of the model are Gaussian20. We found that in the one-sided test

setup, our choice of instrument works well in all but one scenaria: the case with strong negative

correlation, where our choice for b1 and b2 leads to small-sample oversizing in the pure unit root

18This result also holds for the equal-tailed two-sided intervals of AG.
19The Matlab code for the procedure was downloaded from Ulrich Müller�s website and some additional proce-

dures were kindly provided by Bo Zhou.
20Zhou et al. (2019) and Zhou and Werker (2021) provide extensions of this near-e¢ cient testing procedure to

non-Gaussian, fat-tailed or heteroskedastic innovations.
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case. Since in all other cases, our choice of instrument from Section 4.1 delivers good size, we prefer

not to repeat the selection exercise of Section 4.1, since selecting a more conservative instrument

would lead to power loss even in cases where there is no size issue.
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Instead, we propose using the following adaptive t-statistic:

TAn (�n) = 1f�̂"u�Lg\f�̂n�0gTn (�z1;t) + 1f�̂"u>Lg[f�̂n<0gTn (�z2;t) (31)

where Tn (�z1;t) and Tn (�z2;t) are the t-statistics in (23) based on two di¤erent choices for instru-

ments �z1;t and �z2;t; �̂"u is the sample correlation coe¢ cient between the OLS residuals ût and "̂t; �̂n
is the OLS estimator for �n and L is a threshold level below which a more conservative instrument

selection is triggered. In this way, we can resolve the size distortion in the positive unit root case
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under strong negative correlation, without a¤ecting power in all other cases.

We set L = �0:7 and use the values b1 = 0:55 and b2 = 0:65 in (28) for the construction of the
conservative instrument �z1;t. For �z2;t we continue to use the choice of instrument from Section 4.1

with b1 = 0:85 and b2 = 0:7. In the case of �"u = �0:9 in Figure 8, we display the rejection prob-
ability under the null (with 95% con�dence against the one-sided alternative � > 0) of both the

original choice of instrument and the new adapted procedure based on (31) to illustrate the e¤ect

of using the adaptive procedure. For all other cases, in Figure 6-7, we display the rejection proba-

bility under the null based on the adaptive instrument which is identical to the original choice of

instrument in Section 4.1 since the sample correlation coe¢ cient �̂"u always exceeds the threshold

-0.7. Figures 9-11 present the corresponding power curves 21. We apply the procedure by Elliott

et al. (2015) (EMW) in all regions for comparison, noting that their procedure is not designed

to work outside (�1; 1]. There are several conclusions from the size and power comparisons in

Figures 6-11. First, our adaptive procedure in (31) performs well in terms of empirical size in all

correlation cases and in all persistence regions for the regressor and, as the sample size increases,

any small sample distortions vanish. Second, we �nd that the EMW procedure never rejects the

null to the right of unity (when the null is true and when it is not), except for a few cases with a

small sample; for example in the -0.9 correlation case, its size reaches 40% in the case of �n = 1:02

when n = 100; but the oversizing disappears as n increases. Surprisingly, we �nd that the EMW

procedure never rejects the null (even under the alternative) for stationary speci�cations with AR

21Appendix B contains additional results for moderate negative and positive correlation �"u = �0:45:
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roots in (�1; 0] ; where it is expected to be valid, since, to our knowledge, it is supposed to switch
to OLS. For this reason, in Figures 9-11, we only present power comparison for the cases �n > 0;

since EMW has zero power for any alternative for all cases �n � 0: For the regions �n � 0; our

IV procedure has power curves that are a near mirror image of the corresponding non-oscillating

cases �n > 0: For the cases �n 2 (0; 1] ; we reach a similar conclusion to the one in Section 4.3.1
in terms of power: namely, our procedure is always more powerful than EMW in all AR speci�-

cations except in the case of an exact unit root. The di¤erences in power in the unit root case are

small particularly when the correlation in the innovations is moderate. Moreover, in the purely

stationary speci�cations, the power gains of our IV procedure relative to EMW are very large

even for large samples. Crucially, our procedure provides correct inference extending to all cases

�n � 0; including seasonal (near) unit root and oscillating (mildly) explosive processes as well as
to the right of unity (the right-side of local-to-unity, mildly explosive and pure explosive regions)

for which no alternative approaches are valid.

4.3.3 Inference in the LP model

Next, we evaluate our proposed CIs for the impulse response parameter rh in the LP model in

(3) and compare them to the lag-augmentation (henceforth LA) procedure by Olea and Plagborg-

Moller (2021), which constructs the intervals by augmenting the LP model with an additional

lag. In Figures 12 and 13, we report the coverage rates and lengths of the 95% CIs for horizons

1, 10 and 30 respectively for the IV estimator and LA procedure for rh for di¤erent AR regions

and for di¤erent sample sizes. For the LA procedure, we use the Hall bootstrapped intervals22.

Figure 12 presents evidence that our IV-based CIs have correct coverage and compare favourably

to the CIs based on the LA procedure in [�1; 1], while also providing correct coverage for �n in
(�1;�1] [ [1;1) in the local-to-unity, mildly and purely explosive regions.
In terms of interval length, Figure 13 shows that: (i) for purely stationary DGPs, our intervals

are comparable to the LA (any advantages of LA over our procedure, which is equivalent to the

e¢ cient OLS in this case, are due to small sample bootstrap improvements over asymptotic CIs);

(ii) close to positive and negative unit roots, our procedure is considerably more powerful, which is

expected since, for �xed horizon, the LA procedure rate of convergence at unit root is
p
n; instead

of n0:925 w.p. 2=3 and n0:85 w.p. 1=3 implied by our choice of instrument; (iii) outside [�1; 1]; for
DGPs which include not only explosive processes but also local-to-unity process, the LA procedure

fails completely both in terms of coverage and length of the CIs. In summary, we �nd that our

IV procedure is superior to the LA approach for any type of nonstationarity and horizon considered.

22We found that the t-percentile Hall bootstrapped CI, suggested by Olea and Plagborg-Moller (2021), give rise
to negative variances and hence complex st. errors for oscillating DGPs.

35



5 Empirical Applications

5.1 Inference in an epidemiological model of infection growth
In this section, we estimate a discrete-time susceptible-infected-removed (SIR) model on Covid-

19 data; we brie�y describe the model�s equations below. The number of infected, susceptible,

recovered and deceased at time t, denoted by It, St, Rt and Dt respectively, evolves according to

36



a non-linear system of di¤erence equations:

It+1 = It (1 + �St=N �  � �) ; St+1 = St (1� �It=N) ; Rt+1 = Rt + It; Dt+1 = Dt + �It (32)

with non-negative initial conditions S0; I0; R0; D0 satisfying St + It +Rt +Dt = N for all t; where

N denotes the constant population size. Since St is a linear combination of the remaining states,

it can be substituted out23 in the equation for It+1. The model�s parameters �; ; � 2 (0; 1] are
de�ned as follows: � is the contact rate, the average number of individuals an infected person

passes the infection in a period;  is the recovery rate and � is the death rate. The model�s

dynamic behaviour is driven by the basic reproduction number (BRN) which in the model (32) is

given by r0 = �= ( + �) measuring the number of infections per infected individual, with r0 � 1
implying the disease escalates into an epidemic and r0 < 1 implying the infections�growth can

be contained. The BRN r0 is the key parameter for understanding the transmission mechanism

of an epidemic. We use next generation matrix (NGM) approach and linearise the system in (32)

around the decease-free equilibrium (DFE)24 (I = R = D = 0; S = N). After adding a stochastic

component in the form of a zero-mean measurement error ut = [u1t; u2t; u3t]
0, the resulting linear

system takes a triangular form

It = �It�1 + u1t; �Rt = It + u2t; �Dt = �It + u3t: (33)

Linearising the model at the DFE reveals the inherently nonstationary dynamics of the series at

the outbreak: It follows an AR(1) model with root � = 1 + � �  � �; satisfying: � > 1 whenever

r0 > 1; � = 1 whenever r0 = 1; and � < 1 whenever r0 < 1; i.e. at an outbreak, the number of

infections displays exponential growth, a result that applies to a variety of epidemiological models

(see e.g. Theorem 2.1 in Allen and Van den Driessche (2008)). The linearised equations for �Rt

and �Dt both follow PR models with possibly explosive regressor.

Consequently, (i) inference based on standard procedures such as OLS/MLE in (33) is only

valid when � < 1 corresponding to the case r0 < 1 which is not empirically relevant at the outbreak

but may become relevant after government intervention, (ii) when � > 1, the series for It exhibit

exponential growth and standard semi-parametric procedures such as OLS do not provide valid

inference unless ut is i.i.d. Gaussian, and (iii) when � is in vicinity of unity (i.e. when the contract

rate � is approximately equal to the removal rate +�), OLS/MLE procedures involve nonstandard

unit root or local-to-unity asymptotics and N (0; 1) inference is invalid. Crucially, inference in the

equations for�Rt and�Dt is a¤ected by the level of persistence of It; and consequently, OLS/MLE

inference on  and � is only valid in the case r0 < 1. Alternative robust procedures are also invalid

23The choice for removing St facilitates estimation since data on St are unavailable.
24This approximation is accurate at early stages of an epidemic, when St is large relatively to It; Rt and Dt.

Even at the end of our sample, the proportion St =N is 90%-96% for all countries, suggesting that the linearisation
around DFE is a good approximation.
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since their region of validity is restricted to (0; 1] ; which is not empirically relevant. The IV

procedure of this paper remains valid for all parameter regions for r0 and without distributional

or homogeneity assumptions of the innovations: Epidemiologists consider r0 the key parameter for

determining whether an epidemic is controllable and for understanding its transmission mechanism

and, therefore, being able to construct CIs with correct coverage regardless of the value of r0 2
(0;1) and without distributional assumptions is of practical importance for policy makers.
While the linearised SIR model in (33) is a very simple and stylised model and the Covid-19

data have been shown to su¤er from serious measurement errors and omissions, we make use of

the basic SIR model to illustrate the usefulness and empirical relevance of the uniform inference

procedure proposed in this paper. Its main advantage is that it gives rise to CIs for the parameters

of SIR-type models with correct coverage rates in both highly infectious and remissive periods, a

property of crucial empirical relevance as this section demonstrates: r0 may take values in (0; 1);

(1;1) as well as values in close vicinity to unity depending on the various stages of the epidemic.
We are not aware of any alternative statistical procedure which can achieve this throughout the

range � 2 (0;1) without restricting attention to a particular region of the parameter space and
without imposing parametric assumptions on ut in the explosive region.

We apply the IV procedure of the paper to the linearised SIR model (33) on Covid-19 data

and construct CIs for the parameters �; ; � and for the BRN r0 across a panel of countries. The

triangular system in (33) implies that the number of infections in the early stages of the Covid-19

outbreak, before any government intervention, follows an explosive AR model (since r0 > 1 im-

plies � > ( + �)); the aim of containment policies was to reduce r0 below unity. We use a dataset

on daily number of con�rmed, recovered and deceased individuals obtained from the John Hop-

kins University database (https://github.com/CSSEGISandData/COVID-19) for Italy, Germany,

Denmark and Israel25. We de�ne the number of active infections as the number of con�rmed cases

minus the number of recovered cases and deaths at each period. Our sample spans from 22/01/2020

until 04/08/202126. For each country, we start our sample from the date of the �rst reported death;

and we split the remainder of the sample into four subperiods27 (�rst reported death: 24/07/2020;

25/07/2020:26/11/2020, 27/11/2020:31/03/2021, 01/04/2020:04/08/2021). Our choice to conduct

inference over subsamples is motivated by the unlikelihood that the model�s parameters remain

constant over time; aggressive government policies aimed at containing the early epidemic�s dy-

namics aimed at either reducing the number of new infections through imposing lockdowns and

25The choice of countries is motivated by the availability and quality of series on the number of recovered.
26Rt series after 08/2021 are unavailable. In late 2021, many re-infections are observed due to mutations, so an

SIS model (with probability of re-infection) may be more appropriate for analysis.
27To avoid arbitrary sample split, we use the same dates for all countries with roughly the same number of

observations in each subsample. Our results are robust to alternative sample splits.
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social distancing measures (reducing �); through improved medical response to the outbreak:

hospital bed availability, improved treatment (increasing ; reducing �); or later on, through vac-

cination by reducing the proportion of susceptibles S0=N: Since our procedure is valid uniformly

over r0 2 (0;1) ; we are able to assess the e¤ect of lockdowns on the value of r0. We construct
the CIs for �, , � and r0 for each country and subsample with the instrument choice of Section 4.1.

Figure 14 presents the IV estimates and 95% CIs for r0, �, � and  for each country and

subsample. There are three main conclusions from our empirical analysis. First, the death rate

has considerably fallen over time in all countries, and the recovery rate has increased over time

for most countries. Second, the contact rate is constant over time for countries like Germany

and Denmark, but increasing over time (especially during the winter of 2021) for Italy and Israel.

Third, we �nd very di¤erent values for the BRN across countries: r0 is relatively constant over

time for countries like Denmark and Germany and while its value is usually above unity, r0 = 1 is

most of time included in the 95% CI. On the other hand, for Italy, we �nd that r0 falls below unity

in the period April-August 2021 while for Israel (whose experience was very di¤erent due to an

early vaccination programme), r0 actually surges at the summer of 2021, when cases of re-infection

begin to be reported.

5.2 Bubbles in the Magni�cent Seven�s Stock Prices
In this Section, we apply our inference procedure to test for the presence of speculative bubbles

in the stock price of the so-called Magni�cent Seven tech stocks (Apple, Nvidia, Microsoft, Amazon,

Google, Meta and Tesla). There has been an increased interest in whether on not the price rallies
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that these stocks have experienced are due to the underlying fundamentals changing or due to

speculative bubbles, particularly following the release of ChatGPT and the subsequent bullishness

in arti�cial intelligence. We use daily stock price data from Bloomberg for the period 04/01/2000-

18/02/2025 (the samples for Google, Meta and Tesla are shorter due to availability). Pavlidis et

al. (2017) argues that searching for bubbly episodes in the di¤erence between realised asset prices

and future price expectations can cancel possible explosive trends in the fundamentals of the asset,

and hence is preferable for detection of purely speculative bubbles. For future expectations, we

use series on 12-month mean price projections of analysts from the IBES database.

The existing tests of Phillips et al. (2011, 2015a,b) use recursive algorithms28 with augmented

Dickey-Fuller (ADF) unit root tests run over subsamples against one-sided alternatives � > 1,

which require di¤erent simulated critical values depending on the recursive design of the test and

window size used. A major advantage of our test statistic is that it is asymptotically N (0; 1)

regardless of: the presence or absence of bubbles (and even in moderately or purely stationary

mean-reverting dynamics which could arise in the case of occasionally collapsing bubbles), linear

trends, inclusion of intercepts or proportions of the sample used; hence we do not require dif-

ferent simulated critical values to cover all these cases. Moreover, our statistic is also robust to

heterosckedasticity (of types covered by Assumption 2) both under the null � = 1 and under the

alternative � > 1 and, crucially, our procedure remains valid in the presence of purely explosive

bubbles. This is in contrast to existing procedures which only consider mildly explosive processes

under the alternative. It is straightforward to design elaborate recursive inference procedures

based on a rolling version of our IV-based t-statistic as well as more sophisticated datestamping

schemes, along the lines of the procedures of Phillips et al. (2011, 2015a,b). For space considera-

tions, we choose to perform a simple rolling window scheme here, but we stress that the simplicity

and uniformity of our t-statistic make it straightforward to be extended to such screening algo-

rithms, which are expected to further improve on the power of the simple rolling window test. We

run the hypothesis test of � = 1 on the daily di¤erence between spot and forward prices for each

stock, against a one-sided alternative � > 1 over a 300-day one-sided rolling window29 (one-sided

windows are more suitable for real-time detection since they do not use future observations)30.

In Figure 15, we compare our IV-test statistics (in dark blue) against the critical values at dif-

ferent signi�cance levels, as well as against the IVX procedure of Phillips and Magdalinos (2009)

28There is a variety of recursive and rolling schemes in the literature designed to detect bubbles in real-time,
including sup (S-) ADF, backward SADF, generalised (G) SADF, backward GSADF as well as CUMSUM tests.
29See e.g. Demeterscu et al. (2022) and Pavlidis et al. (2017) for applications of the IVX test methodology

conducted on rolling windows.
30Our results are robust to di¤erent window sizes and the use of median instead of mean analysts�projections.

We also �nd very similar bubble episodes if we run the test on the spot prices directly.
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(in light blue). As it is clear from the �gure, our procedure is considerably more powerful in

detecting bubbles over the IVX procedure, which is only able to detect 12% of all the bubbly

episodes our procedure identi�es at 90% signi�cance level. We run a simple simulation exercise

based on 5,000 replications under i.i.d.N (0; 1) innovations and di¤erent sample sizes to study these

power gains in a controlled environment. In Figure 16, we display the rejection probabilities of

the IV and IVX procedures for the one-sided hypothesis � > 1 at 90% signi�cance under di¤erent

alternatives, using the same choice of stationary instrument (and for the IV procedure the choice

of mildly explosive instrument recommended in Section 4). It is clear from the �gure that the new

IV procedure has considerable power gains over the IVX procedure on the right side of unity in

repeated simulation, which makes it signi�cantly more e¤ective in detecting bubbly episodes.

In terms of empirical evidence, our procedure detects speculative bubbles in all seven stocks in

various periods: we �nd a long-lasting bubble in the price of Nvidia around the end of 2016 and

beginning of 2017 and mid-2020 when Covid-19 pandemic increased demand for Nvidia�s products.

We also �nd a long period of multiple speculative bubbles in Tesla�s price during 2020 and early

2021, when the Tesla�s price was breaking records and surpassing analysts�projections. Finally,
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there are notable bubbles in Meta�s price in the beginning of 2022 and the summer of 2023. More

recently, we �nd bubbly periods: (i) in July 2024 for Apple and Nvidia, (ii) in January - March

2024 for Nvidia, Microsoft, Google, Amazon and Meta and (iii) after the presidential election in

November and December 2024 for Tesla.

