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Abstract 

This paper investigates the speed of price discovery when information becomes publicly available but 

requires costly processing to become common knowledge. We exploit the unique institutional setting of 

hacks on decentralized finance (DeFi) protocols. Public blockchain data provides the precise time a 

hack’s transactions are recorded—becoming public information—while subsequent social media 

disclosures mark the transition to common knowledge. This empirical design allows us to isolate the price 

impact occurring during the interval characterized by information asymmetry driven purely by differential 

processing capabilities. Our central empirical finding is that substantial price discovery precedes common 

knowledge: approximately 36 percent of the total 24-hour price decline (∼27 percent) materializes before 

the public announcement. This evidence suggests sophisticated traders rapidly exploit their ability to 

process complex, publicly available on-chain data, capturing informational rents. We develop a 

theoretical model of informed trading under processing costs which predicts strategic, slow information 

revelation, consistent with our empirical findings. Our results quantify the limits imposed by information 

processing costs on market efficiency, demonstrating that transparency alone does not guarantee 

immediate information incorporation into prices. 
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1 Introduction

A central question in financial economics concerns price discovery—the process by which new
information becomes embedded in asset prices. While canonical models often depict information
arriving continuously or through predictable channels, many real-world events manifest as discrete,
initially opaque shocks. Understanding how prices respond during the interval between an event’s
hidden occurrence and its eventual public revelation is crucial for assessing market efficiency. Yet,
empirically isolating this interval has proven challenging due to the difficulty in precisely observing
both the timing of private information generation and its transition into the public domain.

This paper studies this question within the context of hacks in decentralized finance (DeFi).
DeFi protocols aim to provide financial services, such as lending or automated trading, directly on
a blockchain, bypassing traditional intermediaries. Many protocols issue equity-like governance
tokens whose market value reflects the protocol’s perceived health, user base, and expected future
earnings, akin to traditional equity claims. However, these protocols operate by holding user-
deposited assets (collateral) within smart contracts, making them targets for cybersecurity breaches,
or hacks. During a hack, attackers typically exploit vulnerabilities in the protocol’s code to illicitly
drain substantial amounts of this collateral, representing a direct and often significant loss to the
protocol’s value and undermining user confidence. These hacks constitute sudden, adverse shocks
whose informational impact is the focus of our study.

The informational environment surrounding these hacks provides a valuable research setting.
Most DeFi protocols operate on public blockchains like Ethereum, where all transactions are
recorded on an immutable, publicly accessible ledger. This radical transparency means the raw data
concerning a hack becomes public information almost instantaneously when malicious transactions
are confirmed on the chain. A naive interpretation might suggest this implies strong-form market
efficiency, where prices immediately reflect all available information (Fama, 1970).

We show that there’s a critical distinction between information being publicly available and it
being common knowledge. Interpreting raw blockchain data—identifying a specific sequence of
transactions as a value-destroying hack amidst millions of legitimate ones—requires significant
technical expertise, continuous monitoring infrastructure, and substantial computational effort.
These information processing costs create a barrier: while the data is public, understanding its
economic significance is initially limited to sophisticated actors (e.g., specialized crypto hedge
funds, security firms, the hackers themselves) who have invested in the necessary resources. For
the broader market, the information content remains opaque until it is distilled into a simpler, easily
digestible signal.

In contrast, information disseminated through widely followed channels like official X1 an-
1X is the social media website formerly known as Twitter.
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not possible with most corporate news or macro announcements, making it a powerful empirical
testbed for theories of information asymmetry and price discovery under processing costs.

We perform a high-frequency event study to show that a substantial portion of the price adjust-
ment occurs before the public announcement makes the information common knowledge. While the
total negative impact following the initial hack averages approximately -27% over 24 hours for the
protocol’s governance token, examining cumulative abnormal returns relative to the announcement
time shows significant negative returns hours prior. For instance, cumulative abnormal returns
reach -9.5% twelve hours before the announcement. This indicates that sophisticated actors, by
expending resources to process the complex on-chain data, impound approximately 36% of the
total price impact before the news becomes easily digestible for the broader public. This rapid
pre-announcement price discovery underscores the economic value of specialized processing capa-
bilities and provides quantitative evidence on the limits of market efficiency imposed by information
processing costs, even in transparent blockchain environments.

1.1 Broader Financial Stability Concerns

The findings in this paper extend beyond the specialized domain of digital assets, speaking directly
to emerging financial stability concerns. The lines between decentralized and traditional finance
are increasingly blurring. Regulated investment vehicles like spot Bitcoin exchange-traded funds
now provide broad investor access. Major financial institutions are actively tokenizing real-world
assets on blockchains, exemplified by initiatives like BlackRock’s BUIDL fund. Furthermore,
comprehensive regulatory frameworks for stablecoins and crypto-assets, such as Europe’s MiCA,
are integrating these markets more formally into the conventional financial structure.

Against this backdrop of increasing integration, the cybersecurity vulnerabilities inherent in
DeFi protocols—manifesting as frequent, large-scale hacks—represent a primary source of in-
stability. Because hacks can cause large, rapid price shifts in governance tokens, understanding
the precise market mechanics during these crises—how quickly adverse information is processed,
who processes it, and how prices react before events become common knowledge—is crucial not
only for crypto participants but also for policymakers, regulators, and traditional financial institu-
tions monitoring potential systemic risks emanating from this evolving technological frontier. The
growing linkages mean shocks originating in DeFi could increasingly spill over into the traditional
system. This paper offers a crucial lens into these dynamics by measuring the speed of information
incorporation and highlighting the real-world impact of processing costs on market efficiency.
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1.2 Related Work

A rich literature in finance and economics examines how information asymmetries affect price
discovery. In this review, we organize the discussion thematically, covering foundational theo-
ries, modern strategic trading models, the distinction between public information and common
knowledge, empirical evidence on informed trading with hard-to-process public signals, and recent
insights from cryptocurrency and decentralized finance (DeFi) markets.

Classic Foundations of Price Discovery and Asymmetric Information Early work established
the mechanisms by which private information becomes reflected in asset prices. Grossman and
Stiglitz (1980) argue that if prices fully reveal all private information, informed traders would earn
no compensation, thereby precluding an informationally efficient equilibrium. Building on this
insight, Kyle (1985) develops a dynamic insider trading model in which a monopolistic informed
trader optimally discloses information over time, while market makers set prices based on the
total order flow. Similarly, Glosten and Milgrom (1985) present a sequential trade model in
which a specialist infers private information from order flows, resulting in endogenous bid–ask
spreads. Both models emphasize that private information is gradually incorporated into prices
through strategic trading. While these models provide the bedrock for understanding information
asymmetry, our setting allows for an unusually precise empirical examination of the speed of this
process when information is technically public but costly to process, transitioning later to low-cost
common knowledge.

Dynamic and Strategic Trading: Modern Extensions Subsequent research has enriched these
early models by incorporating multiple trading periods and strategic considerations. Extensions
of Kyle (1985) (see, e.g., Foster and Viswanathan (1996) and Back (1992)) consider multiple
informed traders and intertemporal information extraction, demonstrating that competition among
informed agents can accelerate price discovery while simultaneously compressing individual profits.
Meanwhile, Duffie et al. (2005) develop an over-the-counter market framework where search
frictions and bilateral trading delay the aggregation of private information. In parallel, the rise
of high-frequency trading has spurred studies by Budish et al. (2015) and Brogaard et al. (2014),
who show that technological advancements in trading speed can both enhance and, paradoxically,
impede efficient price discovery.

Public Information vs. Common Knowledge A crucial nuance in the literature is the distinction
between public information and common knowledge. Although public information is available to
all, it becomes common knowledge only after it is widely recognized and acknowledged through
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iterative confirmation. Morris and Shin (2002) formalize this difference, showing that the transi-
tion from public information to common knowledge can significantly influence market dynamics.
Further work by Allen et al. (2006) further demonstrates that when information remains public but
not common, market participants who process it earlier can exploit the delay, leading to gradual
price adjustments until a formal announcement is made. Our paper directly leverages this distinc-
tion, using the precisely timed on-chain hack as the arrival of complex public information and the
subsequent announcement as the transition to common knowledge.