6 Conclusion
The paper proposes a uni�ed, distribution-free framework for inference in autoregressive, pre-

dictive regression and local projection models, when the regressor�s autoregressive root is in

(�1;1) : This includes: (i) stable and near-stable processes, (ii) (seasonal) unit root and local-to-
unity regressors, and (iii) regressors that exhibit stochastic exponential growth (e.g. explosive and

mildly explosive). The uni�ed inference is based on a novel estimation method that employs an

instrumental variable approach with an arti�cially constructed instrument with a data-driven com-

bination of a (possibly oscillating) moderately stationary and mildly explosive root. The resulting

IV estimators for the AR parameter in the autoregression, the slope parameter in the predictive

regression framework and the impulse response in the local projection model are all shown to have

a mixed-Gaussian limit distribution under all persistence regimes, and independently of the distri-

bution of the innovations and the initial condition. Consequently, the t-statistic based on the new

estimators is asymptotically standard normal with uniform size over arbitrary closed subintervals

of (�1;1) and gives rise to asymptotically correctly-sized CIs. To our knowledge, this is the �rst
method that delivers central limit theory and, consequently, general distribution-free asymptotic

inference with a regressor with autoregressive root in (�1;�1) [ (1;1) and achieves uniform
asymptotic inference over the entire autoregressive range (�1;1).
We demonstrate that our inference procedure exhibits very good �nite sample properties in

an extensive Monte Carlo study and compares favourably to existing procedures for inference in

autoregressions (Andrews and Guggenberger (2014)), predictive regressions (Elliott et al. (2015))
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and local projection models (Olea and Plagborg-Moller (2021)) in their parametric validity range

(�1; 1] while providing correct inference on (�1;�1] [ (1;1), where no existing alternative
approach has general asymptotic validity.

Finally, we demonstrate how our inference procedure can be used to answer empirical questions

for which alternative procedures are not well suited. In particular, we employ our procedure to

construct CIs for the parameters of a standard SIR model without restricting the parameter space,

i.e. without a priori knowledge of whether the epidemic is in a controllable or uncontrollable stage.

We also demonstrate how our procedure can be employed for recursive search for the presence of

speculative bubbles in the stock price of the Magni�cent Seven tech stocks, delivering not only

theoretical validity in the purely explosive region but also considerable power gains.
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Online Appendix
This Appendix contains auxiliary mathematical results, all proofs of the paper and additional

simulation results.

1.1 Auxiliary Results
This section contains six auxiliary mathematical results that develop an asymptotic theory

for sample moments of xn;t and ~zn;t and facilitate the proof of Theorems 1-3. Lemma 1 contains

results on subsequential convergence that allows a passage from the AMG property of Theorem 1

to the uniform critical regions and con�dence intervals of Theorems 2 and 3. Lemma 2 establishes

the asymptotic separation property of the near-stationary and near-explosive classes and that of

the nonstationary regular and oscillating classes, required for correct instrument selection. Lemma

3 establishes sample moment limit theory for xn;t in classes C+(i)-C+(ii). Lemma 4 establishes

sample moment limit theory for xn;t in classes C+(ii)-C+(iii). Lemma 5 provides the functional

central limit theorem required to establish the joint convergence and asymptotic independence

of n�1=2 (1� �2nz)
1=2Pn

t=1 ~zn;t�1"n;t and n
�1 (1� �2nz)

Pn
t=1 xn;t�1~zn;t�1 in the local to unity case

C+(ii), where the denominator of the IV estimators (9) and (10) has a random limit. In Lemma

6, we show how the asymptotic behaviour of the oscillating classes C�(i)-C�(iii) may be derived

from that of their regular counterparts C+(i)-C+(iii) via the transformation xn;t 7! (�1)t xn;t. The
proofs of Lemmata 1-6 are provided below.

Lemma 1.

(i) Let (�n)n2N satisfy �n ! � 2 R. For any subsequence
�
�mn

�
n2N of (�n)n2N there exists a

further subsequence
�
�sn
�
n2N of

�
�mn

�
n2N such that

�
�sn
�
n2N satis�es Assumption 7.

(ii) Let
�
u2n;t
�
t2Z be a uniformy integrable sequence for each n 2 N. Then, for any sequence

(�n)n2N satisfying �n !1, supt2Z E
�
u2n;t1

�
u2n;t > �n

	�
! 0.

(iii) Let (un;t)t2N be an ARCH(1) process satisfying Assumption 2(ii) for each n 2 N. For any
subsequence (mn)n2N � N there exists a further subsequence (kn)n2N � (mn)n2N such that

�2kn;t = EFkn;t�1u
2
kn;t

satis�es (14).

Lemma 2. Let (mn)n2N be an arbitrary sequence of positive numbers such that mn !1. Under
Assumptions 6 and 7: (i) if (�n)n2N belongs to C(i) then mn1 �F+n !p 0 and mn1 �F�n !p 0; (ii)

if (�n)n2N belongs to C(iii) then mn1F+n !p 0 and mn1F�n !p 0; (iii) if �n ! � � 1 then

mn1F�n !p 0 and mn1 �F�n !p 0 ; (iv) if �n ! � � �1 then mn1F+n !p 0 and mn1 �F+n !p 0.

For Lemmata 3-5, note that recursing the autoregression (24) up to xn;0 = �+Xn;0 implies

xn;t = �+Xn;0�
t
n + x

(n)
0t ; x

(n)
0t � x0t :=

Pt
j=1 �

t�j
n un;j (A.1)
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where x(n)0t denotes the autoregression (24) when � = 0 and X0 (n) = 0; we will drop the array

superscript from x
(n)
0t for notational economy. Equations (6), (7) and (8) imply that ~z1t := ~zn;t1F+n ,

~z�1t := ~zn;t1F�n , ~z2t := ~zn;t1 �F+n and ~z
�
2t := ~zn;t1 �F�n satisfy the recursions

~z1t = '1n~z1t�1 +�xn;t and ~z�1t = '�1n~z
�
1t�1 +rxn;t (A.2)

~z2t = '2n~z2t�1 + ûn;t and ~z�2t = '�2n~z
�
2t�1 + ûn;t: (A.3)

The (unobservable) near-stationary counterparts of (A.2) and near-explosive counterparts of (A.3)

satisfy the recursions

z1t = '1nz1t�1 + un;t and z�1t = '�1nz
�
1t�1 + un;t (A.4)

z2t = '2nz2t�1 + un;t and z�2t = '�2nz
�
2t�1 + un;t: (A.5)

Recall the de�nitions of �n and � in (15) and of Jc (�) in (27).

Lemma 3. The following hold under Assumptions 6 and 7 when xn;t belongs to C+(i)-C+(ii):

(i) n�1 (1� �2n'
2
1n)
Pn

t=1 xn;t�1~z1t�1 =
~	n + op (1)!d

~	 (c) where
~	 (c) = �2 + 2�� +

�
Jc (1)

2 � 2Jc (1)
R 1
0
Jc (r) dr

�
1 fc 2 Rg, x0t is de�ned in (A.1) and

~	n = (1 + �n)
�
�2 + 2�n�n + (2�n � 1)

�
n�1

Pn
t=1 x0t�1un;t � �n

��
��n

�
1� �2n

�
n�1

Pn
t=1 x

2
0t�1 � 2

�
n�1=2x0n

�
n�3=2

Pn
j=1 x0j�1: (A.6)

(ii) n�1 (1� �2n'
2
1n)
Pn

t=1 ~z
2
1t !p �

2 + 2��

(iii) n�1=2 (1� �2n'
2
1n)

1=2Pn
t=1 ~z1t�1en;t !d N (0; v (�)) where: v (�) = (�2 + 2��)�2e when

EFn;t�1
�
e2n;t
�
= �2e or when �n ! 1; when �n ! � 2 (�1; 1) and Assumption 6(ii) holds with

v2 (�) replaced by v� (�) = limn!1 Ee2n;1
�P1

j=0 �
jun;�j

�2
, v (�) = (1� �2) v� (�).

For Lemma 4, consider the stochastic sequences

[Yn; Y
"
n ; Zn] :=

�
'22n � 1

�1=2 hPn
t=1 '

�(n�t)�1
2n un;t;

Pn
t=1 '

�(n�t)�1
2n "n;t;

Pn
j=1 '

�j
2nun;j

i
(A.7)

and the convergence rates

�n =
�
�2n � 1

��1=2 j�njn 1 fc =1g+ n1=21 fc 2 Rg ; �n;z =
�
�22n � 1

��1=2 j�2njn ; (A.8)

sn = (�n�2n � 1)
�1 �n;z�n and �n = ('22n � 1)

�1
'n2n, with c and �2n de�ned in Ass. 7 and (26).

Lemma 4. Let Yn, Y "
n , Zn be the stochastic sequences in (A.7) and Xn := xn;n=�n. Let Y; Z;X

denote N (0; !2) random variables and Y " beN (0; �2"). Under Assumptions 6 and 7, the following

hold when xn;t belongs to C+(ii)-C+(iii):

(i) [Yn; Zn]!d [Y; Z], [Y "
n ; Zn]!d [Y

"; Z] with Z independent of (Y; Y ") and

[��1n
Pn

t=1 ~z2t�1un;t; �
�2
n

Pn
t=1 ~z

2
2t�1; s

�1
n

Pn
t=1 xn;t�1~z2t�1] = [YnZn; Z

2
n; XnZn] + op (1) : (A.9)

(ii) Under C+(iii) with �n ! 1, [Yn; Xn] !d [Y;X] and [Y "
n ; Xn] !d [Y

"; X], with X inde-

pendent of (Y; Y ").

(iii) Under C+(iii) with �n ! � > 1, Xn !d X1 with X1 6= 0 a:s:; Yn=Xn !d Y=X1 =d

MN (0; !2=X2
1) and Y

"
n =Xn !d Y

"=X1 =d MN (0; �2"=X
2
1).
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Lemma 5. Consider Bn (s) = n�1=2
Pbnsc

t=1 un;t, Un (s) = (n (1� '21n)
�1
)�1=2

Pbnsc
t=1 z1t�1en;t,

Yn (s) = ('22n � 1)
1=2Pbnsc

t=1 '
�(bnsc�t)�1
2n un;t and Zn (s) = ('22n � 1)

1=2Pbnsc
t=1 '

�t
2nun;t as elements

of D [0; 1]. Under Assumption 6, [Un (s) ; Bn (s) ; Yn (s) ; Zn (s)]) [U (s) ; B (s) ; Y; Z] on D [0; 1],

where U (s) and B (s) are independent Brownian motions with EU (s)2 = s�2e!
2 and EB (s)2 =

s!2, [Y; Z] =d N (0; !2I2) and (Y; Z) is independent of [U (s) ; B (s)].

Lemma 6 shows how to obtain the asymptotic distribution of the IV estimators
�
~��1n; ~�

�
2n

�
and

(~�
�
1n;
~�
�
2n) generated by an oscillating autoregression xn;t in classes C�(i)-C�(iii) from that of their

regular counterparts via the transformation x 7! (�1)�t x. De�ning xn;t and xn;t as in (1) and (4)
with �n < 0, it is easy to see that x

+
n;t := (�1)

�t (xn;t � �) and x+n;t = (�1)
�t xn;t satisfy

x+n;t = j�njx+n;t�1 + (�1)
�t un;t; x+n;t = j�njx+n;t�1 + (�1)

�t un;t (A.10)

so x+n;t is a regular autoregression with root j�nj. De�ne by �̂+n and û+n;t the OLS estimator and
residuals in (4) with xn;t replaced by x

+
n;t and de�ne by

�
F++n ; �F++n

�
the events

�
F+n ;

�F+n
�
in (6) with

�̂n replaced by �̂
+
n . Let y

+
n;t
= (�1)�t y

n;t
, ~z+1t =

Pt
j=1

��'�1n��t�j �x+n;j and ~z+2t = Pt
j=1

��'�2n��t�j û+n;j
and de�ne by ~�+1n, ~�

+

1n and ~�
+
2n, ~�

+

2n the IV estimators in (9) and (10) by replacing xn;t by x
+
n;t, yn;t

by y+
n;t
and ~zn;t by ~z+1t for ~�

+
1n, ~�

+

1n and by ~z
+
2t for ~�

+
2n, ~�

+

2n.

Lemma 6. Consider an oscillating autoregression (1) with �n < 0. Let ~��1n = ~�n1F�n ,
~�
�
1n =

~�n1F�n , ~�
�
2n = ~�n1 �F�n and

~�
�
2n =

~�n1 �F�n . Then F
�
n = F++n , �F�n = �F++n , ~��2n��n = �(~�+2n�j�nj) and

~�
�
2n�� = �(~�

+

2n��). Under Assumption 6 and C�(i)-C�(ii), �n
�
~��1n � �n

�
= ��n

�
~�+1n � j�nj

�
+

op (1) and �n(~�
�
1n � �) = ��n(~�

+

1n � �) + op (1).

1.2 Mathematical Proofs
We use the abbreviations BW for the Bolzano-Weierstrass theorem, HH(1980) for Hall and

Heyde (1980), MP(2020) for Magdalinos and Phillips (2020) and MP(2024) for Magdalinos and

Petrova (2024). From the proof of Lemma 3 onwards, we de�ne the following sequences for brevity:

�n := n ^ j�2n � 1j
�1, �1n := �n ^ (1� '21n)

�1, �1n := �n _ (1� '21n)
�1, �2n := �n ^ ('22n � 1)

�1

and �2n := �n _ ('22n � 1)
�1
:

Proof of Lemma 1. For part (i), the result holds for the entire sequence (�n)n2N when j�j 6= 1,
so it is enough to show the result for j�j = 1. Denote (cn)n2N := fn (j�nj � 1) : n 2 Ng. Given
an arbitrary subsequence

�
�mn

�
n2N of (�n)n2N, (cmn)n2N has a monotone subsequence (csn)n2N (by

the monotone subsequence theorem for real sequences). By monotonicity, (csn)n2N converges to

c1 2 R [ f�1;1g; hence:
�
�sn
�
n2N belongs to C(i) if c1 = �1, or

�
�sn
�
n2N belongs to C(ii) if

c1 2 R, or
�
�sn
�
n2N belongs to C(iii) if c1 =1.

For part (ii),
�
u2mn;t

�
t2Z is UI for any (mn)n2N � N. Let �n (�) := supt2Z E

�
u2n;t1

�
u2n;t > �

	�
.

3



By UI of
�
u2m1;t

�
t2Z ;

�
u2m2;t

�
t2Z ; ::: we obtain that for each n 2 N there exists bn > 0 such that

� > bn ) �mn (�) < 2
�n: (A.11)

For the moment, let �n " 1; for any � > 0 there exists k� 2 N such that �k� > �. Running � along

fb1; b2; :::g we obtain that for each n 2 N there exists kbn 2 N such that �kbn > bn; letting k�n :=

kbn_n, the monotonicity of (�n) implies that �k�n > bn; (A.11) then implies that �mn

�
�k�n

�
< 2�n.

Since k�n � n,
�
k�n
�
n2N � N so choosing mn = k�n we obtain �k�n

�
�k�n

�
! 0. We conclude that

for any subsequence f�rn (�rn) : n 2 Ng of f�n (�n) : n 2 Ng there exists a further subsequence
f�sn (�sn) : n 2 Ng (with sn = kbrn _ rn) such that �sn (�sn) ! 0; this implies that �n (�n) ! 0

as required when �n " 1. If �n !1 (not necessarily monotonically) the monotone subsequence

lemma implies that (�n) has an increasing subsequence; for any subsequence f�mn (�mn) : n 2 Ng
of f�n (�n) : n 2 Ng, there exists a further subsequence f�kn (�kn) : n 2 Ng where �kn " 1, so
�kn (�kn)! 0.

For part (iii),
�
un;t; �

2
n;t

�
satisfy Assumption 2(ii) for each n, so

un;t = �n;t�n;t; �2n;t = $n +
P1

i=1 �n;iu
2
n;t�i (A.12)

with Fn;t = �
�
�n;t; �n;t�1; :::

�
, �n;i � 0; infn�1$n � �, supn�1

P1
i=0 �n;i � 1� � and

sup
n�1

P1
i=M �n;i ! 0 asM !1 (A.13)

the latter since
P1

i=M �n;i � M��P1
i=M i��n;i so supn�1

P1
i=M �n;i = O

�
M��� for some � > 0

by Assumption 2(ii). We �rst show that there exists a sequence (�i)i�1 such that �i � 0 andP1
i=1 �i < 1 and a subsequence (kn)n2N � N such that

Akn :=
P1

i=1 j�kn;i � �ij ! 0: (A.14)

For each i 2 N, supn�1 �n;i � supn�1
P1

i=1 �n;i � 1 � �, so the BW theorem implies that there

exists a subsequence (kn)n2N � N such that �kn;i ! �i for each i 2 N. We de�ne a sequence
(�i)i�1 from the above subsequential limits. Clearly, �i � 0 for all i and for each K 2 NPK

i=1 �i =
PK

i=1 limn!1 �kn;i = limn!1
PK

i=1 �kn;i � supn�1
P1

i=1 �n;i � 1� �

i.e.
P1

i=1 �i = supK�1
PK

i=1 �i < 1. By (A.13) and the summability of (�i)i�1, for any " > 0 there

exist natural numbers M1 (") and M2 (") such that

supn�1
P1

i=M �kn;i < "=4 (8M �M1 (")) and
P1

i=M �i < "=4 (8M �M2 (")) :

Letting M0 (") := max fM1 (") ;M2 (")g we obtain
Akn �

PM0(")�1
i=1 j�kn;i � �ij+

P1
i=M0(")

�kn;i +
P1

i=M0(")
�i

<
PM0(")�1

i=1 j�kn;i � �ij+ "=2: (A.15)

Now the pointwise convergence �kn;i ! �i for each i 2 N implies that for any " > 0 and any i 2 N
there exist natural numbers ni (") such that

j�kn;i � �ij < " (2M0 ("))
�1 (8n � ni (")) : (A.16)

Taking n0 (") := max fni (") : 1 � i < M0 (")g, (A.15) and (A.16) imply that for any " > 0 there
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exists n0 (") 2 N such that Akn < " for all n � n0 ("), showing (A.14).

Having established (A.14), we employ the approximating sequence (�i) to de�ne

�un;t = ��n;t�n;t; ��
2
n;t := $n +

P1
i=1 �iu

2
n;t�i: (A.17)

By (A.14), supt�1
�2kn;t � ��2kn;tL2 � Akn supn�1 kun;1k

2
L4
! 0 and, similarly, ��2n := E��2n;t satis�es���2kn � ��2kn��! 0. We may therefore writeEFkn;t�1�m ��2kn;t � �2kn

�
L2
�
EFkn;t�1�m ���2kn;t � ��2kn�L2 + ~ n (A.18)

where ~ n := supt�1
�2kn;t � ��2kn;tL2 + ����2kn � �2kn

�� ! 0. The remainder of the proof follows the

lines of Example 1 in Arvanitis and Magdalinos (2019) using an L2 (instead of L1) norm. Theorem

4.1 and (4.11) of Giraitis et al. (2000) imply for each n 2 N
�u2n;t � ��2n =

P1
i=0 ~�i��

2
n;t�i

�
�2n;t�i � 1

�
(A.19)

for a sequence (~�i)i�0 de�ned by ~� (z) =
P1

i=0 ~�iz
i = 1=� (z) with � (z) =

P1
i=0 �iz

i for jzj � 1,
where

P1
i=1 �i < 1 implies that

P1
i=0 j~�ij <1. (A.19) yields each n; t;m � 1,EFkn;t�1�m ���2kn;t � ��2kn�L2 =
EFkn;t�1�m ��u2kn;t � ��2kn�L2 = Pi>m ~�i��

2
kn;t�i

�
�2kn;t�i � 1

�
L2

�
n
E
�
�2kn;0 � 1

�2 E��4kn;0Pi>m j~�ij
o1=2

(A.20)

since E
�
��2kn;t�i

�2 �
�2kn;t�i � 1

�2
= E

�
�2kn;0 � 1

�2 E��4kn;0 by independence of �2kn;t�i from Fkn;t�i�1.
Combining (A.18) and (A.20) we conclude that

supt�1
EFkn;t�1�m ��2kn;t � �2kn

�
L1
� b m + ~ n

with b = supn�1
�
E
�
�2kn;0 � 1

�2 E��4kn;0�1=2 <1,  m = �Pi>m j~�ij
�1=2 ! 0.

Proof of Lemma 2. Writing n (j�̂nj � 1) = n (j�̂nj � j�nj) + n (j�nj � 1) we obtain the identity
n (j�̂nj � 1) = n (j�nj � 1) (1� �n) ; �n =

j�̂nj � j�nj
1� j�nj

(A.21)

for parts (i) and (ii) of the lemma. We �rst show that, under C(i) and C(iii),

lim sup
n!1

P (�n > 1� �) = 0 for some � 2 (0; 1) : (A.22)

The inequality jjxj � jyjj � jx� yj implies that j�nj � j�̂n � �nj j1� j�njj
�1 !p 0 under C(iii) and

Assumption 6 (j�̂n � �nj (�n � 1)
�1 = Op

�
j�nj

�n� by Theorem 1 of MP(2024)) as well as under

C(i) and Assumption 5 (j�̂n � �nj (1� j�nj)
�1 = Op(n

�1=2 (1� j�nj)
�1=2)), showing (A.22) for the

above cases. It remains to prove (A.22) under C(i) and Assumption 6. In this case,

Gn :=
�
1� �2n

��1
(�̂n � �n)!p �

�
�2 + 2��

��1
(A.23)

where � is given in (15). To see this, the recursion for x0t in (A.1) yields

n�1
�
1� �2n

�Pn
t=1 x

2
0t�1 = n�1

Pn
t=1 u

2
n;t + 2�nn

�1Pn
t=1 x0t�1un;t � n�1x20n !p �

2 + 2�� (A.24)

since under Assumption 6: n�1
Pn

t=1 u
2
n;t !p �

2 by Lemma 1 of MP(2024); n�1
Pn

t=1 x0t�1un;t !p

� when � � 0 by Lemma 2.2(i) of MP(2020); when � < 0 x+n;t := (�1)t x0t satis�es the reg-
ular autoregression (A.10) and u+n;t := (�1)t un;t satis�es Assumption 6 with ACV function
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Eu+n;tu+n;t�k = (�1)
�k un (k), so

n�1
Pn

t=1 x0t�1un;t = �n�1
Pn

t=1 x
+
n;t�1u

+
n;t !p �

P1
k=1 j�j

k�1 (�1)�k  (k) =
P1

k=1 �
k�1 (k) = �

by Lemma 2.2(i) of MP(2020). We have established that n�1
Pn

t=1 x0t�1un;t !p � for � 2 [�1; 1]
under C(i) and Assumption 6; combining the last probability limit with (A.24) shows (A.23).

Suppose �rst that j�nj ! 1 under C(i) and Assumption 6; then

�n =
j�nj j1 + ��1n (1� �2n)Gnj � j�nj

1� j�nj
=
j�nj (1 + ��1n (1� �2n)Gn)� j�nj

1� j�nj
= (j�nj =�n) (1 + j�nj)Gn = 2��=

�
�2 + 2��

�
+ op (1) (A.25)

by (A.23) since sign (�) = � 2 f�1; 1g, where the second equality holds for all but �nitely many n
since (1� �2n)Gn = op (1). Since �2 + 2�� > 0, (A.22) follows immediately when � = 1 and � � 0
and when � = �1 and � � 0 since the probability limit in (A.25) lies in (�1; 0]. When � = 1 and

� > 0 or when � = �1 and � < 0, �� > 0, so the probability limit in (A.25) belongs to (0; 1) since
�2 > 0. This completes the proof of (A.22) when j�nj ! 1 under C(i). It remains to show (A.22)

when �n ! � 2 (�1; 1). In this case, (A.23) implies that �̂n !p b (�) := �+(1� �2) �= (�2 + 2��),

so (A.21) gives �n !p � (�) := (jb (�)j � j�j) = (1� j�j) and (A.22) will follow by proving that

� (�) < 1 which is equivalent to jb (�)j < 1. Since (1� �2) = (�2 + 2��) > 0 and � 2 (�1; 1),
jb (�)j < 1 will hold trivially if � > 0 and � � 0 or if � < 0 and � � 0; it is therefore su¢ cient to
prove jb (�)j < 1 when �� > 0. Now jb (�)j < 1 is equivalent to

��2 < (1 + �) � and (1� �) � < �2: (A.26)

The left inequality in (A.26) holds trivially when � � 0 and the right when � � 0; given the

restriction �� > 0, it is enough to prove the left inequality in (A.26) for � < 0 and the right

inequality in (A.26) for � > 0; for these values of �, (A.26) is equivalent to (1� j�j) j�j < �2.

Since

(1� j�j) j�j � (1� j�j)
P1

k=1 j�j
k�1 j (k)j < �2 (1� j�j)

P1
k=1 j�j

k�1 = �2;

by (15) and j (k)j < �2, this shows (A.26), jb (�)j < 1 and completes the proof of (A.22).
For part (i), 1 �F+n � 1 �Fn and 1 �F�n � 1 �Fn so it is su¢ cient to show that mn1 �Fn !p 0. For some

� 2 (0; 1) that satis�es (A.22) and using (A.21), we obtain for any � > 0
P (mn1 �Fn > �) � P (mn1 �Fn > �; �n � 1� �) + P (�n > 1� �)

= P (mn1 fn (j�nj � 1) (1� �n) > 0g > �; �n � 1� �) + P (�n > 1� �)

� P (mn1 fn (j�nj � 1) � > 0g > �) + P (�n > 1� �) � P (�n > 1� �)

for all n � n0 (�) because n (j�nj � 1) � ! �1, so 1 fn (j�nj � 1) � > 0g = 0 for all but �nitely

many n; since � satis�es (A.22), part (i) follows. the proof of part (ii) is similar: for some �

satisfying (A.22) and any � > 0 we may write

P (mn1Fn > �) � P (mn1 fn (j�nj � 1) � � 0g > �) + P (�n > 1� �) = P (�n > 1� �)
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for all n � n0 (�) because n (j�nj � 1) � ! 1, so 1 fn (j�nj � 1) � � 0g = 0 for all but �nitely

many n; part (ii) follows since � satis�es (A.22) and max
�
1F+n ;1F�n

�
� 1Fn. For part (iii),

mnmax
�
1 �F�n ;1F�n

�
� mn1 f�̂n < 0g; for arbitrary � > 0

P (mn1 f�̂n < 0g > �) = P (mn1 f�̂n < 0g > �; j�̂n � �nj < 1=2) + P (j�̂n � �nj � 1=2)

� P (mn1 f�̂n < 0g > �; �n � 1=2 < �̂n) + P (j�̂n � �nj � 1=2)

� P (mn1 f�n < 1=2g > �) + P (j�̂n � �nj � 1=2)

= P (j�̂n � �nj � 1=2)
for all n � n0 (�), since �n ! � � 1 so 1 f�n < 1=2g = 0 for all but �nitely many n. Part (iii)

follows since, by (A.23), j�̂n � �nj !p 0 under Assumption 6 when �n ! � � 1. For part (iv),

mnmax
�
1 �F+n ;1F+n

�
� mn1 f�̂n � 0g and the argument of part (iii) gives

P (mn1 f�̂n � 0g > �) � P (mn1 f�n > �1=2g > �) + P (j�̂n � �nj � 1=2)! 0

for all � > 0 when �n ! � � �1.

Proof of Lemma 3. Recalling the de�nition of x0t in (A.1), denote by ~z0t =
Pt

j=1 '
t�j
1n �x0j

the restriction of the instrument ~z1t in (A.2) when � = Xn;0 = 0. Applying (A.1), we obtain

~z1t � ~z0t =
Pt

j=1 '
t�j
1n (�xn;j ��x0j) = Xn;0 (�n � 1)'t�11n

Pt�1
j=0 (�n='1n)

j (A.27)

which yields the following decomposition for ~z1t:

~z1t = ~z0t + qnt; qnt := Xn;0 (�n � 1)
�
't1n � �tn

�
= ('1n � �n) : (A.28)

In the above form, (A.28) is useful when '1n��n is not too small in that n j'1n � �nj ! 1; when
j'1n � �nj = O (n�1) we apply the mean value theorem to the function x 7! xt between '1n and �n
to obtain qnt = (X0 (n)� �) (�n � 1) t�t�1n where j�n � '1nj � j'1n � �nj = O (n�1). The leading

term ~z0t of (A.28) may be further decomposed as

~z0t =

(
z1t � (1� �n) ('1n � �n)

�1 (z1t � x0t) ; n j'1n � �nj ! 1
z1t � (1� �n)

Pt�1
i=1 i�

i�1
n un;t�i; n j'1n � �nj = O (1)

(A.29)

where z1t :=
Pt

j=1 '
t�j
1n un;j for some �n satisfying j�n � '1nj � j'1n � �nj = O (n�1). Writing

�x0t = un;t + (�n � 1)x0t�1 from (A.1), we may obtain (A.29) as follows:

~z0t = z1t � (1� �n)
Pt

j=1 '
t�j
1n

Pj�1
i=1 �

j�1�i
n un;i = z1t � (1� �n)

Pt�1
i=1

Pt
j=i+1 '

t�j
1n �

j�1�i
n un;i

= z1t � (1� �n)
Pt�1

i=1 un;t�i'
i�1
1n

Pi�1
j=0 (�n='1n)

j : (A.30)

When n j'1n � �nj ! 1, the sum in (A.30) is equal to ('1n � �n)
�1 ('1nz1t�1 � �nx0t�1) and

(A.29) follows by adding and subtracting un;t in '1nz1t�1 � �nx0t�1. When n j'1n � �nj = O (1)

and �n = '1n (A.30) gives (A.29) with �n = 1; when �n 6= '1n, ('
i
1n � �in) = ('1n � �n) = i�i�1n by

the MVT applied to the function x 7! xi between '1n and �n, and (A.29) follows from (A.30).

We �rst show that

r1n := (1� �n'1n)n
�1 (
Pn

t=1 xn;t�1~zn;t�1 �
Pn

t=1 x0t�1~z0t�1) = op (1) (A.31)
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Since jXn;0j = Op (1) and 1� �n'1n � ��11n , using the decompositions (A.1) and (A.28) we obtain

jr1nj � b��11nn
�1 ���Pn�1

t=1 �
t
n~z0t
��+ ��Pn�1

t=1 ~z0t
��+ ��Pn�1

t=1 x0tqnt
��+ 2Pn�1

t=1 jqntj
	

(A.32)

for some b > 0. Since
Pn�1

t=1 ~z0t = Op
�
n1=2�1n

�
the second term of (A.32) is Op

�
n�1=2

�
; sincePn�1

t=1 jqntj � Op (�
�1
n )
Pn�1

t=1 j('t1n � �tn) = ('1n � �n)j the last term of (A.32) is Op (n�1��1n �1n)

when n j'1n � �nj ! 1 and Op (��1n ) (1� '21n)n
�1Pn�1

t=1 t�
t�1
n = Op

�
��1n n�1 (1� �n)

�1� when
j'1n � �nj = O (n�1); sincePn�1

t=1 q
2
nt = Op (1)�

�2
n

Pn�1
t=1

��
't1n � �tn

�
= ('1n � �n)

�2
= Op

�
��2n �21n�1n

�
(A.33)

because the sum on the right is bounded by 2 ('1n � �n)
�2Pn�1

t=1 ('
2t
1n + �2tn ) = O

�
�21n�1n

�
when

n j'1n � �nj ! 1 and by
Pn�1

t=1 t
2�2(t�1)n = O (�3n) when j'1n � �nj = O (n�1) in which case

�n � �1n � �1n. Since
Pn�1

t=1 x
2
0t = Op (n�n) by (A.24), the third term of (A.32) satis�es

��11nn
�1 ��Pn�1

t=1 x0tqnt
�� � ��11nn

�1 �Pn�1
t=1 x

2
0t

�1=2 �Pn�1
t=1 q

2
nt

�1=2
= Op

�
n�1=2

�
: (A.34)

Finally, for the �rst term of (A.32),
Pn�1

t=1 ~z
2
0t = Op (n�n) by MP(2020), so

��11nn
�1 ��Pn�1

t=1 �
t
n~z0t
�� � ��11nn

�1O
�
�1=2n

� �Pn�1
t=1 ~z

2
0t

�1=2
= Op

�
n�1=2��1=2n �1=2n

�
= op (1)

completing the proof of (A.31). By (A.31) and equations (66)-(68) of MP(2020) we may write

(1� �n'1n)
1

n

Pn
t=1 xn;t�1~zn;t�1 = �2 +

1

n

Pn
t=1 ~z0t�1un;t +

1

n
(2�n � 1)

Pn
t=1 x0t�1un;t

+�n (�n � 1)
1

n

Pn
t=1 x

2
0t�1 + op (1) : (A.35)

Under Assumption 6 on (un;t), n�1
Pn

t=1 ~z0t�1un;t = �n + op (1) by Lemma 3.1(ii) of MP(2020).

Next, we analyse �z1n�1�xn�1. Letting �z1n = n�1
Pn

t=1 ~z1t and ��n := n�1
Pn

t=1 z1t, (A.29) gives

�z0n = ��n � (1� �n) ('1n � �n)
�1 ���n � �x0n� = Op

�
j�x0nj ^

����n��� = Op
�
n�1=2�1n

�
(A.36)

since ��n = Op
�
n�1=2 (1� '1n)

�1� and �x0n = Op
�
n�1=2�n

�
. Denoting �qnn = n�1

Pn
t=1 qnt, (A.1)

and (A.28) imply that

��11n �xn;n�z1n = ��11n �z0n�x0n + ��11n �x0n�qnn +Op (1)�
�1
1n (�z0n + �qnn) = ��11n �z0n�x0n + op (1) (A.37)

under C+(i)-C+(ii), by (A.36), �x0n = Op
�
n�1=2�n

�
and �qnn = Op (�

�1
n n�1�1n�1n). Since �

�1
1n �z0n�x0n =

Op (�n=n) we conclude that �
�1
1n �xn;n�z1n = op (1) under C+(i). Under C+(ii), the recursion ~z0t =

'1n~z0t�1 +�x0t implies that (1� '1n) �z0n�1 = x0n � ~z0n, so (A.37) gives
(1� �n'1n) �z1n�1�xn�1 = (1� '1n) �z0n�1�x0n�1 + op (1) =

x0n
n1=2

1

n3=2
Pn

j=1 x0j�1 + op (1) : (A.38)

Combining (A.35)-(A.38) and using (1� �2n'
2
1n) = (1� �n'1n) � 1 + �n, we obtain that�

1� �2n'
2
1n

� 1
n

Pn
t=1 xn;t�1~zn;t�1 =

~	n + op (1) (A.39)

with ~	n de�ned in (A.6) under C+(i)-C+(ii), with the term in (A.38) being op (1) under C+(i).

Under C+(i), n�1
Pn

t=1 x0t�1un;t !p � by Lemma 2.2(i) of MP(2020), so (A.24) implies that
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~	n !p �
2 + 2�� under C+(i). Under C+(ii), �n ! � and

~	n = 2

 
!2 +

1

n

Pn
t=1 x0t�1ut � �+ c

1

n2
Pn

t=1 x
2
0t�1 �

x0n
n1=2

Pn
j=1 x0j�1

n3=2

!
+ op (1)

!d 2
�
!2 +

R 1
0
Jc (r) dB (r) + c

R 1
0
Jc (r)

2 dr � Jc (1)
R 1
0
Jc (r) dr

�
= !2 + Jc (1)

2 � 2Jc (1)
R 1
0
Jc (r) dr

by standard local to unit asymptotics, e.g. Phillips (1987b), where the last equality holds by

applying the integration by parts formula to the stochastic integral
R 1
0
Jc (r) dB (r); see equa-

tion (79) of MP(2020). The expression for the weak limit ~	c in the lemma follows since �2 +

2�� = !2 under C+(ii), completing the proof of part (i). For part (ii), we show that r2n :=

n�1 (1� �2n'
2
1n) (

Pn
t=1 ~z

2
1t �

Pn
t=1 ~z

2
0t) !p 0. Using (A.28) we obtain

Pn
t=1 ~z

2
1t =

Pn
t=1 ~z

2
0t +Pn

t=1 q
2
nt + 2

Pn
t=1 ~z0tqnt with (A.33) implying that n

�1��11n
Pn

t=1 q
2
nt = Op (n

�1��1n �1n) = op (1)

and ��11nn
�1
��Pn�1

t=1 ~z0tqnt
�� = Op

�
n�1=2

�
by (A.34) since

Pn�1
t=1 ~z

2
0t = Op

�Pn�1
t=1 x

2
0t

�
, completing the

proof of r2n = op (1). It is enough to show that ~v0n := (1� �2n'
2
1n)n

�1Pn
t=1 ~z

2
0t !p �

2 + 2��. The

proof of Lemma 3.1(iv) of MP(2020) shows that ~v0n = (1� '21n)n
�1Pn

t=1 z
2
1t+ op (1)!p !

2 when

(1� '1n)�n !1 and ~v0n = (1� �2n)n
�1Pn

t=1 x
2
0t + op (1) when (1� '1n)�n ! 0. In both cases,

~v0n !p �
2 + 2��; by (A.24) when (1� '1n)�n ! 0 and the fact that (1� '1n)�n ! 1 implies

that � = 1 and �2+2�� = !2. It remains to show that that (1� �2n'
2
1n)n

�1Pn
t=1 ~z

2
0t !p !