Informed Trading on Hard-to-Process Public Information In many cases, public information
is available in principle but requires sophisticated analysis to extract its economic significance. Tet-
lock (2007) provides evidence that nuanced media sentiment predicts short-term price movements,
implying that only those with the ability to process complex public signals can trade profitably.
Laboratory experiments by Bloomfield and O’Hara (1999) confirm that even with complete trans-
parency, differences in processing capabilities can create substantial informational advantages. In
the era of big data, studies such as Gross et al. (2011) show that machine-readable news feeds enable
a subset of traders to react almost instantaneously to new information, capturing profits before the
broader market is informed. In spirit, our analysis relates to studies of how private information
is traded on before public news, similar to classic insider trading studies, except here the ’insider’
information is derived legally from skill in parsing public data.

Market Frictions and Price Discovery in Cryptocurrency and DeFi Recent advances in
blockchain technology have opened a new avenue to study information asymmetry and price dis-
covery. Despite the inherent transparency of blockchain ledgers, research by Makarov and Schoar
(2020) and Liu et al. (2022) documents significant arbitrage opportunities and pricing inefficiencies
across cryptocurrency exchanges, suggesting frictions prevent immediate price convergence. Liu
et al. (2022) also find that standard asset pricing factors explain crypto returns, implying some
market structure parallels, but highlight potential mispricings.

The unique nature of decentralized finance means that on-chain data, while publicly available,
must be processed with specialized tools and expertise. Azar et al. (2024) argue that information
advantages persist even with ledger transparency due to complexities in the intermediation chain
and inherent processing costs. Others explore how blockchain technology and smart contracts
alter information diffusion pathways (Cong and He, 2019; Saleh, 2021) or how phenomena like
Miner Extractable Value (MEV) create informational rents (e.g., Azar et al., 2024; Capponi et al.,
2022; Adams et al., 2024) by allowing certain traders to act on visible, yet complex, order flow
information.

Our research also relates directly to the nascent literature examining the economic consequences
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of security breaches in digital asset markets. Chen et al. (2023), for example, provide valuable early
analysis, documenting significant negative returns on bitcoin and heightened volatility following
security incidents, often focusing on events like cryptocurrency exchange hacks using daily fre-
quency data. While demonstrating the detrimental impact of such events, the use of daily data limits
the ability to pinpoint intraday price discovery. Our work advances this line of inquiry substantially
by employing high-frequency (minute-level) market data for DeFi governance tokens and, crucially,
by precisely separating the timing of the initial on-chain exploit transaction from the subsequent
public announcement . This granular approach allows us to dissect the intraday price discovery
process and isolate the market reaction occurring before the hack becomes common knowledge,
providing direct empirical measurement of the value of early, costly information processing in the
specific context of DeFi security breaches and quantifying the extent to which sophisticated actors
anticipate public news by overcoming these processing hurdles.

1.3 Roadmap

The remainder of the paper is organized as follows. Section 2 provides institutional details on DeFi
protocols and Hacks. Section 3 describes the data and empirical methodology. Section 4 presents
the main empirical findings. Section 5 develops our theoretical framework. Section 6 concludes.

2 Institutional Background: DeFi Protocols and Hacks

Decentralized Finance (DeFi) represents a rapidly growing ecosystem aiming to replicate and
innovate upon traditional financial services using blockchain technology. Understanding the insti-
tutional context, particularly the nature of DeFi protocols and the prevalence of hacks, is crucial
for interpreting our empirical findings on information processing.

At its core, DeFi relies on public, permissionless blockchains—distributed ledgers maintained
by a network of computers through a consensus mechanism. Blockchains like Ethereum provide
not only a means of transferring value (via native cryptocurrencies like Ether) but also a platform
for executing smart contracts. These are self-executing contracts which take digital assets as inputs
and have the terms of financial agreements directly written into code. They automatically perform
actions when predefined conditions are met, without the need for traditional intermediaries like
banks or brokers.

DeFi protocols leverage smart contracts to offer a wide array of financial services. These
include decentralized exchanges (DEXs) that allow peer-to-peer token trading (e.g., Uniswap,
Curve), lending and borrowing platforms where users can supply assets to earn interest or borrow
against collateral (e.g., Aave, Compound), derivatives platforms, asset management services, and
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more. Users interact directly with these protocols’ smart contracts, typically depositing digital assets
(cryptocurrencies or stablecoins) as collateral or liquidity. Many protocols issue governance tokens,
which grant holders voting rights on protocol upgrades and parameter changes, and often accrue a
share of protocol revenues, making their market value sensitive to the protocol’s performance and
security, analogous to equity in a traditional firm.

A defining characteristic of DeFi is its reliance on these smart contracts to custody user funds,
often referred to as the protocol’s Total Value Locked (TVL). While proponents highlight the
transparency and efficiency gains from removing intermediaries, concentrating potentially billions
of dollars worth of assets into complex, automated code creates significant security challenges.
These challenges manifest most starkly as "DeFi hacks" or "exploits."

A DeFi hack occurs when an attacker finds and leverages a vulnerability to illegitimately
withdraw assets from a protocol’s smart contracts. These vulnerabilities can arise from various
sources. Smart contract bugs are flaws in the code itself—logical errors, incorrect assumptions,
or unforeseen interactions between different functions—that allow attackers to bypass intended
constraints. Given the complexity and novelty of smart contract programming languages (like
Solidity on Ethereum) and the financial stakes involved, even audited code can contain subtle,
exploitable bugs.

Beyond direct code flaws, attackers often target the broader infrastructure supporting DeFi
protocols. Oracle manipulation involves exploiting the external data feeds (oracles) that smart
contracts rely on for real-world information, such as asset prices. By manipulating the price reported
by an oracle, an attacker might trick a lending protocol into issuing loans against undervalued
collateral or liquidating positions unfairly. Cross-chain bridge exploits target the protocols designed
to transfer assets between different blockchains; vulnerabilities in these bridges have led to some
of the largest DeFi hacks, as attackers drain the assets locked on one chain that back the wrapped
tokens issued on another. Flash loan attacks involve borrowing extremely large sums with no upfront
collateral, using the borrowed funds to manipulate market prices or exploit other vulnerabilities
within a single atomic transaction, and then repaying the loan, pocketing the difference. Governance
attacks involve malicious actors acquiring enough governance tokens to pass proposals that allow
them to steal funds.

The scale and frequency of these hacks are substantial. Since the rise of DeFi in 2020, hundreds
of significant exploits have occurred, with cumulative losses estimated in the billions of dollars.
Prominent examples illustrate the magnitude and variety: the Ronin hack in March 2022 saw over
$600 million stolen due to compromised private keys; the Poly Network exploit in August 2021
involved a similar amount taken via a cross-chain vulnerability (though much was later returned);
the Wormhole bridge was exploited for over $320 million in February 2022; lending protocols like
Euler Finance lost nearly $200 million in March 2023 due to a flash loan and logic vulnerability;
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and even established protocols like Curve Finance suffered significant losses in July 2023 due to a
vulnerability in a specific version of its programming language compiler.

From an economic perspective, these hacks occur because the potential rewards for attackers are
immense, while the costs of securing complex, rapidly evolving systems are high. The "compos-
ability" or interconnectedness of DeFi protocols, often lauded as a feature, can also create systemic
risks, where a vulnerability in one protocol can cascade to others that rely on it. The fast pace
of innovation often means protocols are launched quickly, sometimes deprioritizing exhaustive
security audits. Furthermore, the open-source nature of the code, while promoting transparency,
also allows potential attackers to scrutinize it for weaknesses.

Each successful hack represents a direct, negative economic shock to the affected protocol.
It typically results in a loss of user funds, damages the protocol’s reputation, reduces its TVL
and fee-generating potential, and consequently leads to a sharp decline in the market value of its
governance token. It is the market’s reaction to this specific type of negative shock, and particularly
the information flow surrounding it, that forms the basis of our empirical investigation.