2 when

(1� '1n) = (1� �n)! � 2 (0;1): in this case, (�n) belongs to C+(i) and equations (74) and (75)
of MP(2020) imply that
1

n

�
1� �2n'

2
1n

�Pn
t=1 ~z

2
0t�1 =

1� �2n'
2
1n

1� '21n

�
!2 � 2 1� �n

1� �2n'
2
1n

�
1� �2n'

2
1n

� 1
n

Pn
t=1 x0t�1~z0t�1

�
+op (1) :

Since n�1 (1� �2n'
2
1n)
Pn

t=1 x0t�1~z0t�1 !p !
2, the result follows from

1� �2n'
2
1n

1� '21n

�
1� 2 (1� �n)

1� �2n'
2
1n

�
� 2�n
1� '21n

(1� '1n)! 1

since '1n ! 1 and �n ! 1. For part (iii), n�1=2��1=21n

Pn
t=1 qnt�1en;t = Op (n

�1��1n �1n) by (A.33),

so (A.28) implies that it is su¢ cient to show the result for
Pn

t=1 �nt for the Fn;t-martingale array
�nt := n�1=2 (1� �2n'

2
1n)

1=2
~z0t�1en;t. We will prove the following approximation under Assumption

6(i) or under Assumption 6(ii) with �n ! 1:Pn
t=1 EFn;t�1

�
�2nt
�
= �2e

�
1� �2n'

2
1n

�
n�1

Pn
t=1 ~z

2
0t�1 + op (1) (A.40)

By part (ii) of the lemma, the right side of (A.40) satis�es
Pn

t=1 EFn;t�1
�
�2nt
�
!p �

2
e (�

2 + 2��).

Under conditional homoskedasticity of (en;t), the equality in (A.40) holds exactly. Under Assump-

tion 6(i), the Lindeberg condition (LC) follows by Lemma 3.2 of MP(2020) and
Pn

t=1 �nt !d

N (0; �2e (�
2 + 2��)) follows by a standard martingale CLT (e.g. Corollary 3.1 of HH(1980)). Un-

der Assumption 6(ii) and �n ! 1, consider a sequence (ln) satisfying ln !1 and ��11n l
2
n ! 0 and
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denote the remainder in approximating ~z0t by ~z0t�ln in (A.40) by

rnt = ~z0t � ~z0t�ln =
Pt

j=t�ln+1 '
t�j
1n �x0j �

�
'ln1n � 1

�Pt�ln
j=1 '

t�ln�j
1n �x0j

=
Pln�1

i=0 'i1nun;t�i + (�n � 1)
Pln�1

i=0 'i1nx0t�i�1 �
�
'ln1n � 1

�
~z0t�ln :

Since kun;0k2L4 , maxt�n
��1=2n x0t

2
L4
and maxt�n

��1=21n ~z0t

2
L4
are all O (1) we obtain

r4nt � 43
n
l2n
Pln�1

i=0 u4n;t�i + (�n � 1)
4 l3n
Pln�1

i=0 x40t�i�1 +
�
'ln1n � 1

�4
~z40t�ln

o
and ��21n maxt�n Er4nt = O

�
��21n l

3
n + ��21n�

�2
n l4n + ('

ln
1n � 1)4

�
= o (1) (ln (1� '21n) ! 0 implies that

'ln1n ! 1). Hence, ~z20t = ~z
2
0t�ln + r2nt + 2~z0t�lnrnt yields

n�1��11n
Pn

t=1 (~z0t�1 � ~z0t�ln�1)EFn;t�1e2n;t

L1

= n�1��11n
Pn

t=1

�
r2nt�1 + 2~z0t�ln�1rnt�1

�
EFn;t�1e2n;t


L1

�
e2n;02L4 ��11n maxt�n

�
krntk2L4 + 2 krntkL4 k~z0tkL4

�
= o (1)

Hence, the left side of (A.40) becomesPn
t=1 EFn;t�1�

2
nt = E

�
e2n;t
�
n�1

�
1� �2n'

2
1n

�Pn
t=1 ~z

2
0t�ln�1 + n�1

Pn
t=1Mn;t + op (1)

where Mn;t := (1� �2n'
2
1n) ~z

2
0t�ln�1EFn;t�1

�
e2n;t � E

�
e2n;t
��
is a uniformly integrable L1-mixingale

array with respect to Fn;t�1:EFn;t�ln�1 (Mn;t)

L1

=
�1� �2n'

2
1n

�
~z20t�ln�1EFn;t�ln�1

�
e2n;t � E

�
e2n;t
��

L1

�
EFn;t�ln�1 �e2n;t � E �e2n;t��L2 maxt�n

��1=21n ~z0t

2
L4
� b

�
 ln +

~ n

�
! 0

by (14). Proving UI of (Mn;t) is the same as proving UI of
�
��1n ~z

2
0t�1e

2
n;t

�
: letting �n (x) =

Ee4n;01
�
e2n;0 > x

	
,

E��1n ~z20t�1e2n;t1
�
��1n ~z

2
0t�1e

2
n;t > mn

	
� m1=4

n E��1n ~z20t�11f��1n ~z20t�1 > m3=4
n g+ E��1n ~z20t�1e2n;t1fe2n;t > m1=4

n g

� max
t�n

��1=21n ~z0t

2
L4
[m

1
4
n max

t�n
P(��1n ~z20t > m

3
4
n ) + �1=2n (m

1
4
n )]: (A.41)

By the Markov inequality m1=4
n maxt�n P

�
��1n ~z

2
0t�1 > m

3=4
n

�
� m

�1=2
n maxt�n

��1=21n ~z0t

2
L2
! 0

for any mn ! 1; since Ee4n;0<1, also �n
�
m
1=4
n

�
! 0 and the required UI follows since the

right side of (A.41) is independent of t. A mixingale law of large numbers (e.g. Lemma 1 in

MP(2024)) then implies that kn�1
Pn

t=1Mn;tkL1 ! 0, completing the proof of (A.40) under As-

sumption 6(ii) when �n ! 1. The LC
Pn

t=1 EFn;t�1
�
�2nt1

�
�2nt > �

	�
! 0 for any � > 0 under

Assumption 6(ii) follows directly from the UI of
�
��1n ~z

2
0t�1e

2
n;t

�
proved in (A.41). This com-

pletes the proof of part (iii) under Assumption 6(ii) when �n ! 1. When �n ! � 2 (�1; 1),Pn
t=1 �nt = n�1=2 (1� �2)

1=2Pn
t=1 x0t�1en;t + op (1) by MP (2020) andPn

t=1 EFn;t�1�
2
nt = n�1

�
1� �2

�Pn
t=1 x

2
0t�1EFn;t�1e2n;t + op (1) =

�
1� �2

�
Ex20t�1EFn;t�1e2n;t + op (1) ;

by strict stationarity of
�
un;t;EFn;t�1e2n;t

�
for each n (implied by the strict stationarity of

�
en;t;EFn;t�1e2n;t

�
)

where the last expectation does not depend on t and is equal to vn� (�) = E
�P1

j=0 �
jun;�j

�2
e2n;1

by Fn;t�1-measurability of x0t�1 =
P1

j=0 �
jun;t�1�j and the law of iterated expectations. Since

vn� (�) ! v� (�) by assumption,
Pn

t=1 EFn;t�1�
2
nt !p (1� �2) v� (�) as required. The LC follows
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from the argument in (A.41) by setting ��11n = 1 and replacing ~z0t�1 by x0t�1 =
P1

j=0 �
jun;t�1�j.

This concludes the proof of the lemma.

Finally, we prove an approximation used in the proof of Theorem 1: under Assumption 6Pn
t=1 �

2
nt =

Pn
t=1 EFn;t�1

�
�2nt
�
+ op (1) : (A.42)

Since the Lindeberg condition for (�nt) has been veri�ed above under Assumption 6 and the

sequence
�Pn

t=1 EFn;t�1�
2
nt : n � 1

	
has been shown to converge in probability (and is tight as a

consequence), (A.42) follows from Theorem 2.23 of HH.

Proof of Lemma 4. For � > 0, the Cauchy-Schwarz inequality implies thatP1
j=1 j

�=4 jcn;jj =
P1

j=1 j
�1=2��=4j1=2+�=2 jcn;jj �

�P1
i=1 i

�1��=2�1=2 �P1
j=1 j

1+�c2n;j

�1=2
(A.43)

i.e. supn2N
P1

j=0 j
�=4 jcn;jj <1 by Assumption 6. Hence, the fact that (un;t) satis�es Assumption

6 guarantees that (un;t) satis�es Assumption 2 and condition (13) of MP (2024). Since z2t in

(A.5) is a mildly explosive process with root '2n and innovation un;t, [Yn; Zn] !d [Y; Z] and

[Y "
n ; Zn]!d [Y

"; Z] follow from Lemma 2 of MP (2024) and the approximation

[��1n
Pn

t=1 z2t�1un;t; �
�2
n

Pn
t=1 z

2
2t�1] = [YnZn; Z

2
n] + op (1) (A.44)

follows by Lemma 4 of MP(2024). We �rst prove that

s�1n
Pn

t=1 xn;t�1z2t�1 = XnZn + op (1) : (A.45)

The recursions for xn;t and z2t in (24) and (A.5) give

(�n'2n � 1)
Pn

t=1 xn;t�1z2t�1 = xn;nz2n � '2n
Pn

t=1 z2t�1un;t � �n
Pn

t=1 xn;t�1un;t �
Pn

t=1 u
2
n;t

+'2n� (�n � 1)
Pn

t=1 z2t�1 + � (�n � 1)
Pn

t=1 un;t

= xn;nz2n + op (�n�n;z) (A.46)

because: ��1n (�n � 1)
Pn

t=1 un;t is of order Op(�
�n
n (n (�n � 1))

1=2) = op (1) (by Lemma A1 of

MP(2024)) under C+(iii) and Op (n�1) under C+(ii); by Lemma 4 and Lemma A1 of MP(2024):

��1n ��1n;z
Pn

t=1 z2t�1un;t is Op[�
�1
n ('22n � 1)

�1=2
] = op(�

�n
n [n (�n � 1)]

1=2) = op (1) under C+(iii) and

Op[(n ('2n � 1))
�1=2] under C+(ii) and ��1n ��1n;z

Pn
t=1 xn;t�1un;t = Op('

�n
2n [n ('2n � 1)]

1=2) = op (1);Pn
t=1 z2t�1 = Op

�
('2n � 1)

�3=2 'n2n

�
, so (�n � 1) ��1n ��1n;z

Pn
t=1 z2t�1 = Op(�

�n
n (�n � 1)

3=2 ('2n � 1)
�1) =

op
�
n�1=2

�
where we use that ��nn n3=2 (�n � 1)

3=2 = O (1) (o (1) under C+(iii) by Lemma A1 of

MP(2024)). This completes the proof of (A.46). By (A.46) we conclude that s�1n
Pn

t=1 xn;t�1z2t�1 =

��1n xn;n�
�1
n;zz2n + op (1) and (A.45) follows from the de�nitions of Zn in (A.7) and Xn = xn;n=�n.

Denoting R1n = ��1n
Pn

t=1 (~z2t�1 � z2t�1)un;t, R2n = s�1n
Pn

t=1 xn;t�1 (~z2t�1 � z2t�1) and R3n =

��2n
Pn

t=1

�
~z22t�1 � z22t�1

�
, by (A.44) and (A.45), part (i) will follow from showing that R1n = op (1),
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R2n = op (1) and R3n = op (1). Applying the identity ût = ut�(�̂n � �n)xt�1 to ~z2t =
Pt

j=1 '
t�j
2n ûj,

~z2t =
Pt

j=1 '
t�j
2n uj � (�̂n � �n)

Pt
j=1 '

t�j
2n xj�1

= z2t � (�̂n � �n)
Pt

j=1 '
t�j
2n x0j�1 + (�̂n � �n) (�xn�1 � �)

�
't2n � 1

�
= ('2n � 1)

� (�̂n � �n)Xn;0

�
�tn � 't2n

�
= (�n � '2n)� �un

�
't2n � 1

�
= ('2n � 1) (A.47)

where the second equality follows by (A.1). The computation in (A.30) with '1n replaced by '2n
on the second term of (A.47) gives the following decomposition:

~z2t = z2t � (�̂n � �n) qnt + gn
�
't2n � 1

�
= ('2n � 1) ; �̂n � �n = Op

�
��1n ��nn

�
(A.48)

where qnt = (�n � '2n)
�1 [�nx0t�1 � '2nz2t�1 +Xn;0 (�

t
n � 't2n)], when n j'2n � �nj ! 1 and qnt =Pt�1

i=1 i�
i�1
n un;t�i+Xn;0t�

t�1
n when j'2n � �nj = O (n�1) where �n is an intermediate point between

'2n and �n and gn = (�̂n � �n) (�xn�1 � �)� �un. The consistency rate for �̂n in (A.48) under C+(iii)
under Assumption 6 follows from Theorem 1 in MP(2024). It is easy to see that gn = Op

�
n�1=2

�
under C+(ii) and C+(iii). We �rst show thatPn

t=1 q
2
nt�1 = Op

�
�22n�

2
n�
2n
n

�
+Op

�
�22n�

2
n

�
: (A.49)

When n j'2n � �nj ! 1Pn
t=1 q

2
nt�1 � 4 (�n � '2n)

�2 ��2nPn
t=1 x

2
0t�1 + '22n

Pn
t=1 z

2
2t�1 +X2

n;0

�Pn
t=1 �

2t
n +

Pn
t=1 '

2t
2n

��
with (�n � '2n)

�2 = O
�
�22n
�
and

Pn
t=1 x

2
0t�1 = Op (�

2
n�
2n
n ) and

Pn
t=1 z

2
2t�1 = Op (�

2
n) by Lemma

4 of MP(2024). When j'2n � �nj = O (n�1), �2n � �n and �n � �n�
n
n so the right side of

(A.49) is Op (�4n�
2n
n ) and

Pn
t=1 q

2
nt�1 � 2

Pn
t=1

�Pt�1
i=1 i�

i�1
n un;t�i

�2
+ Xn;0

Pn
t=1 t

2�2(t�1)n ; sincePn
t=1 t

2�2(t�1)n = O(�2nn
�
�2n � 1

��3
) = O (�2nn �

3
n) andPn

t=1 E
�Pt�1

i=1 i�
i�1
n un;t�i

�2
= �2n

Pn
t=1

Pt�1
i=1 i

2�2(i�1)n � 2�2n
�
�2n � 1

��1Pn
t=1 t

2�2(t�1)n = O
�
�4n�

2n
n

�
;

(A.49) follows. We now show that R1n = op (1): by (A.48),

R1n = ���1n (�̂n � �n)
Pn

t=1 qnt�1un;t + ��1n gn ('2n � 1)
�1Pn

t=1

�
't�12n � 1

�
un;t:

By (A.49),
Pn

t=1 qnt�1un;t = Op (�2n�n�
n
n)+Op (�2n�n) so, since n�

�1
n ��nn = O (1), the �rst term of

R1n isOp
�
'�n2n

�
+Op (�2n=n); since gn = Op

�
n�1=2

�
, the second term ofR1n isOp(n�1=2 ('22n � 1)

�1=2
) =

op (1), showing that R1n = op (1). To show that R2n = op (1), (A.48) gives

R2n = �s�1n (�̂n � �n)
Pn

t=1 xn;t�1qnt�1 + s�1n gn ('2n � 1)
�1Pn

t=1 xn;t�1
�
't�12n � 1

�
:

Since j
Pn

t=1 xn;t�1qnt�1j �
�Pn

t=1 x
2
n;t�1

�1=2 �Pn
t=1 q

2
nt�1

�1=2
and j�̂n � �nj

�Pn
t=1 x

2
n;t�1

�1=2
= Op (1),

the �rst term of R2n is bounded by Op (1) s
�1
n

�Pn
t=1 q

2
nt�1

�1=2
= Op(�

1=2
n ('22n � 1)

1=2
'�n2n ) +

Op(�
�1=2
n ('22n � 1)

�1=2
��nn ) by (A.49); by Lemma A1 of MP(2024) �

1=2
n ('22n � 1)

1=2
'�n2n = o((�n=n)

1=2)

and ��1=2n ('22n � 1)
�1=2

��nn = O(n�1=2 ('22n � 1)
�1=2

), showing that �rst term of R2n is op (1). For

the second term of R2n, a computation similar to (A.30) gives

s�1n
Pn

t=1 x0t�1'
t�1
2n = ��1n;z�

�1
n

�
�n'

n
2nx0n�1 �

Pn�1
i=1 un;i'

i
2n

�
= Op

��
'22n � 1

�1=2�
+Op

�
��nn ��1=2n

�
:

Since gn = Op
�
n�1=2

�
and ��1=2n n1=2��nn = O (1), the second term of R2n is Op(n�1=2 ('22n � 1)

�1=2
)
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completing the proof of R2n = op (1). To show that R3n = op (1), use (A.48) to write

R3n = ��2n
Pn

t=1 h
2
nt + 2�

�2
n

Pn
t=1 z2t�1hnt � ��2n

Pn
t=1 h

2
nt + 2

�
��2n

Pn�1
t=1 z

2
2t

�1=2 �
��2n

Pn�1
t=1 h

2
nt

�1=2
where hnt := gn

�
't�12n � 1

�
= ('2n � 1)� (�̂n � �n) qnt�1, satis�es

��2n
Pn

t=1 h
2
nt � 4��2n g2n ('2n � 1)

�2 �Pn�1
t=0 '

2t
2n + n

�
+ 2��2n (�̂n � �n)

2Pn
t=1 q

2
nt�1 = op (1)

since the �rst term is O(n�1 ('2n � 1)
�1) and the second term is Op

�
n�2�22n

�
by (A.49) and (A.48).

Since ��2n
Pn

t=1 z
2
2t = Op (1) we conclude that R3n = op (1), completing the proof of part (i).

For part (ii), the martingale approximation of Lemma 2 of MP(2024) implies that

[Yn; Xn]
0 = C (1)

Pn
j=1 bnjen;j + op (1) ; bnj =

h�
'22n � 1

�1=2
'
�(n�j)�1
2n ;

�
�2n � 1

�1=2
��jn

i0
(A.50)

We apply a standard martingale central limit theorem, e.g. Corollary 3.1 of HH(1980), to the

martingale array in (A.50): the conditional variance matrix Vn =
Pn

j=1 bnjb
0
njEFn;j�1

�
e2n;j
�
has

elements: V (n)
11 = C (1)2 �2n ('

2
2n � 1)

Pn
j=1 '

�2j
2n ! !2; V (n)

22 = C (1)2 �2n (�
2
n � 1)

Pn
j=1 �

�2j
n !

!2; V (n)
12 = �C (1)2 �2n (�2n � 1)

1=2
('22n � 1)

1=2 �
'�n2n � ��nn

�
= ('2n � �n). When n j�n � '2nj ! 1,

V
(n)
12 = O

�
'�n2n

�
+ O (��nn ); when j�n � '2nj = O (n�1),

�
'�n2n � ��nn

�
= ('2n � �n) = �n��n�1n for

some �n in a n
�1-neighbourhood of �n and of '2n, so V

(n)
12 = O (n (�2n � 1) ��nn ) = o (1) by Lemma

A1 of MP(2024). We conclude that Vn ! !2I2 as required for the covariance matrix of a random

vector [Y;X]0 consisting of independent N (0; !2) variates. For the Lindeberg condition associated

with (A.50), the bound maxj�n kbnjk2 � 2�2n (under C+(iii), �2n = ('22n � 1) _ (�2n � 1)) yieldsPn
j=1 kbnjk

2 E
�
e2n;j1

�
kbnjk2 e2n;j > �

	�
� max

1�j�n
E
�
e2n;j1

�
e2n;j > �

�1
2n �=2

	�Pn
j=1 kbnjk

2 ! 0

by uniform integrability of
�
e2n;j
�
j2N, since �

�1
2n !1 when �n ! 1 and

Pn
t=1 kbntk

2 = O (1).

For part (iii), �n ! � > 1 and (A.1) implies that Xn = (�2 � 1) (Un +Xn;0) + op (1). Let

(kn)n2N be a sequence satisfying

kn !1 and kn
�
'22n � 1

�1=4 ! 0 (A.51)

(A.51) implies that (n� kn) ('
2
2n � 1) ! 1. Let Y 0

n = ('22n � 1)
1=2
C (1)

Pn
t=kn+1

'
�(n�t+1)
2n en;t,

U 0n =
Pkn�1

t=1 ��jun;j and X 0
n = (�2 � 1) (U 0n +Xn;0). It is easy to see that kYn � Y 0

nkL2 =
O
�
'
�(n�kn)
2n

�
= o (1), kUn � U 0nkL2 = O

�
��kn

�
and jXn �X 0

nj = op (1). By Assumption 6,

(Xn;0; Un) converges in distribution, so (Xn) and (X 0
n) converge in distribution to the same

limit denoted by X1. By Lemma 3(ii) of MP(2024), a limit in distribution of any subse-

quence of (Xn) is non-zero a:s:, so P (X1 = 0) = 0. Since P (jX1j � x) for all x � 0, 0 is

a continuity point of P (jX1j � �)); for any non-negative sequence (�n)n2N such that �n ! 0,

P (Yn=Xn 6= 1 fjX 0
nj > �ngYn=Xn) � P (jX 0

nj � �n)! P (jX1j � 0) = 0, so we may write
Yn=Xn = Y 0

n=X
0
n1 fjX 0

nj > �ng+ op (1) =
Pn�kn

t=1 �n;t + op (1) (A.52)

where �n;t = C (1) (1=X 0
n)1 fjX 0

nj > �ng�nten;t+kn, �nt = ('22n � 1)
1=2
'
�(n�kn�t+1)
2n : Since X 0

n is

Fn;kn�1-measurable,
��
�n;t;Fn;t+kn

�
: 1 � t � n� kn

	
is a martingale di¤erence array. We will
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show that quadratic variation of the martingale array in (A.52) satis�esPn�kn
t=1 �2n;t = !2 (X 0

n)
�2
1 fjX 0

nj > �ng+ op (1)!d !
2=X2

1: (A.53)

The proof of (A.53) follows by applying the law of large numbers of Lemma 1 of Arvanitis and

Magdalinos (2019) (with a trivial adjustment to account for the extra o (1) term ~ n in (14)) toPn�kn
t=1 �2nt

�
e2n;t+kn � Ee

2
n;1

�
: since

�
e2n;t+kn � Ee

2
n;1

�
t�1 is a L1-mixingale array, supn�1

Pn�kn
t=1 �2nt �

1 and
Pn�kn

t=1 �4nt = O ('22n � 1) = o (1), Lemma 1 of Arvanitis and Magdalinos (2019) im-

plies that
Pn�kn

t=1 �2nt
�
e2n;t+kn � Ee

2
n;1

�
!L1 0, showing (A.53) since

Pn�kn
t=1 �2nt ! 1; Ee2n;1 ! �2e

and !2 = C (1)2 �2e. Since convergence in (A.53) only applies in distribution, we employ the

extended martingale CLT Theorem 3.4 of HH(1980). For the Lindeberg condition, for arbi-

trary � > 0 denote Ln (�) :=
Pn�kn

t=0 E
�
�2n;t1

�
�2n;t > �

	�
, �n;� := C (1)�2 ('22n � 1)

�1
�2 and

�n (x) = max1�t�n E
�
e2n;t1

�
e2n;t > x

	�
. Then

Ln (�) � C (1)2 ��2n max
1�t�n

E
�
e2n;t1

�
e2n;t > �n;��

2
n

	�
� C (1)2 ��2n �n

�
�1=2n;�

�
by choosing �2n � ��1=2n;� ; since �n;� ! 1 for all � > 0, �n(�

1=2
n;� ) ! 0 by UI of

�
e2n;t
�
, and we may

choose �2n = max
n
��1=2n;� ; �

1=2
n (�1=2n;� )

o
which implies that Ln (�) ! 0 for all � > 0, proving the

LC for (A.52). We now verify the assumptions of Theorem 3.4 of HH(1980) for the martingale

array in (A.52). The inequality E
�
max1�t�n�kn �

2
n;t

�
� �2 + Ln (�) for all � > 0, shows that the

unconditional LC Ln (�)! 0 for all � > 0 implies the negligibility conditionsmax1�t�n�kn
���n;t��!p

0 and supn�1 E
�
max1�t�n�kn

���n;t���2 < 1. Letting Gn := Fn;kn�1, Gn � Fn;t+kn for all t � 1;

recalling that �n;t in (A.52) is Fn;t+kn-adapted, the �rst part of (A.53) and Gn-measurability of
X 0
n implies condition (3.28) of HH(1980); since Gn;t+kn := � (Fn;t+kn [ Gn) = Fn;t+kn for all t � 1,

EGn;t+kn�1
�
�n;t
�
= 0 so condition (3.29) of HH(1980) holds trivially. Finally, the second part of

(A.53) and Theorem 3.4 of HH(1980) allow us to conclude that
Pn�kn

t=0 �n;t !d MN (0; !2=X1),

completing the proof of the statement for Yn=Xn. The statement for Y "
n =Xn follows by an identical

argument by replacing C (1) en;t by "n;t.

Proof of Lemma 5. Denote �nt =
�
�1;nt; �2;nt; �3;nt; �4;nt

�0
with �1;nt = (n (1� '21n)

�1
)�1=2z1t�1en;t,

�2;nt = C (1)n�1=2en;t, �3;nt = C (1) ('22n � 1)
1=2
'
�(bnsc�t)�1
2n en;t and �4;nt = C (1) ('22n � 1)

1=2
'�t2nen;t.

The martingale approximation of Lemma 2 of MP(2024) for Yn (s) and Zn (s) and a standard ap-

proximation for Bn (s) give

[Un (s) ; Bn (s) ; Yn (s) ; Zn (s)]
0 =
Pbnsc

t=1 �nt + op (1) : (A.54)

Since z1t�1 is Fn;t�1-measurable, �nt is a Fn;t-martingale di¤erence array and we may apply a
Lindeberg-type functional CLT for vector-valued martingale di¤erence arrays to (A.54): see The-

orem 3.33 (pp. 478) of Jacod and Shiryaev (2003). The conditional Lindeberg condition (LC) on

k�ntk
2 (3.31 in Jacod and Shiryaev (2003)) is implied by the stronger unconditional LC on k�ntk

2

which, in turn, is implied by establishing the LC on each of �21;nt; :::; �
2
4;nt. The LC for �

2
1;nt under
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Assumption 6(i) is established by Proposition A1 and Lemma 3.3 of MP(2020); under Assumption

6(ii), z1t is the restriction of ~z0t when �n = 1 so the LC follows from the LC in the proof of part

(iii) of Lemma 3. The LC for �2j;nt j 2 f2; 3; 4g follows from the boundPbnsc
t=1 E

�
�2j;nt1

�
�2j;nt > �

	�
� C (1)2 max

1�t�n
E
�
e2n;t1

�
e2n;t > �n (�)

2	� ; � > 0 (A.55)

where �n (�) = n1=2�1=2C (1)�1 when j = 2 and �n (�) = C (1)�1 ('22n � 1)
�1=2

�1=2 when j 2
f3; 4g. Since �n (�) ! 1 for any � > 0 the LC for (A.54) follows by uniform integrabil-

ity of
�
e2n;t
�
t2N : Denote ~�

2
n;t := EFn;t�1

�
e2n;t
�
. The conditional variance matrix of the array in

(A.54) is given by V (n) :=
Pbnsc

t=1 EFn;t�1 (�nt�
0
nt) with typical elements denoted by [V

(n)
ij ]

4
i;j=1:

V
(n)
11 = n�1 (1� '21n)

Pbnsc
t=1 z

2
1t�1~�

2
n;t !p �

2
e!

2s, by the LLN (A.40) since z1t is the restriction of ~z0t

when �n = 1; V
(n)
22 = n�1C (1)2

Pbnsc
t=1 ~�

2
n;t ! !2s trivially under Ass. 6(i) and by the mixingale

property (14) under Ass. 6(ii);
h
V
(n)
33 ; V

(n)
44

i
= C (1)2 ('22n � 1)

Pbnsc
t=1

h
'
�2(bnsc�t)�1
2n ; '�2t2n

i
~�2n;t !

!2 [1; 1] for all s > 0, trivially under Ass. 6(i) and using the mixingale LLN of Lemma 1 of

Arvanitis and Magdalinos (2019) with yt = ~�2n;t � E
�
e2n;t
�
under Ass. 6(ii);

h
V
(n)
23 ; V

(n)
24

i
=

C (1)2 n�1=2 ('22n � 1)
1=2Pbnsc

t=1

h
'
�(bnsc�t)�1
2n ; '�t2n

i
~�2n;t satisfy

V (n)
2j


L1
� O(n�1=2 ('22n � 1)

�1=2
)

for j 2 f3; 4g; by Lemma A1 of MP(2024), V (n)
34 = C (1)2 ('22n � 1)'

�bnsc�1
2n

Pbnsc
t=1 ~�

2
n;t satis�esV (n)

34


L1
= C (1)2 E

�
e2n;0
� �
'22n � 1

�
bnsc'�bnsc2n ! 0:h

V
(n)
13 ; V

(n)
14

i
= C (1)2 ('22n � 1)

1=2
(1� '21n)

1=2
n�1=2

Pbnsc
t=1

h
'
�(bnsc�t+1)
2n ; '�t2n

i
z1t�1~�

2
n;t satis�esV (n)

1j


L1
� C (1)2max

t�n

EFn;t�1 �e2n;t�L2 �1� '21n
�1=2

z1t


L2
n�1=2

�
'22n � 1

��1=2
= o (1)

for j 2 f3; 4g; �nally, V (n)
12 = C (1)2 n�1 (1� '21n)

1=2Pbnsc
t=1 z1t�1~�

2
n;t. Under Ass 6(i), V (n)

12 =

op (1), since
Pbnsc

t=1 z1t�1 = Op(n
1=2 (1� '21n)

�1
). Under Ass 6(ii), write rnt = z1t � z1t�ln =Pt

j=t�ln+1 '
t�j
1n un;j �

�
'ln1n � 1

�Pt�ln
j=1 '

t�ln�j
1n un;j for some sequence (ln) satisfying ln ! 1 and

ln (1� '21n)
1=2 ! 0, and note that

(1� '21n)
1=2
rnt


L2
� B

�
(1� '21n)

1=2
ln +

��'ln1n � 1��� = o (1).

Denoting ~V (n)
12 as V (n)

12 with z1t�1 replaced by z1t�ln�1, the above bound for rnt and the CS inequality

imply that
 ~V (n)

12 � V
(n)
12


L1
! 0. Now

~V
(n)
12 = C (1)2 n�1

�
1� '21n

�1=2Pbnsc
t=1 z1t�ln�1

�
EFn;t�ln�1

�
e2n;t
�
� Ee2n;t

�
+Op

�
n�1=2

�
1� '21n

��1=2�
which is op (1) by applying the mixingale law of large numbers used in (A.40), showing V

(n)
12 =

op (1). We conclude that V (n) !p diag (�
2
e!

2s; !2s; !2; !2) for s 2 [0; 1], and applying Theorem
3.33 of Jacod and Shiryaev (2003) to (A.54),

Pbnsc
t=1 �nt ) � (s) where � (s) is a continuous Gaussian

martingale with quadratic variation h�is = diag (�2e!
2s; !2s; !2; !2). By Levy�s characterisation

(e.g. Theorem 4.4 II of Jacod and Shiryaev (2003), � (s) is characterised by its quadratic variation

process, � (s) =d [U (s) ; B (s) ; Y; Z]
0 with the right side de�ned in the statement of the lemma

and independence between the components of � (s) implied by the diagonality of the quadratic

variation matrix h�is.
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Proof of Lemma 6. Applying x+n;t = (�1)
�t xn;t to �̂n yields the identity �̂n = ��̂+n and

F�n = f�n (�̂n + 1) � 0g \ f�̂n < 0g =
�
n
�
�̂+n � 1

�
� 0
	
\
�
�̂+n > 0

	
= F++n

and �F�n =
�
n
�
�̂+n � 1

�
> 0
	
\
�
�̂+n > 0

	
= �F++n . For the OLS residuals, �̂n = ��̂+n yields

(�1)�t ûn;t = (�1)�t xn;t + �̂n (�1)
�(t�1) xn;t�1 = x+n;t � �̂+nx

+
n;t�1 = û+n;t

which implies that (�1)t ~z�2t =
Pt

j=1

��'�2n��t�j û+n;j = ~z+2t. Hence, the denominator and numer-

ator of ~��2n � �n can be written as:
Pn

t=1 xn;t�1~z
�
2t�1 =

Pn
t=1 x

+
n;t�1~z

+
2t�1 and

Pn
t=1 ~z

�
2t�1un;t =

�
Pn

t=1 ~z
+
2t�1 (�1)

�t un;t; ~�
�
2n � �n = �

�
~�+2n � j�nj

�
now follows from (A.10). The same argument

shows that ~�
�
2n�� = �

�
~�
+

2n � �
�
. By (A.10), the instrument ~z�1t =

Pt
j=1

�
'�1n
�t�jrxn;j in (A.2)

can be written as

(�1)�t ~z�1t =
Pt

j=1

��'�1n��t�j �x+n;j � x+n;j�1
�
�2
�
1� '�1n

��1
(�xn;n � �) (�1)�t (1�

�
'�1n
�t
) =: ~z+1t�2gn

where, since
�
1� '�1n

��1 ! 1=2, jgnj � j�xn;n � �j = Op
�
n�1=2

�
because (1) implies that �xn;n�� =

�n (�xn;n�1 � �) + �un;n or

�xn;n � � = (1� �n)
�1 (�un;n � �nxn;n=n) = Op

�
n�1=2

�
under C�(i)-C�(ii) since (1� �n)

�1 2 [1=2; 1]. Since gn
Pn

t=1 un;t = Op (1) and gn
Pn

t=1 x
+
n;t�1 =

Op (�n), ��1n
Pn

t=1 ~z
�
1t�1un;t = ���1n

Pn
t=1 ~z

+
1t�1 (�1)

�t un;t + Op (�
�1
n ) and �

�2
n

Pn
t=1 xn;t�1~z

�
1t�1 =

��2n
Pn

t=1 x
+
n;t�1~z

+
1t�1 + Op (�

�2
n �n), which implies that �n

�
~��1n � �n

�
= ��n

�
~�+1n � j�nj

�
+ op (1)

under C�(i)-C�(ii). The proof of �n
�
~�
�
1n � �

�
= ��n

�
~�
+

1n � �
�
+ op (1) follows similarly.

Proof of Theorem 1. It will be convenient to de�ne

[Nn; Nn;"] =
�Pn

t=1 ~z
2
n;t�1

��1=2 �
��1

Pn
t=1 ~zn;t�1un;t; �

�1
"

Pn
t=1 ~zn;t�1"n;t

�
(A.56)

and to denote by [Njn; Njn;"] the expression in (A.56) with ~zn;t�1 replaced by ~zjt�1 and by�
N�
jn; N

�
jn;"

�
the expression in (A.56) with ~zn;t�1 replaced by ~z�jt�1 for j 2 f1; 2g.