3 Data and Methodology

Our empirical analysis relies on a novel, hand-collected dataset that combines information on
cryptocurrency hack events with high-frequency market data for the affected crypto assets. This
section details the data sources, variable construction, and matching procedures.

3.1 Hack Event Data

We compile a comprehensive list of DeFi hack events occurring between June 2016 and January
2024. To identify potential hacks, we draw upon multiple sources, including the public dashboard
provided by DeFi Llama (https://defillama.com/hacks),2 systematic monitoring of rep-
utable blockchain security news outlets and blogs (such as Rekt News, PeckShield Alerts, CertiK
Skynet Alerts, and SlowMist), and reporting from major financial news aggregators and crypto-
focused media outlets. Each potential event undergoes a detailed verification process, involving
cross-referencing information across sources and consulting primary on-chain data via blockchain
explorers (e.g., Etherscan, BSCScan). We include only confirmed malicious exploits resulting in
quantifiable asset loss in our sample.

For each confirmed hack event 𝑖, we collect several key pieces of information. We identify
the name of the targeted DeFi protocol and the ticker symbol and contract address of its primary
governance token, focusing on protocols with publicly traded tokens. A critical variable is the

2We thank DeFi Llama for making this data publicly available.
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precise hack timestamp (𝑡0,𝑖), defined as the UTC timestamp (typically at minute or second-level
precision based on block times) of the first confirmed malicious transaction associated with the hack
sequence, as recorded on the blockchain. Identifying 𝑡0,𝑖 requires careful analysis of transaction
logs, often guided by post-mortem security reports and news articles. Equally important is the
public disclosure timestamp (𝑡𝑐𝑜𝑚𝑚𝑜𝑛,𝑖), which captures when information about the hack likely
became common knowledge. We define 𝑡𝑐𝑜𝑚𝑚𝑜𝑛,𝑖 as the UTC timestamp (minute-level precision)
of the first verifiable public announcement regarding the specific hack, typically via the protocol’s
official X account or a reputable security firm’s alert.3 This identification relies on monitoring the
official X account of the hacked protocol, tweets from widely followed blockchain security firms
or researchers, and initial reports from major crypto news outlets. We use the earliest of these
verifiable disclosures as 𝑡𝑐𝑜𝑚𝑚𝑜𝑛,𝑖. Furthermore, we record the estimated value in USD of the assets
stolen, based on prices around 𝑡0,𝑖 as reported by DeFi Llama or security firms. We also identify
the market capitalization of each protocol as of 2 days prior to 𝑡0,𝑖.

Our final sample consists of 49 distinct hack events satisfying our criteria during the sample
period September 2020 to March 2024. Table 1 presents summary statistics for the key character-
istics of these events, detailing the distribution of stolen values and, crucially, the time lag between
the hack occurrence and its public disclosure.

Amount Stolen𝑖 ($M) Lagged Protocol Market Cap𝑖 ($M) Amount Stolen / Lagged Protocol Market Cap𝑖 (𝑡𝑐𝑜𝑚𝑚𝑜𝑛 − 𝑡0)𝑖
∑𝑇𝑒𝑛𝑑

𝑡=−𝑇𝑠𝑡𝑎𝑟𝑡 log(𝑅𝑖𝑡) Std(log(𝑅𝑖𝑡))

Count 49 49 49 49 49 49
Mean 49.60 260.74 0.51 4 days 23:54:42 -0.17 0.01

Std 104.98 639.54 0.74 32 days 20:48:18 0.21 0.01
Min 0.50 0.99 0.00 0 days 00:00:59 -0.75 0.00
25% 3.00 20.99 0.08 0 days 00:43:02 -0.22 0.00
50% 7.90 65.63 0.22 0 days 01:50:49 -0.11 0.00
75% 25.00 148.27 0.51 0 days 05:45:12 -0.03 0.01
Max 624.00 3846.27 3.17 230 days 06:55:55 0.19 0.04

Table 1: Summary Statistics of Hack Events

3.2 Market Data

To analyze the market impact of these hacks, we collect high-frequency trading data for the iden-
tified protocol governance tokens and the major collateral tokens stolen during the exploits. Our
primary source for this market data is CryptoCompare. Specifically, we utilize the CryptoCom-
pare Aggregated Index (CADLI) for each relevant token pair (e.g., TOKEN-USD). The CADLI
methodology provides a robust, aggregated measure of market activity by calculating a 24-hour
rolling volume-weighted average price across a vetted set of constituent exchanges for each trading
pair. This approach yields a comprehensive market price and volume feed, mitigating concerns

3We detail the precise method for extracting timestamps from tweet URLs in Section 3.2.
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related to relying on a single exchange’s data, which might be subject to manipulation, downtime,
or idiosyncratic liquidity conditions.

From the CADLI feed, we obtain data at minute-level frequency covering our sample period.
For each relevant token 𝑗 associated with a hack event 𝑖, we compile time series for the aggregated
price (𝑃 𝑗 ,𝑡) in USD and the total aggregated trading volume (𝑉𝑜𝑙 𝑗 ,𝑡) during interval 𝑡. We also
gather market capitalization data from CryptoCompare to serve as control variables and facilitate
cross-sectional analysis.

To determine the public disclosure timestamp with high precision when it originates from X,
we utilize the tweet’s unique Snowflake ID.4 This method allows for highly accurate identification
of 𝑡𝑐𝑜𝑚𝑚𝑜𝑛 when relying on X as the source of initial public disclosure.

3.3 Data Matching

The final dataset is constructed by merging the hack event information with the high-frequency
aggregated market data from CryptoCompare. For each hack event 𝑖, we match the identified
protocol governance token and relevant stolen collateral tokens to their corresponding CADLI
price and volume time series using standard ticker symbols (e.g., ETH, WBTC, CRV) paired with
USD.

The precise event timestamps, 𝑡0,𝑖 and 𝑡𝑐𝑜𝑚𝑚𝑜𝑛,𝑖, are central to our analysis. We align these
timestamps with the corresponding intervals in our minute-level CADLI market data, enabling a
granular measurement of aggregated market dynamics around both the on-chain exploit and the
subsequent public information release . Rigorous verification of token identities is performed
throughout the matching process to ensure the correct CADLI series is used for each token involved
in a hack event.

3.4 Event Definition

For each hack event 𝑖 in our sample, we define the event window spanning 48 hours, from 𝑇𝑠𝑡𝑎𝑟𝑡 =

−1440 minutes to 𝑇𝑒𝑛𝑑 = 1440 minutes relative to the event time (𝑡 = 0). We focus primarily on
the price dynamics of the affected protocol’s main governance token.

4The web address (URL) of any specific tweet contains a unique numerical identifier (Snowflake ID). This identifier
encodes the tweet’s creation timestamp with millisecond precision. By extracting this ID, converting it to an integer,
performing a bitwise right-shift operation (by 22 bits), and adding the X epoch offset (1288834974657 milliseconds
since the Unix epoch, corresponding to Nov 04 2010 01:42:54 UTC), we recover the precise UTC timestamp of the
tweet’s publication.
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3.5 Event Study Regression

To estimate the average return profile around the events across our sample, while controlling for
event-specific heterogeneity, we use the following panel regression model:

𝐴𝑅𝑖𝑡 = 𝛼𝑖 +
𝑇𝑒𝑛𝑑∑︁

𝜏=𝑇𝑠𝑡𝑎𝑟𝑡

𝛽𝜏𝐷𝑖𝜏 (𝑡) + 𝜖𝑖𝑡 (1)

Here, 𝐴𝑅𝑖𝑡 is the return for the governance token of event 𝑖 at minute 𝑡 relative to the event time
(𝑡 = 0). 𝛼𝑖 represents event-specific fixed effects, absorbing any time-invariant differences across
hack events. 𝐷𝑖𝜏 are dummy variables equal to one if the observation (𝑖, 𝑡) corresponds to relative
event time 𝜏 (minute 𝜏 relative to the event at 𝜏 = 0), and zero otherwise. The coefficients of interest
are 𝛽𝜏, which measure the average abnormal return across all events at minute 𝜏 relative to the
event time, compared to a baseline period (implicitly the period just before 𝑇𝑠𝑡𝑎𝑟𝑡). This regression
is estimated separately using 𝑡0 as the event time and using 𝑡𝑐𝑜𝑚𝑚𝑜𝑛 as the event time. Standard
errors are clustered at the event level, to account for autocorrelation and heteroskedasticity.