Under C+(i)-C+(ii), (A.28) and (A.36) give �z1n = Op
�
n�1�1n

�
n1=2 + ��1n �1n

��
. Since

n1=2
�
1� �2n'

2
1n

��1=2
(~�1n � �n) =

n�1=2 (1� �2n'
2
1n)

1=2
(
Pn

t=1 ~z1t�1un;t � n�z1n�1�un)

n�1 (1� �2n'
2
1n)
Pn

t=1 xn;t�1~z1t�1

with 1��2n'21n � ��11n , �un = Op
�
n�1=2

�
and the above order for �z1n imply that n�1=2�

�1=2
1n n�z1n�1�un is

of order Op(n�1=2�
1=2
1n )+Op(n

�1�1n�
�1=2
n ) = op (1); similarly for ~�1n, n

�1=2�
�1=2
1n n�z1n�1�"n = op (1) :

By Lemma 3(ii), the common denominator of �n (~�1n � �n) and �n(~�1n � �) is asymptotically

equivalent to ~	n in (A.6) we obtain, under C+(i)-C+(ii),

n1=2
�
1� �2n'

2
1n

��1=2 h
~�1n � �n; ~�1n � �

i
= [1 + op (1)] ~	

�1
n

h
~Un (1) ; ~U

"
n (1)

i
(A.57)

where ~Un (�) is de�ned as Un (�) in Lemma 5 with z1t�1 replaced by ~z1t�1 (and en;t = un;t under

Assumption 5) and ~U "n (�) as ~Un (�) with en;t replaced by "n;t.
Under C+(i) and Assumption 5, un;t = en;t and � = 0 so ~	 (c) = �2 and ~Un (1)!d N (0; v (�)),

where, by Lemma 3(iii), v (�) = �4 when �n ! 1 or when EFn;t�1
�
u2n;t
�
= �2; under Assumption
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5(ii), v (�) = (1� �2) v1 (�) when �n ! � 2 (�1; 1). Substituting into (A.57) yields
n1=2

�
1� �2n'

2
1n

��1=2
(~�1n � �n)!d N

�
0; v (�) =�4

�
(A.58)

with the asymptotic variance in (A.58) being equal to 1 when �n ! 1 or when EFn;t�1
�
u2n;t
�
= �2,

in which case also N1n !d N (0; 1) by Lemma 2(i) and parts (ii) and (iii) of Lemma 3. For ~�n
under C+(i) and Assumption 6, ~	 (c) = �2 + 2�� by Lemma 3(i) and ~U "n (1) !d N (0; v" (�))

where, by Lemma 3(iii) with en;t replaced by "n;t, v" (�) = (�2 + 2��)�2" when �n ! 1 or when

EFn;t�1
�
"2n;t
�
= �2", in which case also N1n;" !d N (0; 1) for the same reason as N1n; under

Assumption 6(ii), v" (�) = (1� �2) v2 (�) when �n ! � 2 (�1; 1). We conclude that
n1=2

�
1� �2n'

2
1n

��1=2 �~�1n � �
�
!d N

�
0; v" (�) =

�
�2 + 2��

��
: (A.59)

We now prove part (a) of the theorem for ~�n under C(i): by Lemma 2(i),

[�n (~�n � �n) ; Nn] =
�
�n (~�1n � �n)1F+n + �n

�
~��1n � �n

�
1F�n ; N1n1F+n +N�

1n1F�n
�
+ op (1) (A.60)

under Assumption 6. When �n ! 1, Lemma 2(iii) implies that �n (~�n � �n) = �n (~�1n � �n) +

op (1)!d N (0; v (�) =�4) by (A.58) and Nn = N1n + op (1)!d N (0; 1) : When �n ! �1, Lemma
2(iv) and Lemma 6 imply that

�n (~�n � �n) = �n
�
~��1n � �n

�
1F�n +op (1) = ��n

�
~�+1n � j�nj

�
1F++n

+op (1) = ��n
�
~�+1n � j�nj

�
+op (1)

since �̂+n !p j�nj = 1 implies that 1F++n
!p 1. From its de�nition in Lemma 6, ~�+1n is an IV

estimator generated by the (regular) C+(i) autoregression (A.10) and the regular near-stationary

instrument ~z+1t of Lemma 6; hence, (A.58) implies that �n
�
~�+1n � �n

�
!d N (0; 1), showing that

�n (~�n � �n)!d N (0; 1) when �n ! �1. Similarly, Nn = N�
1n1F�n + op (1) = �N+

1n1F++n
+ op (1)

N+
1n = �1F++n

�Pn
t=1 ~z

+2
1;t�1

��1=2
��1

Pn
t=1 ~z

+
1t�1 (�1)

�t un;t + op (1)!d N (0; 1) ; (A.61)

showing thatNn !d N (0; 1) when �n ! �1. To complete the proof of part (a) for ~�n, it remains to
deal with the stationary case �n ! � 2 (�1; 1), where under Assumption 5, �n � n1=2 (1� �2n)

�1=2,

1F+n !p 1f��0g and 1F�n = 1F++n
!p 1f�<0g by Lemma 2 and the consistency of �̂n; (A.60) and

Lemma 6 then yield

�n (~�n � �n) = �n (~�1n � �n)1f��0g � �n
�
~�+1n � j�nj

�
1f�<0g + op (1)!d N

�
0; v (�) =�4

�
by (A.58) and Nn = N1n1f��0g�N+

1n1f�<0g !d N (0; 1) by (A.61) when �2n;t = �2n. This completes

the proof of part (a) for ~�n. The proof of part (a) for ~�n follows a similar argument by replac-

ing
�
~�n; ~�1n; ~�

�
1n; ~�

+
1n

�
by (~�n; ~�1n; ~�

�
1n;
~�
+

1n) and
�
Nn; N1n; N

�
1n; N

+
1n

�
with

�
Nn;"; N1n;"; N

�
1n;"; N

+
1n;"

�
:

Lemma 2 shows that when �n ! � 2 (�1; 1), �̂n !p b (�) := � + (1� �2) �= (�2 + 2��) under

Assumption 6, which implies that 1F+n !p 1fb(�)�0g and 1F�n = 1F++n
!p 1fb(�)<0g. Hence,

�n(~�n � �) = �n(~�1n � �)1fb(�)�0g � �n(~�
+

1n � �)1fb(�)<0g + op (1)!d N
�
0; v" (�) =

�
�2 + 2��

��
since both �n(~�1n � �) and �n(~�

+

1n � �) have the same limit distribution given in (A.59) and

Nn;" = N1n;"1fb(�)�0g �N+
1n;"1fb(�)<0g !d N (0; 1) when EFn;t�1

�
"2n;t
�
= E ("2n). This completes the

proof of part (a) of the theorem.
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Under C+(ii)-C+(iii), byMP(2024),
Pn

t=1 z2t = Op

�
('2n � 1)

�3=2 'n2n

�
and �̂n��n = Op (�

�1
n ��nn ),

so summing (A.48), we obtainPn
t=1 ~z2t =

Pn
t=1 z2t +Op

�
n�1=2 ('2n � 1)

�2 'n2n
�
= Op

�
('2n � 1)

�3=2 'n2n

�
: (A.62)

We conclude that ('22n � 1)'�n2n (n�z2n�1�un) = Op

�
n�1=2 ('2n � 1)

�1=2
�
= op (1). For ~�2n, the same

order applies to ('22n � 1)'�n2n (n�z2n�1�"n) = op (1). The above and (A.9) imply that the numerators

of �n (~�2n � �n) and �n(~�2n � �) are asymptotically equivalent to�
'22n � 1

�
'�n2n [

Pn
t=1 ~z2t�1un;t;

Pn
t=1 ~z2t�1"n;t] = [YnZn; Y

"
nZn] + op (1) : (A.63)

Since �xn�1 = Op

�
n�1�

3=2
n �nn

�
by MP(2024), (A.62) implies that

ns�1n �xn�1�z2n�1 = [1 + op (1)]
�n
n
��1n;z (�n'2n � 1)

Pn
t=1 z2t�1

��1n
�n

Pn
j=1 xn;j�1 (A.64)

which is op (1) under C+(iii): Op (�n=n) if (�n � 1) = ('2n � 1) ! 0 and Op(('2n � 1)
�1 =n) if

('2n � 1) = (�n � 1) = O (1). Under C+(ii), (A.64) becomes Znn�3=2
Pn

j=1 xn;j�1+op (1) by (A.62),

showing that (A.64) contributes asymptotically under C+(ii). Combining the above with the

approximation of s�1n
Pn

t=1 xn;t�1z2t�1 in Lemma 4(i), we obtain that the common denominator of

�n (~�2n � �n) and �n
�
~�2n � �

�
satis�es

s�1n
Pn

t=1 xn;t�1z2t�1 = ZnXn + op (1) ; Xn := Xn � n�3=2
Pn

j=1 xn;j�1 (A.65)

under C+(ii)-C+(iii) and Assumption 6, where Zn is de�ned in (A.7) and Xn = xn;n=�n. Recalling

the de�nition of sn and noting that �n'2n � 1 � '2n � 1 under C+(ii), the normalisation under
C+(ii)-C+(iii) becomes sn=(('22n � 1)

�1
'n2n) = �n in (26). Combining (A.65), (A.63) and (A.9),

�n

h
~�2n � �n;

~�2n � �
i
=

1

Xn

[Yn; Y
"
n ] + op (1) ; [N2n; N2n;"] =

Zn
jZnj

�
Yn
�
;
Y "
n

�"

�
+ op (1) (A.66)

under C+(ii)-C+(iii) and Assumption 6. We now prove part (c): under C+(iii), Xn = Xn + op (1)

and applying parts (ii) and (iii) of Lemma 4 and the continuous mapping theorem to (A.66),

�n

h
~�2n � �n;

~�2n � �
i
!d [Y=X; Y

"=X] and N2n; N2n;" !d N (0; 1) (A.67)

where X 6= 0 a:s: (by Lemma 3(ii) of MP(2024) when � > 1), X =d N (0; !2) when �n ! 1, X is

independent of (Y; Y ") and Y =d N (0; �2), Y " =d N (0; �2"). To justify the second part of (A.67),

Lemma 4(i) implies that (Zn= jZnj)��1Yn !d sign (Z)�
�1Y =d N (0; 1) because

P
�
sign (Z)��1Y � x

�
= P

�
��1Y � x

�
P (Z > 0) + P

�
���1Y � x

�
P (Z < 0)

= � (x) [P (Z > 0) + P (Z < 0)] = � (x) (A.68)

since Z is independent of Y and ��1Y =d N (0; 1) by Lemma 4 and P (Z = 0) = 0 by Gaussianity.
Under Assumption 5, !2 = �2, so Y=X =d MN (0; �2=X2); under Assumption 6, Y "=X =d

MN (0; �2"=X
2) with X 6= 0 a:s: by Gaussianity when �n ! 1 and by Lemma 3(ii) of MP(2024)

when �n ! � > 1. Thus, (A.67) gives the correct limit distributions for C+(iii), the theorem under

C+(iii) follows from the asymptotic equivalences �n (~�n � ~�2n) = op (1), �n(~�n� ~�2n) = op (1) and

[Nn; Nn;"] = [N2n; N2n;"]+op (1) by applying parts (ii) and (iii) of Lemma 2 to (9) and (10). Under
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C�(iii), parts (ii) and (iv) of Lemma 2 imply that �n (~�n � �n) = �n
�
~��2n � �n

�
1 �F�n + op (1),

�n(~�n � �) = �n(~�
�
2n � �)1 �F�n + op (1) and [Nn; Nn;"] =

�
N�
2n; N

�
2n;"

�
1 �F�n + op (1); by Lemma 6,

�n

h
~��2n � �n;

~�
�
2n � �

i
1 �F�n = ��n

h
~�+2n � j�nj ; ~�

+

2n � �
i
1 �F++n

= ��n
h
~�+2n � j�nj ; ~�

+

2n � �
i
+ op (1)

since 1 �F++n
!p 1 by Lemma 2 and

�
N�
2n; N

�
2n;"

�
1 �F�n = �sign (Z+n ) [Y +

n =�; Y
"+
n =�"]1 �F++n

+ op (1),

where [Y +
n ; Y

"+
n ; Z+n ] are de�ned as [Yn; Y

"
n ; Zn] in (A.7) with '2n, un;t and "n;t replaced by

��'�2n��,
(�1)�tun;t and (�1)�t "n;t. Since ~�+2n is generated by the regular C+(iii) autoregression (A.10) and
the regular mildly explosive instrument ~z+2t, (A.67) implies that �n (~�n � �n) !d �Y=X =d Y=X

and �n
�
~�n � �

�
!d �Y "=X =d Y

"=X by the symmetry ofMN (0; �2=X2) andMN (0; �2"=X
2)

around 0. For Nn, Lemma 2(ii) implies that

Nn = N2n1 �F+n +N�
2n1 �F�n + op (1)!d sign (Z)Y=�1f��0g � sign

�
Z+
�
Y +=�1f�<0g =d N (0; 1)

since (Z+; Y +) =d (Z; Y ); similarly Nn;" !d N (0; 1) : This proves part (c) of the theorem.

We prove part (b) of the theorem under Assumption C+(ii). In the notation of (A.57) and

Lemma 5,
��� ~Un (1)� Un (1)

��� = op (1), because n�1=2 (1� '21n)
1=2Pn

t=1 qnt�1en;t = Op (n
�1) by the

approximation leading to (A.40) and n�1=2 (1� '21n)
1=2Pn

t=1 (~z0t�1 � z1t�1) en;t = op (1) under

C+(ii) by Lemma 3.2(i) of MP(2020). Using Lemma 2(iii) and combining (9), (A.57) and (A.66)

and recalling (26) and the above approximation for ~Un (1), we obtain

�n (~�n � �n) = n1=2
�
1� '21n

��1=2
(~�1n � �n)1F+n + 2n

1=2
�
'22n � 1

��1=2
(~�2n � �n)1 �F+n + op (1)

= 1FnUn (1) =~	n + 1 �FnYn (1) =Xn + op (1) ; (A.69)

where Un (�) and Yn (�) are de�ned in Lemma 5 (with un;t = en;t under Assumption 5) and the last

line follows since
��1F+n � 1Fn��!p 0 and

��1 �F+n � 1 �Fn��!p 0 by Lemma 2(iii). ~	n in (A.6), n�1=2xn;

1Fn and 1 �Fn are functionals of Bn (s) = n�1=2
Pbnsc

t=1 un;t, on D [0; 1], so the functional CLT of

Lemma 5 on [Un (s) ; Bn (s) ; Yn (s)] and the continuous mapping theorem imply that

1FnUn (1) =~	n + 1 �FnYn (1) =Xn !d 1FcU (1) =
�
!2	1 (c)

�
+ 1 �FcY= (!	2 (c)) (A.70)

since, by Lemma 3(i), ~	n !d
~	 (c) with �2 + 2�� = !2 under C+(ii), ~	 (c) = !2	1 (c) on

the event Fc and 2
�
Jc (1)�

R 1
0
Jc (r) dr

�
= 2!	2 (c) on the event �Fc. The continuous mapping

theorem is applicable to (A.70) because x = 0 is the only discontinuity point of the function

x 7! 1(�1;0] (x) and P (Kc + c = 0) = 0 since Kc in (27) is a continuously distributed random

variable for all c 2 R. Denoting � := [��2U (1) ; ��1Y ]0, Lemma 5 implies that � is independent of
FB = � (B (s) : s 2 [0; 1]) and � =d N (0; I2). Since the random variables Jc (1), 	(c), 1Fc and 1 �Fc
areFB-measurable (as non-stochastic functionals ofB (r) onD [0; 1]) the independence of � andFB
implies the independence of the random vectors � and

h
Jc (1) ; ~	 (c) ;1Fc ;1 �Fc

i0
. Under Assumption

5, !2 = �2 and we conclude that the limit in (A.70) is given by
�
	�11 (c)1Fc ;	

�1
2 (c)1 �Fc

�
� has a

MN (0; V1) distribution with V1 = 	�21 (c)1Fc +	
�2
2 (c)1 �Fc = 	

�2 (c) as required by the theorem

for �n (~�n � �n). For �n(~�n� �), de�ning U "n (s) and Y "
n (s) as Un (s) and Yn (s) with en;t replaced

19



by "n;t, the same argument applies with Un (s) and Yn replaced by U "n (s) and Y
"
n in (A.69):

�n

�
~�n � �

�
!d

�
!2	1 (c)

��1
U " (1)1Fc + (!	2 (c))

�1 Y "1 �Fc = (�"=!)V1
~� (A.71)

by Lemma 5, where ~� =d N (0; I2), establishing the limit distribution under C+(ii). Under C�(ii),

Lemma 2(iv) and Lemma 6 imply that

�n (~�n � �n) = �n
�
~��1n � �n

�
1F�n + �n

�
~��2n � �n

�
1 �F�n + op (1)

= �
�
�n
�
~�+1n � j�nj

�
1F++n

+ �n
�
~�+2n � j�nj

�
1 �F++n

�
+ op (1)

= ��n
�
~�+n � j�nj

�
+ op (1) (A.72)

where ~�+1n and ~�
+
2n are de�ned in Lemma 6, ~�

+
n := ~�

+
1n1F++n

+~�+2n1 �F++n
is a IV estimator generated by

the (regular) C+(ii) autoregression (A.10) and the regular instrument ~z+t := ~z
+
1t1F++n

+~z+2t1 �F++n
and

the last equality in (A.72) holds exactly since 1F++n
+ 1 �F++n

= 1. Under Assumption 6, an FCLT

on the innovation sequence of (A.10) continues to hold: B+
n (s) := n�1=2

Pbnsc
j=1 (�1)

j un;j ) B+ (s)

on D [0; 1] where B+ (�) is a BM with variance !2 (e.g. Theorem 3.33 of Jacod and Shiryaev

(2003)) and n (1� j�nj) = n (1 + �n) ! �c imply n�1=2x+bntc )
R t
0
ec(t�s)dB+ (s). Therefore,

Lemma 5 continues to apply to B+
n (t), U

+
n (s) and Y +

n (s), de�ned as their counterparts in

Lemma 5 with ('1n; '2n; z1t; en;t; un;t) replaced by
���'�1n�� ; ��'�2n�� ; z+1t; (�1)�t en;t; (�1)�t un;t�; hence

�n (~�
+
n � j�nj) !d MN (0; V1) by the C+(ii) case established above; hence, (A.72) and the sym-

metry of a centred mixed Gaussian distribution around 0 imply that �n (~�n � �n)!d MN (0; V1)

under C_(ii). The proof for ~�n under C�(ii) Assumption 6 follows from a similar argument,

completing the proof of part (i) of the theorem. We proceed by completing the proof of

Nn !d N (0; 1) and Nn;" !d N (0; 1) (A.73)

under Assumption 5 when j�j � 1 or �2n;t = �2n a:s: for Nn and under Assumption 6 when j�j � 1
or EFn;t�1

�
"2n;t
�
= E

�
"2n;t
�
for Nn;". Having established (A.73) under C(i) and C(iii), we need to

provide a proof under C(ii). Writing

Nn = N1n1F+n +N�
1n1F�n +N2n1 �F+n +N�

2n1 �F�n

= ��2Un (1)1F+n � ��2U+n (1)1F�n + sign (Zn) (Yn=�)1 �F+n � sign
�
Z+n
� �
Y +
n =�

�
1 �F�n + op (1)

where U+n (�) is de�ned in the same way as Un (�) in Lemma 5 with ('1n; z1t; un;t) replaced by���'�1n�� ; (�1)�t z1t; (�1)�t un;t�, Lemma 6 and Lemma 3(ii) yield
Nn !d N11Fc +N21 �Fc ;

whereN1 = ��2U (1)1f��0g���2U+ (1)1f�<0g andN2 = sign (Z) (Y=�)1f��0g�sign (Z+) (Y +=�)1f�<0g,

N1 and N2 are N (0; 1) under Assumption 5 by (A.68) and joint convergence in distribution fol-

lows by Lemma 5. By Lemma 5, (U (1) ;U+ (1)) and (Z; Y; Z+; Y +) are independent of the BM

fB (s) : s 2 [0; 1]g, which implies that (N1; N2) is independent of
�
Fc; �Fc

�
; hence

P (N11Fc +N21 �Fc � x) = P (N1 � x; Fc) + P
�
N2 � x; �Fc

�
= P (N1 � x)P (Fc) + P (N2 � x)P

�
�Fc
�

= �(x)
�
P (Fc) + P

�
�Fc
��
= �(x)
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completing the proof of (A.73) for Nn under Assumption 5; the proof for Nn;" in (A.73) under

Assumption 6 follows the same argument.