3.6 Cumulative Returns and Presentation

From the estimated 𝛽𝜏 coefficients, we calculate the Cumulative Abnormal Return (CAR) up to
time 𝑇 within the event window as the sum of the average minute-level abnormal returns:

𝐶𝐴𝑅𝑇 =

𝑇∑︁
𝜏=𝑇𝑠𝑡𝑎𝑟𝑡

𝛽𝜏 (2)

We present the results of our event study graphically by plotting the estimated CAR sequence
(𝐶𝐴𝑅𝑇 for 𝑇 from −24 hours to +24 hours). Additionally, we report the estimated CARs at key
time points relative to the event (𝜏 = −24ℎ, −12ℎ, −6ℎ, −3ℎ, 0ℎ, +3ℎ, +6ℎ, +12ℎ, +24ℎ) in tables,
including their respective t-statistics. This allows for a detailed examination of the timing and
statistical significance of the market reaction to both the hack itself and its public disclosure.

4 Empirical Results

This section presents the main empirical findings from our high-frequency event study analysis.
We examine the evolution of cumulative abnormal returns for protocol governance tokens around
the time of the initial on-chain hack transaction and the time of the first public announcement.
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4.1 Event Study: Price Dynamics Around Hacks and Disclosures

Figures 2 and 3 graphically depict the average CARs for affected protocol tokens in the hours
surrounding the two key event times. Both figures show results from regressions weighted differ-
ently (by assets stolen divided by lagged market cap in Figure 2, unweighted in Figure 3), yielding
qualitatively similar patterns. Panel (a) in each figure centers the event time (𝑡 = 0) on the first
malicious on-chain transaction associated with the hack (𝑡0), while Panel (b) centers the event time
(𝑡 = 0) on the first identified public announcement (𝑡𝑐𝑜𝑚𝑚𝑜𝑛). Table 2 provides the corresponding
CAR estimates and their statistical significance at selected horizons.

Reaction to the Initial Hack Transaction. Panel (a) of Figures 2 and 3, together with the first
column of Table 2, decisively illustrates the market’s reaction at the moment the hack is initiated
on-chain. Although the cumulative abnormal returns (CARs) curve remains largely flat—reflecting
the unexpected nature of these events—a modest yet telling decline of approximately 1.55% from
𝑡 = −6 hours to 𝑡 = 𝑡0 emerges. This subtle downturn provides suggestive evidence that some
hackers may exploit their advanced knowledge to trade ahead of the cyberattack, capturing a
fleeting informational edge before the event fully unfolds.

Following the initiation of the hack at 𝑡 = 0, prices begin a sharp and statistically significant
decline. As shown in Table 2, the CAR becomes significantly negative within the first few hours,
reaching -17.2 percent by hour 3 and -19.1 percent by hour 6. The decline continues over the
subsequent hours, stabilizing around -26 percent between 9 and 24 hours after the initial transaction.
This pattern clearly indicates that negative information begins to impact prices shortly after the hack
occurs on the blockchain, as soon as it becomes public information accessible to those equipped to
process it.

Reaction Relative to Social Media Disclosures. Panel (b) of Figures 2 and 3, along with the
third column of Table 2, presents the price dynamics centered on the time of the first social media
announcement of the hack, when the information becomes common knowledge. The results reveal
a striking pattern of pre-announcement price discovery. Cumulative abnormal returns are already
substantially negative and statistically significant many hours before the announcement occurs at
𝑡 = 0. For instance, Table 2 shows that the CAR averages -9.5 percent twelve hours prior to the
announcement and -7 percent three hours prior. This demonstrates that a significant portion of
the negative information associated with the hack is impounded into prices well before it becomes
common knowledge through easily accessible public channels like X. This suggests that a subset of
market participants—likely those with the capability and incentive to incur the costs of monitoring
and interpreting blockchain data in real time—capitalize on the news before it hits the broader
market.

Around the time of the announcement, the price decline appears to continue, although potentially
at a decelerated rate initially. The CAR reaches its minimum point and stabilizes several hours after
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the announcement, for example, around -20.8 percent at 15 hours post-announcement.
Comparing the results from the two event windows allows us to quantify the extent of price

discovery occurring before public disclosure makes the information common knowledge. The total
average price impact over 24 hours following the initial hack is approximately -27 percent. The
CAR measured just prior to the public announcement represents the portion of this total impact
realized due to costly information processing before widespread public awareness. This implies
that more than one-third (approximately 0.095/0.266 ≈ 36% using the 12-hour pre-announcement
value) of the total price discovery occurs within the window between the on-chain event and the
social media announcement. This underscores the significant role of sophisticated traders who can
interpret complex, costly-to-process public information and trade on it before the news becomes
easily accessible common knowledge.

(a) 𝑡 = 𝑡0 (Hack Time) (b) 𝑡 = 𝑡𝑐𝑜𝑚𝑚𝑜𝑛 (Announcement Time)

Figure 2: Event Study: Cumulative Abnormal Returns Around Hack Events (Weighted by Value
Stolen over Lagged Market Capitalization). Panel (a) shows time relative to the initial hack
transaction time (𝑡 = 𝑡0). Panel (b) shows time relative to the first public announcement time
(𝑡 = 𝑡𝑐𝑜𝑚𝑚𝑜𝑛). The solid line shows the average cumulative abnormal return (CAR), weighted by
the total USD value stolen in the hack. Time is measured in hours relative to the event.

5 A Simple Model of Strategic Information Revelation

All information on the blockchain is technically public information, yet our empirical results show
that prices don’t automatically adjust when a hack happens, but rather decline slowly over time.
Furthermore, it seems that informed investors capture more than half of the returns before the hack
becomes common knowledge. To understand the microfoundations driving this empirical result,
we develop a simple theoretical model incorporating information processing considerations. This
model illustrates how the presence of future trading opportunities, coupled with uncertainty about
when costly-to-process public information will become low-cost common knowledge, incentivizes
informed traders (those who have incurred the processing cost) to manage the release of their infor-
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(a) 𝑡 = 𝑡0 (Hack Time) (b) 𝑡 = 𝑡𝑐𝑜𝑚𝑚𝑜𝑛 (Announcement Time)

Figure 3: Event Study: Cumulative Abnormal Returns Around Hack Events (Unweighted). Panel
(a) shows time relative to the initial hack transaction time (𝑡 = 𝑡0). Panel (b) shows time relative
to the first public announcement time (𝑡 = 𝑡𝑐𝑜𝑚𝑚𝑜𝑛). The solid line shows the average cumulative
abnormal return (CAR), weighted by the protocol market capitalization two days before the hack.
Time is measured in hours relative to the event.