For part (ii), we �rst derive the limit distribution ofh
~Tn; �Tn

i
= (j	nj =	n) [(�=�̂n)Nn; (�"=�̂n;")Nn;"] ; 	n =

Pn
t=1 xn;t�1~zn;t�1: (A.74)

The consistency of �̂n, �̂n;" and (A.73) imply: (�=�̂n)Nn !d � =d N (0; 1) and (�"=�̂n;")Nn;" !d

�" =d N (0; 1). By part (i) of the theorem, we know that ��2n 	n !d 	 6= 0 a:s: and Lemma 5

implies that (	n; Nn; Nn;")!d (	; �; �") where 	 is independent of (�; �"); hence

limn!1 P�0n (Tn � x) = P�0 (sign (	) � � x) = P�0 (� � x;	 > 0) + P�0 (�� � x;	 < 0)

= P�0 (� � x)P�0 (	 > 0) + P�0 (�� � x)P�0 (	 < 0)

= � (x) [P�0 (	 > 0) + P�0 (	 < 0)] = � (x) :

We have shown that Tn !d N (0; 1) under Assumption 5 when �2n;t = �2 or j�nj ! j�j � 1 and,
the same argument shows that �Tn !d N (0; 1) under Assumption 6 when EFn;t�1

�
e2n;t
�
= �2e;n or

j�nj ! j�j � 1, completing the proof of part (ii) for Tn under P�0n and part (iii) for �Tn under P��0n.
Next, we establish the approximations

��2n
Pn

t=1 ~z
2
1t�1

�
û2n;t � u2n;t

�
= op (1) and ��2n

Pn
t=1 ~z

2
1t�1

�
"̂2n;t � "2n;t

�
= op (1) (A.75)

under Assumptions 5 and 6 respectively. We only need to consider cases C(i)-C(ii) as Lemma 2

implies that (A.75) holds trivially under C(iii). The identity ûn;t = un;t� �un� (�̂n � �n)xn;t�1 and

the inequality (x+ y)2 � 2 (x2 + y2) give

��2n
Pn

t=1 ~z
2
1t�1

�
û2n;t � u2n;t

�
� 2��2n

�
(�̂n � �n)

2Pn
t=1 ~z

2
1t�1x

2
n;t�1 + j�unj

��Pn
t=1 ~z

2
1t�1un;t

���
+2��2n

�
j�̂n � �nj

��Pn
t=1 ~z

2
1t�1un;txn;t�1

��+ �u2nPn
t=1 ~z

2
1t�1
�
(A.76)

Since j�unj = Op
�
n�1=2

�
, the last term of (A.76) is Op (n�1). The same is true for the second

term, since ��2n
��Pn

t=1 ~z
2
1t�1un;t

�� � ���2n Pn
j=1 ~z

2
1j�1

�1=2 �
��2n

Pn
t=1 ~z

2
1t�1u

2
n;t

�1=2
= Op (1) by (A.40)

and (A.42). The inequality
��Pn

t=1 ~z
2
1t�1un;txn;t�1

�� � �Pn
t=1 ~z

2
1t�1u

2
n;t

�1=2 �Pn
t=1 ~z

2
1t�1x

2
n;t�1

�1=2
on

the third term of (A.76) implies that (A.76) is op (1) if ��2n (�̂n � �n)
2Pn

t=1 ~z
2
1t�1x

2
n;t�1 = op (1)

i.e. if n�2��11n�
�1
n

Pn
t=1 ~z

2
1t�1x

2
n;t�1 = op (1). By (A.1), it is easy to see that proving rn :=

n�2��11n�
�1
n

Pn
t=1 ~z

2
1t�1x

2
0t�1 = op (1) is su¢ cient. Under Assumption 5(i) and C(i), Proposition

A1(ii) of MP(2020) implies that the LC Ln (�) :=
Pn

t=1 E
�
�2n;t1

�
�2n;t > �

	�
! 0 for any � > 0 is

satis�ed by �n;t := n�1=2�
�1=2
n x0t; since Ln (�) ! 0 for any � > 0 implies that max1�t�n

���n;t�� =
op (1) (see (3.4) and (3.5) in HH(1980)), we conclude that n�1=2�

�1=2
n max1�t�n jx0tj = op (1), giv-

ing rn �
�
n�1=2�

�1=2
n max1�t�n jx0tj

�2
n�1��11n

Pn
t=1 ~z

2
1t�1 = op (1). Under Assumption 5(i) and

C(ii), n�1=2max1�t�n jx0tj !d supr2[0;1] jJc (r)j by the FCLT and the continuous mapping theo-
rem, which implies that rn � max1�t�n x20tn�3��11n

Pn
t=1 ~z

2
1t�1 = Op (n

�1). Under Assumption 5(ii),

krnkL1 � n�1max1�t�n

��1=21n ~z1t

2
L4

��1=2n x0t

2
L4
= O (n�1). This proves the �rst part of (A.75)
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under Assumption 5; the second part under Assumption 6 follows similarly.

Next, we show
��Tn � TEWn

�� = oP�n (1) under Assumption 5 in all cases apart from �n ! � 2
(�1; 1) and �2n;t 6= �2. (A.75) and consistency of �̂2n imply that under C+(i)-C+(ii),

��2n
Pn

t=1 ~z
2
n;t�1

�
û2n;t1Fn + �̂2n1 �Fn

�
= 1Fn�

�2
n

Pn
t=1 ~z

2
1t�1u

2
n;t+1 �Fn�

2��2n
Pn

t=1 ~z
2
2t�1+op (1) : (A.77)

By (A.28), ��2n
Pn

t=1

�
~z21t�1 � ~z20t�1

�
u2n;t � An+2B

1=2
n A

1=2
n where An = ��2n

Pn
t=1 q

2
nt�1u

2
n;t = op (1)

and Bn = ��2n
Pn

t=1 ~z
2
0t�1u

2
n;t = Op (1) by (A.42) and kAnkL1 = O (n�1��2n �1n�1n) = o (1) by

(A.33). By (A.42) and (A.40) (en;t = un;t under Assumption 5), ��2n
Pn

t=1 ~z
2
0t�1

�
u2n;t � �2n;t

�
=

op (1) and ��2n
Pn

t=1 ~z
2
0t�1�

2
n;t = �2��2n

Pn
t=1 ~z

2
0t�1 + op (1); since �

�2
n

Pn
t=1 ~z

2
1t�1 = ��2n

Pn
t=1 ~z

2
0t�1 +

op (1) by Lemma 3(ii), the right side of (A.77) becomes

�2��2n
Pn

t=1

�
~z21t�11Fn + ~z

2
2t�11 �Fn

�
+ op (1) = �2��2n

Pn
t=1 ~z

2
n;t�1 + op (1) (A.78)

proving TEWn = Tn + op (1) under C+(i)-C+(ii). Under C�(i)-C�(ii), (A.77) holds with ~z1t�1

replaced by ~z�1t�1 and ~z2t�1 replaced by ~z
�
2t�1; since

�
~z�1t�1

�2
=
�
~z+1t�1

�2
and

�
~z�2t�1

�2
=
�
~z+2t�1

�2
,

TEWn = Tn + op (1) follows by (A.78). This completes the proof of
��Tn � TEWn

�� = oP�n (1) under

Assumption 5(i) or Assumption 5(ii) with j�j � 1. The above argument with
�
û2n;t; u

2
n;t

�
replaced

by
�
"̂2n;t; "

2
n;t

�
shows that

�� �Tn � �TEWn
�� = oP��n (1) under Assumption 6(i) or Assumption 6(ii) with

j�j � 1. To complete the proof of part (ii) for TEWn under P�n and of part (iii) for �TEWn under

P��n, it is enough to show that TEWn !d N (0; 1) and �TEWn !d N (0; 1) under Assumptions 5(ii)

and 6(ii) respectively when � 2 (�1; 1). By Lemma 2, �TEWn is asymptotically equivalent to its

restriction when ~zn;t�1 = ~z1t�1, so (A.75) and Lemma 3 imply that
�TEWn = sign

�
�2 + 2��

� �Pn
t=1 ~z

2
1;t�1"

2
n;t

��1=2 �Pn
t=1 ~z

2
1;t�1EFn;t�1"2n;t

�1=2
�n + op (1) (A.79)

where �n =
�Pn

t=1 ~z
2
1;t�1EFn;t�1"2n;t

��1=2Pn
t=1 ~z1t�1"n;t !d N (0; 1) under P��n from the proof of

Lemma 3(iii); since
�
n�1

Pn
t=1 ~z

2
1;t�1"

2
n;t

��1=2 �
n�1

Pn
t=1 ~z

2
1;t�1EFn;t�1"2n;t

�1=2 !p 1 by (A.42), (A.79)

implies that �TEWn !d N (0; 1) under P��n when � 2 (�1; 1) : The same argument works for TEWn
by replacing "2n;t by u

2
n;t and sign (�

2 + 2��) by sign (�2) = 1. This completes the proof of part

(ii) of the theorem and of part (iii) of the theorem for �Tn and �TEWn .

It remains to prove the remainder of part (iii) of the theorem for ��n, T
�
n and T

�EW
n . We prove

that �n
�
~�n � ��n

�
!p 0; since �

�
n =

~�n on the event �Fn[f�̂n < 0g, it is enough to provide a proof

under C+(i)-C+(ii): �n
�
~�1n � ��1n

�
!p 0 with �n � n1=2�

1=2
1n . From (10) and (22),

�n(~�1n � ��1n) = ��1n xn;n�z1n�1(�
�2
n

Pn
t=1 xn;t�1~z1t�1)

�1�̂"u�̂"=!̂u = ��1n xn;n�z1n�1Op (1) = op (1)

since �z1nxn;n = Op[n
�1�1n(�

1=2
1n �

1=2
n + �

�1=2
n �1n)] = Op(�1n) = op(�n). For T �n , by (23) and (17),

T �n � �Tn = ��1n [�
�1=2
n � �̂�1" (X 0P ~ZX)

1=2
]�n(~�n � �n) + ��1n �

�1=2
n �n(�

�
n � ~�n):

The �rst term on the right is op (1) because ��2n �n = ��2n n�z21;n�1 = Op (n
�1�1n) implies that

(�2n�n)
�1=2 =

�����2n X 0 ~Z
��� (��2n ~Z 0 ~Z���2n �n)

�1=2�̂�1" = �̂�1" (�
�2
n X 0P ~ZX)

1=2+ op (1); the second term

is op (1) because ��1n �
�1=2
n = Op (1) and �n(�

�
n� ~�n) = op (1). We conclude that T �n = �Tn + op (1).
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Finally, since ��2n �n !p 0,
�
�2nQ

�
n;"

��1=2
= (�2nQn;")

�1=2
+ op (1), giving

T �EWn =
�
�2nQn;"

��1=2
�n (�

�
n � �n) + op (1) = �TEWn +

�
�2nQn;"

��1=2
�n(~�n � ��n) + op (1)

and �n(~�n � ��n) = op (1) implies that T �EWn = �TEWn + op (1).

Proof of Theorems 2 and 3. By the de�nition of supremum, we know that there exists

a sequence (��n)n2N in �
hom such that sup�2�hom P� (Rn;�) = limn!1 P��n (Rn;�); P��n (Rn;�) =

P��n (jTnj > ��1 (1� �=2)) so, if we could show that limn!1 P��n (jTnj � x) = � (x) along the

sequence (��n) for which the supremum is attained, sup�2�hom P� (Rn;�) = � would follow. Proving

the stronger result limn!1 P�n (jTnj � x) = � (x) for any sequence (�n)n2N in �
hom is su¢ cient.

We employ the above proof strategy: showing that

limn!1 P�0n (jTnj � x) = � (x) and limn!1 P�n
���TEWn �� � x

�
= �(x) for all x 2 R (A.80)

for arbitrary sequences (�n)n2N � � and (�0n)n2N � �hom is su¢ cient to prove Theorem 2.

For brevity, we denote pn (�
0
n; x) := P�0n (jTnj � x), qn (�n; x) := P�n

���TEWn �� � x
�
, �pn

�
��
0
n; x
�
:=

P��0n
��� �Tn�� � x

�
, �qn
�
��n; x

�
:= P��n

��� �TEWn �� � x
�
, p�n

�
��
0
n; x
�
:= P��0n (jT

�
n j � x), q�n

�
��n; x

�
:= P��n (jT �n j � x).

Theorem 3 will follow by showing that

limn!1 �pn

�
��
0
n; x
�
= limn!1 p

�
n

�
��
0
n; x
�
= limn!1 �qn

�
��n; x

�
= limn!1 q

�
n

�
��n; x

�
= �(x) (A.81)

for all x 2 R for arbitrary sequences
�
��n
�
n2N � �� and

�
��
0
n

�
n2N

� ��hom. We show (A.80) and

(A.81) by verifying the following criterion for each of the sequences pn, qn, �pn, p�n, �qn, q
�
n.

(s) For any subsequence fqmn (�mn ; x) : n 2 Ng of fqn (�n; x) : n 2 Ng there exists a subsequence
fqkn (�kn ; x) : n 2 Ng of fqmn (�mn ; x) : n 2 Ng such that limn!1 qkn (�kn ; x) = � (x), x 2 R.

Let (�n)n2N � � = �� � �u � �X0 with �n =
�
�n; (Fn;t)t2Z ; Fn;X0

�
. If fP�n (un;t � x) : t 2 Zg

is an element of �u, Eu2n;t = �2n for all t and supn�1 �
2
n < 1. We start by extracting a subse-

quence along ��: since �n 2 �� = [�M;M ] for all n, BW implies the existence of a subsequence�
�mn

�
n2N of (�n)n2N such that �mn

! � 2 [�M;M ]; by Lemma 1(i), there exists a subsequence�
�sn
�
n2N of

�
�mn

�
n2N such that

�
�sn
�
n2N satis�es Assumption 7. We continue by extracting a sub-

sequence along �X0: supn�1 P�0n (jXn;0j > �) � ��� supn�1 E jXn;0j� ! 0 as �!1 by Assumption

3 and supn�1 E jUnj � (j�j � 1)
�1 supn�1 �n when j�j > 1; hence (Xn;0)n2N and (Un)n2N are tight

sequences. Given the subsequence (sn)n2N of N along which
�
�sn
�
n2N satis�es Assumption 7, tight-

ness of (Xsn;0)n2N implies that there exists a subsequence (Xln;0)n2N of (Xsn;0)n2N that converges

in distribution: Xln;0 !d X0 where X0 is � ([n�1Fln;0) measurable, since Xln;0 is Fln;0-adapted;
tightness of (Uln;0)n2N implies that there exists a subsequence (Urn;0)n2N of (Uln;0)n2N that con-

verges in distribution; tightness (�Xln;0 + �Uln)n2N for any constants �; � implies the existence of

a subsequence (�n)n2N of (ln)n2N such that (�X�n;0 + �U�n)n2N converges in distribution for all
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constants �; �; the Cramér-Wold device then implies that (X�n;0; U�n)n2N converges in distribution.

We have shown that:

(i) there exists a subsequence (��n)n2N of (�n)n2N in � such that (��n)n2N satis�es Assumption

7, X�n;0 !d X0 under P��n for � ([n�1F�n;0) measurable X0 and (U�n)n2N converges in

distribution when j�j > 1 jointly with X�n;0 under P��n .

(ii) there exists a subsequence
�
���n
�
n2N of

�
��n
�
n2N in

�� such that
�
���n
�
n2N satis�es the conclusion

in (i) under P���n .

If �0 2 �hom with Ft (�) = P�0 (ut � �), the Lyapounov inequality EFt�1 jutj � � and (12) imply

that �2 � �2, so that �2 2
�
�2; B

�
for some B > � > 0, the upper bound obtained by UI of (u2t )t2Z.

Now consider a sequence (�0n)n2N � �hom = �� � �homu � �X0 with �0n =
�
�n; (Fn;t)t2Z ; Fn;X0

�
.

If Fn;t (�) = P�0n (un;t � �), (un;t)t2Z satis�es Assumption 2(i) for each n, so �
2
n = Eu2n;1 =

�
�2; B

�
for all n; by BW, there exists a subsequence (kn)n2N of (�n)n2N in (i) such that �

2
kn
! �2 >

0. Moreover, (un;t;Fn;t)t2Z is a martingale di¤erence sequence with lim inft!1 EFn;t�1 jun;tj � �

a:s: and
�
u2n;t
�
t2Z UI for each n so Lemma 1(ii) implies that Assumption 5(i) is satis�ed. The

subsequence
�
�0kn
�
n2N lies in �

hom and satis�es both Assumptions 5 and 7, so Theorem 1(ii)

implies that limn!1 pkn
�
�0kn ; x

�
= �(x) for all x 2 R. We have shown that fpn (�0n; x) : n 2 Ng

satis�es (s) and the �rst part of (A.80).

For the second part of (A.80), consider (�n)n2N � � with �n =
�
�n; (Fn;t)t2Z ; Fn;X0

�
; if

(Fn;t)t2Z 2 �homu , then �n 2 �hom and the result follows since limn!1 qkn (�kn ; x) = limn!1 pkn (�kn ; x)

when (�n)n2N � �hom satis�es both Assumptions 5 and 7 by Theorem 1(ii). When (�n)n2N �
���hom, (Fn;t)t2Z 2 �u��homu and Fn;t (�) = P�n (un;t � �) with (un;t)t2Z satisfying Assumption
2(ii) for each n:

�
un;t; �

2
n;t

�
t2Z is strictly stationary with supn2N E�

4
n;0 � B, �2n;t � supt2Z �2t <1

a:s: for all t; n which implies that lim supn!1 supt2N �
2
n;t < 1 a:s:; also, �2n;t � � by (13) which

implies that �2n 2
�
�; B1=2

�
, so there exists a subsequence (kn)n2N of (�n)n2N in (i) such that

�2kn ! �2 > 0. Since (ukn;t)n2N is an ARCH(1) process, Lemma 1(iii) implies that there ex-
ists a subsequence (uhn;t)n2N of (ukn;t)n2N such that �

2
hn;t

= EFhn;t�1u
2
hn;t

satis�es (14); letting

v1;n (�) := Eu2n;1
�P1

j=0 �
jun;�j

�2
when � 2 (�1; 1), supn�1 v1;n (�) �

�P1
j=0 j�j

j
�2
supn�1 Eu4n;1,

so BW implies that there exists a subsequence
�
v�n (�) : n 2 N

	
of fvhn (�) : n 2 Ng such that

v1;�n (�)! v1 (�); since

vn (�) � Eu2n;11
�
u2n;1 � �

	�P1
j=0 �

jun;�j

�2
� �E

�P1
j=0 �

jun;�j

�2
= ��2n=

�
1� �2

�
� �2=

�
1� �2

�
since �2n � � by (13), lim infn!1 vn (�) > 0, so v1 (�) 2 (0;1). We conclude that for arbitrary
(�n)n2N � � there exists

�
��n
�
n2N � (�n)n2N that satis�es Assumptions 5 and 7 and, hence,
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limn!1 q�n
�
��n ; x

�
= �(x) for all x 2 R by Theorem 1(ii); hence fqn (�n; x) : n 2 Ng satis�es (s),

completing the proof of (A.80) and of Theorem 2.