𝑡 𝛽: 𝑡0 𝑡-stat 𝛽: 𝑡𝑐𝑜𝑚𝑚𝑜𝑛 𝑡-stat

-21 0.026 (1.13) 0.099 (1.54)
-18 0.028 (1.33) 0.096 (1.61)
-15 0.022 (1.19) 0.097∗ (1.77)
-12 0.029∗ (1.75) 0.094∗ (1.90)
-9 0.022 (1.57) 0.087∗∗ (2.00)
-6 0.016∗ (1.67) 0.081∗∗ (2.31)
-3 0.002 (0.46) 0.070∗∗∗ (2.73)
0 0 (.) 0 (.)
3 -0.172∗∗∗ (-3.45) -0.099∗∗ (-2.03)
6 -0.191∗∗∗ (-2.64) -0.150∗ (-1.91)
9 -0.263∗∗∗ (-2.73) -0.201∗ (-1.92)

12 -0.255∗∗ (-2.26) -0.206∗ (-1.66)
15 -0.268∗∗ (-2.11) -0.208 (-1.48)
18 -0.274∗ (-1.96) -0.198 (-1.27)
21 -0.262∗ (-1.74) -0.192 (-1.13)
24 -0.266∗ (-1.65) -0.194 (-1.05)

Table 2: Cumulative Abnormal Returns Around Hack Events
This table reports cumulative abnormal return (CAR) estimates from the event study regression (Equation 1) at selected
horizons relative to the event time (𝑡 = 0). Columns (1) and (2) use the initial on-chain hack transaction time (𝑡0) as
the event time. Columns (3) and (4) use the first public announcement time (𝑡𝑐𝑜𝑚𝑚𝑜𝑛) as the event time. CARs are
calculated as the sum of estimated minute-level average abnormal returns (𝛽𝜏) up to the specified hour. Regressions
are weighted by value stolen over lagged market capitalization. 𝑡-statistics are reported in parentheses. The symbols *,
**, and *** denote statistical significance at the 10%, 5%, and 1% levels, respectively. The number of events is 49.
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mation strategically over time. It provides a rational basis for observing gradual, pre-announcement
price discovery even when informed agents possess perfect information about an event’s impact
from the outset.

We adapt the sequential trading framework of Kyle (1985) to a three-period setting (𝑡 = 0, 1, 2).
At 𝑡 = 0, a potential value-altering event occurs with probability 𝜌𝑒𝑣𝑒𝑛𝑡 , changing the asset value
from𝑉0 to either a low value𝑉𝐿 or a high value𝑉𝐻 (with 𝐸 [𝑉] = 𝑉0). A single risk-neutral informed
trader (who has incurred the cost to process the on-chain information) learns the true final value
𝑉 ∈ {𝑉0, 𝑉𝐿 , 𝑉𝐻} immediately at 𝑡 = 0. Trading occurs at 𝑡 = 1 and 𝑡 = 2. Competitive, risk-neutral
market makers observe the noisy total order flow 𝑌𝑡 = 𝑥𝑡 + 𝑢𝑡 (where 𝑥𝑡 is the informed trade and 𝑢𝑡

is noise) and set prices 𝑃𝑡 based on conditional expectations, using a linear rule where price impact
is denoted by 𝜆𝑡 . Critically, after trading at 𝑡 = 1, the true value 𝑉 becomes common knowledge
(e.g., via a public announcement) with probability 𝜌𝑐; otherwise, asymmetric information (due to
differential processing) persists into 𝑡 = 2.

The core economic mechanism arises from the informed trader’s dynamic optimization problem
at 𝑡 = 1. Knowing the true value 𝑉 , the trader chooses their initial trade size 𝑥1. A larger trade
potentially yields higher immediate profits by exploiting the current mispricing (𝑉 −𝑃0). However,
a larger trade also reveals more information to the market maker, causing the period 1 price 𝑃1

to move closer to 𝑉 . This has two adverse effects on potential future profits: it directly reduces
the mispricing available to exploit at 𝑡 = 2, (𝑉 − 𝑃1), and it reduces the market maker’s residual
uncertainty (Σ1), which in turn lowers the market depth (increases price impact 𝜆2) in the second
period. Therefore, the informed trader faces an intertemporal trade-off: maximize current profits
versus preserving future profit opportunities.

This trade-off is moderated by the probability of public disclosure (transition to common
knowledge), 𝜌𝑐. If disclosure is very likely after period 1 (𝜌𝑐 is high), future profit opportunities are
improbable, incentivizing the trader to trade more aggressively in period 1 to capitalize immediately.
Conversely, if disclosure is unlikely (𝜌𝑐 is low), the prospect of significant period 2 profits looms
larger, incentivizing the trader to moderate their period 1 trades (i.e., trade more inconspicuously)
to avoid revealing too much information too soon. The equilibrium reflects the informed trader
optimally balancing these considerations.

Theorem 1 (Equilibrium with Strategic Moderation). In the 3-period model, a unique linear
Bayesian Nash Equilibrium exists. The informed trader’s strategy involves trading 𝑥1 = 𝛽1𝑉 in
period 1 and 𝑥2 = 𝛽2(𝑉 − 𝑃1) in period 2 (if reached). Market makers set prices 𝑃1 = 𝜆1𝑌1 and
𝑃2 = 𝑃1 + 𝜆2𝑌2. Crucially, the informed trader’s initial trading intensity, 𝛽1, is increasing in the
probability of public disclosure 𝜌𝑐.

Proof. See Appendix A for the derivation of equilibrium parameters 𝜆1, 𝛽1, 𝜆2, 𝛽2 and the compar-
ative static with respect to 𝜌𝑐. ■
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This simple model provides a clear economic rationale for the gradual price discovery observed
empirically between the initial hack and the public announcement . The theorem’s key result—that
informed traders strategically moderate their initial trades when future trading opportunities exist
and disclosure is uncertain (𝜌𝑐 < 1)—explains why prices do not immediately jump to the full
information value at the moment sophisticated traders detect the hack , even though the information
is technically public. Instead, information is impounded incrementally through period 1 trading
as informed agents trade on their processed information, with the speed influenced by factors
like disclosure risk (𝜌𝑐). The model thus microfounds our empirical finding that a significant
fraction, but not all, of the price adjustment occurs before the news becomes common knowledge.
It generates testable implications, explored further in the appendix, regarding how the speed of
initial price discovery should relate to characteristics that influence disclosure probability or the
value of future trading.

6 Conclusion

How quickly do markets process bad news, especially when the initial event is technically public
but costly to interpret? This paper studies this fundamental question using hacks on decentralized
finance platforms. Our key advantage is the ability to precisely time both when the hack begins
on the public blockchain record —making the information publicly available but not yet common
knowledge—and when the news is later announced plainly on social media , making it common
knowledge. This allows us to measure price discovery driven by costly information processing.

Our central finding is clear: prices move significantly before the news becomes common
knowledge. We document that while the total price drop after a hack averages around 27 percent
over a day, more than one-third (approximately 36 percent) of this drop occurs before the first public
announcement. This shows that sophisticated traders, by incurring the costs to process complex
but publicly available data, anticipate the news hours in advance and trade on information that
is not yet widely understood. This result provides sharp evidence that even transparent markets
are not strong-form efficient when significant processing costs prevent public information from
immediately becoming common knowledge. It highlights that price discovery unfolds at different
speeds, depending on information complexity and the resources required to interpret it.

These findings matter beyond digital assets. As blockchain-based finance becomes increasingly
linked to the traditional financial system through new products and regulations, vulnerabilities like
DeFi hacks present potential systemic risks. The rapid, yet initially opaque, price adjustments we
document illustrate how shocks originating in crypto could create unexpected losses or liquidity
strains in connected markets before the full picture is clear to regulators or traditional institutions
relying on standard news cycles or common knowledge signals. Understanding these information
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dynamics, particularly the lag induced by processing costs, is therefore essential for monitoring
and managing financial stability in an increasingly interconnected world.
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A Detailed Derivations for the 3-Period Model

This appendix provides a step-by-step derivation of the linear Bayesian Nash Equilibrium for the
3-period trading model. Our goal is to understand how the informed trader chooses their trades and
how market makers set prices, ultimately showing how the probability of information disclosure
(𝜌𝑐) affects initial trading intensity (𝛽1).

Model Setup Recap:

• Trading occurs at 𝑡 = 1 and 𝑡 = 2.

• The true value 𝑉 is realized at 𝑡 = 0, drawn from a distribution with mean 𝐸 [𝑉] = 𝑉0 = 0
and variance Var(𝑉) = Σ0.

• One informed trader (IT) knows 𝑉 from 𝑡 = 0.

• Market makers (MMs) are competitive and risk-neutral; they set prices.

• Noise traders submit random orders 𝑢𝑡 ∼ 𝑁 (0, 𝜎2
𝑢 ), independent of 𝑉 and each other.

• Total order flow at time 𝑡 is 𝑌𝑡 = 𝑥𝑡 + 𝑢𝑡 , where 𝑥𝑡 is the IT’s trade.