If
�
��
0
n

�
n2N

� ��hom, (vn;t;Fn;t)t2Z with vn;t = ("n;t; en;t) is a martingale di¤erence sequence

for each n satisfying satisfying Assumption 5(i) for each n: EFn;t�1
�
vn;tv

0
n;t

�
= �n for all t with

�min (�n) � �, lim inft!1 EFn;t�1 jen;tj � � a:s: and
�
kvn;tk2

�
t2Z UI for all n; hence

lim infn!1 lim inft!1 EFn;t�1 jen;tj � � a:s:; max
1�t�n

E
�
kvn;tk2 1

�
kvn;tk2 > �n

	�
! 0

when �n ! 1. Also, the coe¢ cients cn;j of un;t satisfy supn�1
P1

j=0 j
1+�c2n;j � B which implies

that supn�1
P1

j=0 j
�=4 jcn;jj < 1 by (A.43). Since k�nk � E kvn;tk2 � B

2
2+� ,

��un (h)�� � Eu2n;1 �
B

2
2+� and supn�1

���P1
j=0 �

�j
n cn;j

��� � supn�1
P1

j=0 jcn;jj < 1 when j�nj ! j�j � 1, applying BW

thrice implies that there exists a subsequence (kn)n2N of (�n)n2N in (ii) such that �kn ! �,

�min (�) � �, ukn (h) !  (h) and
P1

j=0 �
�j
kn
ckn;j !

P1
j=0 �

�jcj 6= 0 (Assumption 4 implies that
infn�1

���P1
j=0 �

�j
n cn;j

��� � � when j�nj ! j�j � 1). By (ii), (��0kn)n2N � ��hom satis�es Assumptions 6

and 7 so Theorem 1(iii) then implies that limn!1 �pkn(��
0
kn ; x) = limn!1 p

�
kn
(��
0
kn ; x) = � (x); hence,n

�pn(��
0
n; x) : n 2 N

o
and

n
p�n(
��
0
n; x) : n 2 N

o
satisfy (s), proving the �rst two limits in (A.81).

If
�
��n
�
n2N � ��, limn!1 �qn(��n; x) = limn!1 q

�
n(
��n; x) = � (x) if

�
��n
�
n2N � ��hom. If

�
��n
�
n2N �

�����hom, �Fn;t (x) = P��n ("n;t � x; un;t � y) with ("n;t; un;t)t2Z satisfying Assumption 4(ii) for each

n:
�
en;t;EFn;t�1e2n;t; "n;t;EFn;t�1"2n;t

�
t2Z is strictly stationary with supn2N Ee

4
n;0 � B, supn2N E"4n;0 �

B, EFn;t�1e2n;t � supt2Z EFt�1e2t < 1 a:s: for each t; n, so lim supn!1 supt2N EFn;t�1e2n;t < 1
a:s:; given the subsequence (�n)n2N of N in (ii), ("�n;t)n2N is an ARCH(1) process, so Lemma
1(iii) implies that there exists a subsequence ("kn;t)n2N of ("�n;t)n2N such that EFkn;t�1"

2
kn;t

satis�es

(14); letting v2;n (�) := E"2n;1
�P1

j=0 �
jun;�j

�2
when � 2 (�1; 1), the same argument employed for

v1;n (�) above with u2n;1 replaced by "
2
n;1 ensures the existence of a subsequence

�
v2;�n (�) : n 2 N

	
of fv2;kn (�) : n 2 Ng such that v2;�n (�)! v2 (�) 2 (0;1). Finally, by the same argument used for
��hom there exists a subsequence (�n)n2N of (�n)n2N along which ��n ! � > 0, u�n (h) !  (h)

and
P1

j=0 �
�j
�nc�n;j !

P1
j=0 �

�jcj 6= 0 when j�nj ! j�j � 1. Hence, Assumptions 6 and 7 are sat-
is�ed along the subsequence

�
���n
�
n2N in

�� so Theorem 1(iii) implies that limn!1 �q�n
�
���n ; x

�
=

limn!1 q
�
�n

�
���n ; x

�
= �(x); thus,

�
�qn
�
��n; x

�
: n 2 N

	
and

�
q�n(
��n; x) : n 2 N

	
satisfy the conver-

gence criterion (s), completing the proof of (A.81) and of Theorem 3.

Proof of Corollary 1. Using the argument leading to (A.80) in the proof of Theorem 2, it is

su¢ cient to prove that, for arbitrary sequences (�n)n2N � � and (�
0
n)n2N � �hom, P�0n (jTn;hj � x)

and P�n
���TEWn;h �� � x

�
both converge to � (x) as n!1 for all x 2 R and all h satisfying h=n! 0.

By using the same subsequence extraction leading to (i) in the proof of Theorem 2 and that of

the subsequent two paragraphs, it is su¢ cient to establish the above limits for the special case

where (�n)n2N and (�
0
n)n2N satisfy Assumptions 5 and 7. This reduces the proof of the corollary to
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the veri�cation of Theorem 1(ii) with
�
Tn; T

EW
n

�
replaced by

�
Tn;h; T

EW
n;h

�
and h=n ! 0. Letting

	n;h =
Pn�h

t=1 xn;t~zn;t, Uh;t =
Ph

l=1 �
h�l
n un;t+l and �n = �̂2n

�
j�2nj

�hPh�1
j=0 (j�̂nj j�2nj)

j
�2Pn�h

t=1 ~z
2
n;t,

we may write

Tn;h = (j	n;hj =	n;h)
�
v�1=2n 1Fn + ��1=2n 1 �Fn

�Pn�h
t=1 ~zn;tUh;t = sign (	n;h)Nn;h; (A.82)

where Nn;h = (v
�1=2
n 1Fn + �

�1=2
n 1 �Fn)

Pn�h
t=1 ~zn;tUh;t is the LP equivalent of (A.56) in the proof of

Theorem 1. Since h=n ! 0, sign (	n;h) = sign (	n) + op (1) where 	n is de�ned in (A.74). By

comparing (A.82) to (A.73), (A.74), the argument following (A.74) in the proof of Theorem 2

implies that

Nn;h !d N (0; 1) when n!1 and h=n! 0 (A.83)

under Assumptions 5 and 7 is su¢ cient for the proof of the Corollary when � 2 �hom. To prove
(A.83), we employ a martingale approximation to Nn;h: changing the order of summationPn�h

t=1 ~zn;tUh;t =
Pn�h

t=1 ~zn;t
Pt+h

j=t+1 �
t+h�j
n un;j = An +Bn + Cn (A.84)

where An =
Ph

j=1 �
h�j
n un;j

Pj�1
t=1 �

t
n~zn;t, Cn =

Pn�h
j=n�2h+1 un;j+h

Pn�j�h
t=0 �tn~zn;t+j and the leading

term is given by Bn =
Pn�2h

j=1 un;j+h
Ph�1

t=0 �
t
n~zn;t+j: since the outer sums of An and Cn have h

terms and h=n ! 0, the right side of (A.84) is dominated by Bn. As in the proof of Theorem 1,

we consider the asymptotic behaviour of (A.84) under a moderately stationary instrument ~z1t and

a mildly explosive instrument ~z2t separately and then combine the results to prove (A.83).

Under C+(i)-C+(ii), when �2t = �2 or �n ! 1 or h!1
n�1b�1n

Pn�2h
j=1 �2n;j+h

�Ph�1
t=0 �

t
n~z1t+j

�2
!p �

4 (A.85)

where: (a) bn = ((1� '21n)
�1 ^ (1� �2n)

�1
)h2 if h=((1� '21n)

�1 ^ (1� �2n)
�1
) ! 0; (b) bn =

2�1((1� '21n)
�2^(1� �2n)

�2
) (1� �2n)

�1 if ((1� '21n)
�1_(1� �2n)

�1
)=h! 0; (c) bn = 4�1 (1� '21n)

�2
h

if (1� '21n)
�1
=h ! 0 and h= (1� �2n)

�1 ! 0; (d) bn = (1 + �2)
�1
(1� �2n)

�3 if (1� �2n)
�1
=h ! 0

and h= (1� '21n)
�1 ! 0.

Under C+(ii)-C+(iii), letting n = ('
2
2n � 1)

�1
'n�2h2n

Ph�1
j=0 (�n'2n)

j,

�1n
Pn�h

t=1 ~z2tUh;t = Zn;hYn;h + op (1) (A.86)

where Zn;h = ('22n � 1)
1=2Pn�h

i=1 '
�i
2nun;i and Yn;h = ('

2
2n � 1)

1=2Pn�2h
t=1 '

�(n�2h�t)
2n un;t+h.

We include an abridged version of the proof of (A.85) and (A.86); the details of the remainder

analysis follow the lines of the proof of Lemmata 3 and 4 and are omitted due to space restrictions.

For (A.85), the IV identity (A.29) ~z1t = z1t +
�n�1
�n�'1n

(xt � z1t) when � = 0 implies the identityPh�1
t=0 �

t
n~z1t+j =

Ph�1
t=0 �

t
nz1t+j +

�n � 1
�n � '1n

�Ph�1
t=0 �

t
nxt+j �

Ph�1
t=0 �

t
nz1t+j

�
: (A.87)

Changing the order of summation in
Ph�1

t=0 �
t
nz1t+j =

Ph�1
t=0 �

t
n

Pt+j
i=1 '

t+j�i
1n un;i and

Ph�1
t=0 �

t
nxn;t+j =
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Ph�1
t=0 �

t
n

Pt+j
i=1 �

t+j�i
n un;i we obtain expressions for the terms on the right of (A.87):Ph�1
t=0 �

t
nz1t+j = z1j

Ph�1
t=0 (�n'1n)

t +
Ph�1

i=1 �
i
nui+j

Ph�i�1
t=0 (�n'1n)

t (A.88)Ph�1
t=0 �

t
nxt+j = xj

Ph�1
t=0 �

2t
n +

Ph�1
i=1 �

i
nui+j

Ph�i�1
t=0 �2tn : (A.89)

The proof of (A.85) identi�es the leading terms in (A.87)-(A.89) and employs the following result

(see Lemma A1 of the Online Appendix in Kostakis, Magdalinos and Stamatogiannis (2023)):

if �2n;t satis�es Assumption 5 and �nt is a triangular array of random variables that admits the

decomposition �nt = �nt + rnt, max1�t�n
b�1=2n �nt


L
= O (1) and max1�t�n

b�1=2n rnt


L
! 0 for

some numerical sequence bn !1 and  = 2 under Assumption 5(i) and  = 4 under Assumption

5(ii), then

n�1b�1n
Pn

t=0 �
2
n;t

�
�2nt � �2nt

�
L1
! 0: (A.90)

For the cases (a)-(d) reported below (A.85), (A.90) applies with: (a) �nt = hz1t if (1� '21n)
�1 �

(1� �2n)
�1 and �nt = hxt if (1� �2n)

�1 � (1� '21n)
�1; (b) �nt = 2

�1 (1� '1n)
�1 (
Ph�1

i=1 �
i
nun;i+t �

xn;t) if (1� '21n)
�1 � (1� �2n)

�1 and �nt = (1� �2n)
�1
(xn;t +

Ph�1
i=1 �

i
nun;i+t) if (1� �2n)

�1 �
(1� '21n)

�1; (c) �nt = (1� �n'1n)
�1Ph�1

i=1 �
i
nun;i+t; (d) �nt = xn;t

Ph�1
i=0 �

2i
n+(1� �2n)

�1Ph�1
i=1 �

i
nun;i+t.

In all cases,

n�1b�1n
Pn

t=0 �
2
n;t�

2
nt = �2n�1b�1n

Pn
t=0 �

2
nt + op (1)!p �

4

from the choice of bn, showing (A.85).

To prove (A.86), we can employ similar methods to those used in the proof of Lemma 4(i) to

show that �n = �1n
Pn�h

t=1 (~z2t � z2t)Uh;t and �0n =
Pn�2h

j=1 'j2nun;j+h
Ph�1

t=0 ('2n�n)
tPn�h

i=t+j+1 '
�i
2nui

satisfy �n = op (1) and �0n = op (1). The leading term Bn of (A.84) satis�es

�1n Bn = �1n
Pn�2h

j=1 un;j+h
Ph�1

t=0 �
t
n

Pt+j
i=1 '

t+j�i
2n ui + op (1)

= �1n
�
'22n � 1

��1=2
Zn;h

Pn�2h
j=1 'j2nun;j+h

Ph�1
t=0 ('2n�n)

t + op (1)

= Zn;hYn;h + op (1)

where the �rst asymptotic equivalence follows from �n = op (1) and the second from �0n = op (1).

Having established (A.85) and (A.86), it is straightforward to prove (A.83) under C+(i) and

C+(iii): under C+(i), Lemma 2 implies that Nn;h = v
�1=2
1n B1n + op (1), where (v1n; B1n) denote

(vn; Bn) in (19) and (A.84) with ~zn;t replaced by ~z1t; since vn is asymptotically equivalent to the

conditional variance of the martingale array B1n by law of large numbers in (A.85), a martingale

CLT implies that v�1=2n B1n !d N (0; 1), showing (A.83) under C+(i). Under C+(iii), Lemma 2

implies that Nn;h = �
�1=2
2n B2n + op (1), (�2n; B2n) denote (�n; Bn) with ~zn;t replaced by ~z2t; by

Lemma 4(i),
Pn�h

t=1 ~z
2
n;t = (1 + op (1)) ('

2
2n � 1)

�2
'
2(n�h)
2n Z2n;h, which implies that

Nn;h = ��1sign (Zn;h)Yn;h + op (1)!d N (0; 1)

showing (A.83) under C+(iii). Under C�(i), applying the transformation x 7! (�1)�t x and
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denoting v+1n = �̂2n
Pn�2h+1

i=1

�Ph�1
t=0 j�̂nj

t ~z+1t+i

�2
, U+h;t =

Ph
l=1 j�nj

h�l (�1)t+l un;t+l and N+
1;n;h =Pn�h

t=1 ~z
+
1tU

+
h;t, we obtain

Nn;h = (1 + op (1)) (�1)�h
�
v+1n
��1=2Pn�h

t=1 ~z
+
1tU

+
h;t !d N (0; 1)

from the C+(i) case. Under C�(iii), a similar argument yields

Nn;h = (1 + op (1)) (�1)�h
�
�+n
��1=2Pn�h

t=1 ~z
+
2tU

+
h;t !d N (0; 1)

from the C+(iii) case (here �+n denotes �n with ~zn;t replaced by ~z
+
2t). Having proved (A.83) under

C(i) and C(iii), the proof of (A.83) under C(ii) follows from the argument following (A.73) in the

proof of Theorem 1. This proves (A.83) and the corollary when � 2 �hom.
When � 2 �, we may show that TEWn;h = Tn;h+op (1) when �2n;t = �2n or j�nj ! � � 1 or h!1

by using the same argument employed in Theorem 1 to show that TEWn = Tn + op (1) under the

same assumptions. When j�nj ! � 2 (�1; 1) and h ! 1, TEWn;h !d N (0; 1) follows from the

law of large numbers n�1
Pn�2h

j=1 �2j+h

�Ph�1
t=0 �

t
n~z1t+j

�2
!p E�2h

�Ph�1
t=0 �

txt

�2
which shows (A.83)

when vn is replaced by vEWn . The details of the proof of the last two statements are omitted and

available upon request.

1.3 Additional Simulation Results
In this section, we present some additional simulation results. Table B1 below contains the

empirical size and Figure B1 displays the power of the two-sided test of our procedure for the PR

slope parameter � based on T �n in (23) for n = 1; 000 based on 10; 000 replications for a grid of

points for b1 and b2 for �"u = 0:99 and �"u = �0:99 respectively for the case � = 1; which we use
for the instrument selection of Section 4.1 of the main paper31. Our task is to select the largest

values for b1 and b2; subject to the size being close to the nominal 5%. Figures B2 and B3 contain

the empirical size of our two-sided IV-based test for correlation �"u of �0:45 and 0:45 respectively.
Figure B4 displays the proportion of times the di¤erent instruments are chosen. Figure B5 is a

comparison of the length of CIs of IV and OLS under misspeci�cation of the last observation (note,

in this case, OLS has no valid coverage for the purely explosive speci�cations). Figures B6 and B7

present the coverage and length of CIs of our IV-based CIs and the equal-tailed two-sided intervals

(ETCI) of Andrews and Guggenberger (2014) respectively. Figure B8 displays the empirical size

of the OLS- and IV-based one-sided test under misspeci�cation of the last observation. Finally,

31We place more weight on large values for b1 rather than large values for b2 for three reasons: (i) power is always
non-decreasing in b1 for all autoregressive speci�cations, while in the explosive region power is decreasing in the
value of b2 (though this is not a serious issue since our procedure preserves the exponential rate of convergence in
the explosive region �nnn

�b2=2 regardless of the value of b2), (ii) for power maximisation in the case � = 1, the value
of b1 is relatively more important (as can be seen from the power plots in Appendix B), since the near-stationary
instrument is chosen 2/3 of the time, and (iii) values for b2 close to unity would make our mildly explosive instrument
near the boundary with local-to-unity region, which would cause the instrument to inherit local-to-unity properties
and potentially some of the associated small sample distortions when working with purely explosive regressor.
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Figures B9/B11 and B10/B12 contain the empirical size and power of our one-sided IV-based test

in comparison with the size and power of the Elliott et al. (2015)�s procedure for correlation �"u
of �0:45 and 0:45 respectively.

Table B1: Empirical size, �"u=�0:99;n=1;000 Empirical size, �"u=0:99;n=1;000

b1=b2
0.65 0.70 0.75 0.80 0.85 0.9 0.95 0.65 0.70 0.75 0.80 0.85 0.90 0.95

0.65 5.37% 5.38% 5.79% 6.48% 5.69% 5.42% 5.92% 5.51% 5.47% 5.77% 6.58% 6.14% 5.81% 6.40%

0.70 5.58% 5.59% 6.00% 6.69% 5.90% 5.63% 6.13% 5.35% 5.31% 5.61% 6.42% 5.98% 5.65% 6.24%

0.75 5.66% 5.67% 6.08% 6.77% 5.98% 5.71% 6.21% 5.42% 5.38% 5.68% 6.49% 6.05% 5.72% 6.31%

0.80 5.80% 5.81% 6.22% 6.91% 6.12% 5.85% 6.35% 5.46% 5.42% 5.72% 6.53% 6.09% 5.76% 6.35%

0.85 5.87% 5.88% 6.29% 6.98% 6.19% 5.92% 6.42% 5.63% 5.59% 5.89% 6.70% 6.26% 5.93% 6.52%

0.90 6.03% 6.04% 6.45% 7.14% 6.35% 6.08% 6.58% 5.81% 5.77% 6.07% 6.88% 6.44% 6.11% 6.70%

0.95 6.27% 6.28% 6.69% 7.38% 6.59% 6.32% 6.82% 5.85% 5.81% 6.11% 6.92% 6.48% 6.15% 6.74%

Figure B1: Power at � = 1 over grid for b1 and b2
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