• After trading at 𝑡 = 1, the true value 𝑉 becomes public with probability 𝜌𝑐. If not, trading
continues at 𝑡 = 2.

A.1 Analysis of Period 𝑡 = 2

We first analyze the decisions made in the final period, 𝑡 = 2, assuming this period is reached
(which happens with probability 1 − 𝜌𝑐). At the start of 𝑡 = 2, the information available to the
market makers is the history of order flow from period 1, F1 = {𝑌1}. The price set at the end of
period 1 is 𝑃1 = 𝐸 [𝑉 |F1]. The remaining uncertainty about the asset’s value, from the market
makers’ perspective, is the conditional variance Σ1 = Var(𝑉 |F1).

Informed Trader’s Optimal Trade 𝑥∗2: The IT knows the true value 𝑉 and the price 𝑃1. They
choose their trade size 𝑥2 to maximize their expected profit in period 2. The profit is the quantity
traded (𝑥2) times the difference between the true value (𝑉) and the execution price (𝑃2).

Maximize 𝐸 [𝑥2(𝑉 − 𝑃2) |𝑉, 𝑃1]

The IT anticipates that the market makers will set the price 𝑃2 based on the total order flow
𝑌2 = 𝑥2 + 𝑢2. We assume MMs use a linear rule: 𝑃2 = 𝑃1 + 𝜆2𝑌2 = 𝑃1 + 𝜆2(𝑥2 + 𝑢2). Here, 𝜆2
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represents the price impact of the order flow in period 2. Substituting this into the IT’s objective:

Maximize 𝐸 [𝑥2(𝑉 − (𝑃1 + 𝜆2(𝑥2 + 𝑢2))) |𝑉, 𝑃1]

The IT knows𝑉 , 𝑃1, and anticipates the value of 𝜆2. The only uncertainty from the IT’s perspective
is the noise trade 𝑢2. Since 𝑢2 has an expected value of zero (𝐸 [𝑢2] = 0) and is independent of the
IT’s choice 𝑥2, the expectation simplifies:

𝐸 [𝑥2(𝑉 − 𝑃1 − 𝜆2𝑥2 − 𝜆2𝑢2) |𝑉, 𝑃1] = 𝑥2(𝑉 − 𝑃1 − 𝜆2𝑥2) − 𝜆2𝑥2𝐸 [𝑢2] = 𝑥2(𝑉 − 𝑃1 − 𝜆2𝑥2)

So, the IT’s problem is to choose 𝑥2 to maximize a simple quadratic function, let’s call it the Period
2 Profit Objective:

Π2(𝑥2) = 𝑥2(𝑉 − 𝑃1 − 𝜆2𝑥2)

To find the maximum, we take the derivative with respect to 𝑥2 and set it to zero (First-Order
Condition, FOC):

𝑑Π2

𝑑𝑥2
= 𝑉 − 𝑃1 − 2𝜆2𝑥2 = 0

Solving for 𝑥2 gives the IT’s optimal trade in period 2:

𝑥∗2(𝑉, 𝑃1) =
𝑉 − 𝑃1

2𝜆2
(3)

This makes intuitive sense: the IT trades more aggressively (larger 𝑥∗2) when the perceived mis-
pricing (𝑉 − 𝑃1) is larger, and less aggressively when the price impact 𝜆2 is higher. We can define
the trading intensity parameter 𝛽2 = 1/(2𝜆2), so the strategy is linear: 𝑥∗2 = 𝛽2(𝑉 − 𝑃1).

Market Maker’s Optimal Pricing 𝜆2: Competitive market makers set the price equal to the
expected value of the asset given all publicly available information. At the end of period 2, this
information is F2 = {𝑌1, 𝑌2}. So, 𝑃2 = 𝐸 [𝑉 |𝑌1, 𝑌2]. The linear rule 𝑃2 = 𝑃1 + 𝜆2𝑌2 is consistent
with this if 𝜆2 correctly reflects how much information about 𝑉 is contained in the new order flow
𝑌2, given what was already known from 𝑌1. Specifically, 𝜆2 is the coefficient from projecting 𝑉

onto 𝑌2 after accounting for 𝑃1 = 𝐸 [𝑉 |𝑌1]. This projection coefficient is given by the conditional
covariance divided by the conditional variance:

𝜆2 =
Cov(𝑉,𝑌2 |F1)

Var(𝑌2 |F1)

The notation "| F1" means "conditional on knowing the information from period 1 (i.e., 𝑌1 and thus
𝑃1 and Σ1 are known)". Let’s calculate the numerator and denominator.
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Numerator (Conditional Covariance): Substitute 𝑌2 = 𝑥∗2 + 𝑢2 = 𝛽2(𝑉 − 𝑃1) + 𝑢2:

Cov(𝑉,𝑌2 |F1) = Cov(𝑉, 𝛽2(𝑉 − 𝑃1) + 𝑢2 |F1)
= Cov(𝑉, 𝛽2𝑉 |F1) − Cov(𝑉, 𝛽2𝑃1 |F1) + Cov(𝑉, 𝑢2 |F1) (Linearity of Covariance)

= 𝛽2Cov(𝑉,𝑉 |F1) − 𝛽2Cov(𝑉, 𝑃1 |F1) + 0 (Pull out constant 𝛽2; 𝑉, 𝑢2 independent)

Since𝑃1 is known givenF1, it’s treated as a constant in the conditional covariance, so Cov(𝑉, 𝑃1 |F1) =
0. Also, Cov(𝑉,𝑉 |F1) = Var(𝑉 |F1) = Σ1.

Cov(𝑉,𝑌2 |F1) = 𝛽2Σ1 − 0 + 0 = 𝛽2Σ1

Denominator (Conditional Variance):

Var(𝑌2 |F1) = Var(𝛽2(𝑉 − 𝑃1) + 𝑢2 |F1)
= Var(𝛽2𝑉 − 𝛽2𝑃1 + 𝑢2 |F1)
= Var(𝛽2𝑉 |F1) + Var(𝑢2 |F1) + 2Cov(𝛽2𝑉 − 𝛽2𝑃1, 𝑢2 |F1) (Variance of sum)

= 𝛽2
2Var(𝑉 |F1) + Var(𝑢2) + 0 (Pull out constant 𝛽2; 𝑉, 𝑢2 independent; 𝑃1 known)

= 𝛽2
2Σ1 + 𝜎2

𝑢

Solving for 𝜆2 and 𝛽2: Substitute the numerator and denominator back into the formula for 𝜆2:

𝜆2 =
𝛽2Σ1

𝛽2
2Σ1 + 𝜎2

𝑢

We have two equations relating 𝜆2 and 𝛽2: this one, and 𝛽2 = 1/(2𝜆2) from the IT’s optimization.
Substitute 𝛽2 = 1/(2𝜆2) into the equation for 𝜆2:

𝜆2 =
(1/2𝜆2)Σ1

(1/(2𝜆2))2Σ1 + 𝜎2
𝑢

=
Σ1/(2𝜆2)

(Σ1/(4𝜆2
2)) + 𝜎2

𝑢
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Multiply both sides by the denominator and by 2𝜆2 (assuming 𝜆2 ≠ 0):

𝜆2

(
Σ1

4𝜆2
2
+ 𝜎2

𝑢

)
=

Σ1

2𝜆2

Σ1

4𝜆2
+ 𝜆2𝜎

2
𝑢 =

Σ1

2𝜆2
(Multiply by 2𝜆2)

Σ1

2
+ 2𝜆2

2𝜎
2
𝑢 = Σ1

2𝜆2
2𝜎

2
𝑢 = Σ1 −

Σ1

2
=
Σ1

2

𝜆2
2 =

Σ1

4𝜎2
𝑢

Price impact 𝜆2 must be positive if there’s any uncertainty left (Σ1 > 0). So we take the positive
square root:

𝜆2 =

√
Σ1

2𝜎𝑢

(4)

Now find the corresponding 𝛽2:

𝛽2 =
1

2𝜆2
=

1
2(
√
Σ1/2𝜎𝑢)

=
𝜎𝑢√
Σ1

(5)

These give the equilibrium price impact and trading intensity in period 2, depending on the residual
uncertainty Σ1 and noise trader variance 𝜎2

𝑢 .
Informed Trader’s Expected Profit in 𝑡 = 2: What is the value of playing the period 2 game for

the IT? We substitute the optimal trade 𝑥∗2 back into the IT’s objective function IT2’s Objective(𝑥2) =
𝑥2(𝑉 − 𝑃1 − 𝜆2𝑥2).

Π∗
2 (𝑉, 𝑃1) = 𝑥∗2(𝑉 − 𝑃1 − 𝜆2𝑥

∗
2)

=
𝑉 − 𝑃1

2𝜆2

(
𝑉 − 𝑃1 − 𝜆2

𝑉 − 𝑃1

2𝜆2

)
=
𝑉 − 𝑃1

2𝜆2

(
𝑉 − 𝑃1 −

𝑉 − 𝑃1

2

)
=
𝑉 − 𝑃1

2𝜆2

(
𝑉 − 𝑃1

2

)
=

(𝑉 − 𝑃1)2

4𝜆2

Now substitute the equilibrium value 𝜆2 =
√
Σ1

2𝜎𝑢
:

Π∗
2 (𝑉, 𝑃1) =

(𝑉 − 𝑃1)2

4(
√
Σ1/2𝜎𝑢)

=
(𝑉 − 𝑃1)2

2
√
Σ1/𝜎𝑢

=
𝜎𝑢 (𝑉 − 𝑃1)2

2
√
Σ1

(6)
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This is the profit the IT expects to make in period 2, given the true value 𝑉 and the price 𝑃1 set
after period 1. It depends on the squared mispricing (𝑉 − 𝑃1)2 and the market conditions (𝜎𝑢, Σ1).

Residual Variance Σ1 (Bayesian Updating): How much uncertainty about 𝑉 remains after
observing the period 1 order flow𝑌1? This is Σ1 = Var(𝑉 |𝑌1). This is a standard Bayesian updating
problem. When the prior distribution of 𝑉 is Normal and the signal 𝑌1 = 𝛽1𝑉 + 𝑢1 is linear with
Normal noise 𝑢1, the posterior variance is given by a specific formula. Even without assuming
Normality, this formula gives the variance of the best linear predictor of 𝑉 given 𝑌1. The formula
is:

Var(𝑉 |𝑌1) = Var(𝑉) − [Cov(𝑉,𝑌1)]2

Var(𝑌1)
Let’s calculate the terms:

• Var(𝑉) = Σ0 (Prior variance before any trading)

• Cov(𝑉,𝑌1) = Cov(𝑉, 𝛽1𝑉 + 𝑢1) = Cov(𝑉, 𝛽1𝑉) + Cov(𝑉, 𝑢1) = 𝛽1Var(𝑉) + 0 = 𝛽1Σ0

• Var(𝑌1) = Var(𝛽1𝑉 + 𝑢1) = Var(𝛽1𝑉) + Var(𝑢1) + 2Cov(𝛽1𝑉, 𝑢1) = 𝛽2
1Var(𝑉) + 𝜎2

𝑢 + 0 =

𝛽2
1Σ0 + 𝜎2

𝑢

Substituting these into the formula for Σ1:

Σ1 = Σ0 −
(𝛽1Σ0)2

𝛽2
1Σ0 + 𝜎2

𝑢

We can rewrite this using the definition of the period 1 price impact parameter, 𝜆1. By the same
logic used for 𝜆2, the market maker sets 𝑃1 = 𝜆1𝑌1 where:

𝜆1 =
Cov(𝑉,𝑌1)

Var(𝑌1)
=

𝛽1Σ0

𝛽2
1Σ0 + 𝜎2

𝑢

Now notice that the fraction in the expression for Σ1 is related to 𝜆1:

(𝛽1Σ0)2

𝛽2
1Σ0 + 𝜎2

𝑢

= 𝛽1Σ0

(
𝛽1Σ0

𝛽2
1Σ0 + 𝜎2

𝑢

)
= 𝛽1Σ0𝜆1

So, we can write the updated variance very neatly:

Σ1 = Σ0 − 𝜆1𝛽1Σ0 = Σ0(1 − 𝜆1𝛽1) (7)

This shows how the initial uncertainty Σ0 is reduced by the trading in period 1. The reduction
depends on the product of the price impact 𝜆1 and the trading intensity 𝛽1. More informative
trading (higher 𝜆1𝛽1) leads to lower residual uncertainty Σ1.
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A.2 Analysis of Period 𝑡 = 1

Now we move back to period 1. The IT knows 𝑉 and needs to choose the trade size 𝑥1.
Informed Trader’s Problem (t=1): The IT chooses 𝑥1 to maximize their total expected profit

across both periods. The profit consists of:

1. Profit from period 1 trading: 𝑥1(𝑉 − 𝑃1)

2. Expected profit from period 2 trading: This is only realized if the information does not
become public after period 1 (which happens with probability 1 − 𝜌𝑐). The value of this
future profit is Π∗

2 (𝑉, 𝑃1) as calculated in Eq. 6.

The IT’s total objective is to maximize the expectation of the sum, conditional on knowing 𝑉 :

Maximize 𝐸
[
𝑥1(𝑉 − 𝑃1) + (1 − 𝜌𝑐)Π∗

2 (𝑉, 𝑃1)
�� 𝑉 ]

The IT anticipates the pricing rule 𝑃1 = 𝜆1𝑌1 = 𝜆1(𝑥1+𝑢1). The future profit Π∗
2 depends on 𝑃1 and

Σ1. The residual variance Σ1 = Σ0(1 − 𝜆1𝛽1) depends on the anticipated equilibrium intensity 𝛽1

(which determines 𝜆1). When choosing 𝑥1, the IT treats 𝜆1 and Σ1 as fixed parameters determined
by the overall equilibrium, but knows that 𝑃1 will depend on their chosen 𝑥1 and the random noise
𝑢1.

Substitute 𝑃1 and Π∗
2 into the objective:

Maximize 𝐸

[
𝑥1(𝑉 − 𝜆1(𝑥1 + 𝑢1)) + (1 − 𝜌𝑐)

𝜎𝑢 (𝑉 − 𝜆1(𝑥1 + 𝑢1))2

2
√
Σ1

���� 𝑉 ]
Now we need to take the expectation over the random noise 𝑢1. Let 𝐴 = 𝑉 − 𝜆1𝑥1 and 𝐵 = 𝜆1. The
expression involves terms like 𝐸 [𝐴 − 𝐵𝑢1] and 𝐸 [(𝐴 − 𝐵𝑢1)2].

• 𝐸 [𝑥1(𝑉 − 𝜆1𝑥1 − 𝜆1𝑢1) |𝑉] = 𝑥1(𝑉 − 𝜆1𝑥1) − 𝑥1𝜆1𝐸 [𝑢1] = 𝑥1(𝑉 − 𝜆1𝑥1)

• 𝐸 [(𝑉−𝜆1𝑥1−𝜆1𝑢1)2 |𝑉] = 𝐸 [(𝐴−𝐵𝑢1)2 |𝑉] = 𝐸 [𝐴2−2𝐴𝐵𝑢1+𝐵2𝑢2
1 |𝑉] = 𝐴2−2𝐴𝐵𝐸 [𝑢1] +

𝐵2𝐸 [𝑢2
1] = 𝐴2 + 𝐵2Var(𝑢1) = (𝑉 − 𝜆1𝑥1)2 + 𝜆2

1𝜎
2
𝑢

So the IT’s objective function, let’s call it the Total Expected Profit, becomes:

Π1(𝑥1) = 𝑥1(𝑉 − 𝜆1𝑥1) + (1 − 𝜌𝑐)
𝜎𝑢

2
√
Σ1

[
(𝑉 − 𝜆1𝑥1)2 + 𝜆2

1𝜎
2
𝑢

]
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To maximize this with respect to 𝑥1, we take the derivative and set it to zero:

𝑑Π1

𝑑𝑥1
=

𝑑

𝑑𝑥1
[𝑥1𝑉 − 𝜆1𝑥

2
1] + (1 − 𝜌𝑐)

𝜎𝑢

2
√
Σ1

𝑑

𝑑𝑥1
[(𝑉 − 𝜆1𝑥1)2 + 𝜆2

1𝜎
2
𝑢 ]

= (𝑉 − 2𝜆1𝑥1) + (1 − 𝜌𝑐)
𝜎𝑢

2
√
Σ1

[2(𝑉 − 𝜆1𝑥1) (−𝜆1) + 0]

= 𝑉 − 2𝜆1𝑥1 − (1 − 𝜌𝑐)
𝜎𝑢𝜆1√
Σ1

(𝑉 − 𝜆1𝑥1) = 0

This equation must hold for the optimal 𝑥1. We are looking for a linear equilibrium where the IT
chooses 𝑥1 = 𝛽1𝑉 . Substitute this into the FOC:

𝑉 − 2𝜆1(𝛽1𝑉) − (1 − 𝜌𝑐)
𝜎𝑢𝜆1√
Σ1

(𝑉 − 𝜆1(𝛽1𝑉)) = 0

Assuming 𝑉 ≠ 0, we can divide the entire equation by 𝑉 :

1 − 2𝜆1𝛽1 − (1 − 𝜌𝑐)
𝜎𝑢𝜆1√
Σ1

(1 − 𝜆1𝛽1) = 0

Now substitute the expression for Σ1 = Σ0(1 − 𝜆1𝛽1) (from Eq. 7):

1 − 2𝜆1𝛽1 − (1 − 𝜌𝑐)
𝜎𝑢𝜆1(1 − 𝜆1𝛽1)√︁
Σ0(1 − 𝜆1𝛽1)

= 0

1 − 2𝜆1𝛽1 − (1 − 𝜌𝑐)
𝜎𝑢𝜆1

√︁
1 − 𝜆1𝛽1√
Σ0

= 0 (8)

This is the crucial equation resulting from the IT’s optimization in period 1. It provides a relationship
that must hold between the equilibrium price impact 𝜆1 and trading intensity 𝛽1.

Market Maker’s Problem (t=1): As mentioned before, the market maker sets 𝜆1 such that
𝑃1 = 𝐸 [𝑉 |𝑌1]. This leads to the standard Kyle model formula for price impact:

𝜆1 =
Cov(𝑉,𝑌1)

Var(𝑌1)
=

𝛽1Σ0

𝛽2
1Σ0 + 𝜎2

𝑢

(9)

Equilibrium Solution (𝛽1, 𝜆1): The equilibrium values of 𝛽1 and 𝜆1 are found by solving the
two key equations simultaneously:

1. IT’s Optimality (FOC): Eq. 8

2. MM’s Pricing Rule: Eq. 9

Solving this system explicitly for 𝛽1 and 𝜆1 is algebraically complex. A common technique is to
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introduce the variable 𝑋 = 𝜆1𝛽1, which represents the fraction of variance explained by the first
period’s trade (since Σ1 = Σ0(1−𝑋)). For Σ1 to be positive, we need 𝑋 < 1. Also, since 𝜆1, 𝛽1 > 0,
we need 𝑋 > 0.

We can express 𝛽1 and 𝜆1 in terms of 𝑋 using the MM’s pricing rule (Eq. 9):

• From 𝜆1 =
𝛽1Σ0

𝛽2
1Σ0+𝜎2

𝑢
and 𝜆1 = 𝑋/𝛽1, we get:

𝛽1 = 𝜎𝑢

√︄
𝑋

Σ0(1 − 𝑋) (10)

• And substituting back 𝜆1 = 𝑋/𝛽1:

𝜆1 =
𝑋

𝛽1
=

𝑋

𝜎𝑢

√︂
Σ0(1 − 𝑋)

𝑋
=

1
𝜎𝑢

√︁
𝑋Σ0(1 − 𝑋) (11)

Now, substitute these expressions for 𝜆1 and 𝛽1 (only in terms of 𝑋) into the IT’s FOC (Eq. 8):

1 − 2𝑋 − (1 − 𝜌𝑐)
𝜎𝑢√
Σ0

(
1
𝜎𝑢

√︁
𝑋Σ0(1 − 𝑋)

) √
1 − 𝑋 = 0

1 − 2𝑋 − (1 − 𝜌𝑐)
√︁
𝑋Σ0(1 − 𝑋)

√
Σ0

√
1 − 𝑋 = 0

1 − 2𝑋 − (1 − 𝜌𝑐)
√︁
𝑋 (1 − 𝑋)

√
1 − 𝑋 = 0

1 − 2𝑋 − (1 − 𝜌𝑐)
√
𝑋 (1 − 𝑋) = 0 (*)

This single equation implicitly defines the equilibrium value of 𝑋 = 𝜆1𝛽1. Once we solve this
equation for 𝑋 (likely numerically), we can plug the value of 𝑋 back into Eqs. 10 and 11 to find
the equilibrium 𝛽1 and 𝜆1.

A.3 Proof of Strategic Moderation (How 𝛽1 changes with 𝜌𝑐)

Our main goal is to show that 𝛽1 increases when 𝜌𝑐 increases (𝜕𝛽1/𝜕𝜌𝑐 > 0). We use the
equilibrium condition derived above (Eq. *) and the relationship between 𝛽1 and 𝑋 .

The proof proceeds in two steps: 1. Show that 𝑋 increases with 𝜌𝑐 (𝜕𝑋/𝜕𝜌𝑐 > 0). 2. Show
that 𝛽1 increases with 𝑋 (𝜕𝛽1/𝜕𝑋 > 0). If both are true, then by the chain rule, 𝛽1 must increase
with 𝜌𝑐.

Step 1: Show 𝜕𝑋/𝜕𝜌𝑐 > 0 The equilibrium value of 𝑋 is defined implicitly by the equation
1− 2𝑋 − (1− 𝜌𝑐)

√
𝑋 (1− 𝑋) = 0. Let’s define a function 𝐺 (𝑋, 𝜌𝑐) = 1− 2𝑋 − (1− 𝜌𝑐)

√
𝑋 (1− 𝑋).

The equilibrium condition is 𝐺 (𝑋, 𝜌𝑐) = 0. We want to find how 𝑋 changes when 𝜌𝑐 changes,
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which is the derivative 𝑑𝑋/𝑑𝜌𝑐. We can use the implicit function theorem, which states that if
𝐺 (𝑋, 𝜌𝑐) = 0, then:

𝑑𝑋

𝑑𝜌𝑐
= −𝜕𝐺/𝜕𝜌𝑐

𝜕𝐺/𝜕𝑋
We need to calculate the two partial derivatives.

Partial derivative with respect to 𝜌𝑐: Treat 𝑋 as constant.

𝜕𝐺

𝜕𝜌𝑐
=

𝜕

𝜕𝜌𝑐
[1 − 2𝑋 − (1 − 𝜌𝑐)

√
𝑋 (1 − 𝑋)] = 0 − 0 − (−

√
𝑋 (1 − 𝑋)) =

√
𝑋 (1 − 𝑋)

Since 𝑋 must be between 0 and 1 in equilibrium (0 < 𝑋 < 1), both
√
𝑋 and (1 − 𝑋) are positive.

Thus, 𝜕𝐺
𝜕𝜌𝑐

> 0.
Partial derivative with respect to 𝑋: Treat 𝜌𝑐 as constant. We need the product rule for the term√

𝑋 (1 − 𝑋).

𝜕𝐺

𝜕𝑋
=

𝜕

𝜕𝑋
[1 − 2𝑋 − (1 − 𝜌𝑐) (

√
𝑋 − 𝑋3/2)]

= 0 − 2 − (1 − 𝜌𝑐)
[
𝑑

𝑑𝑋
(
√
𝑋 − 𝑋3/2)

]
= −2 − (1 − 𝜌𝑐)

[
1

2
√
𝑋

− 3
2
𝑋1/2

]
= −2 − (1 − 𝜌𝑐)

[
1

2
√
𝑋

− 3
√
𝑋

2

]
= −2 − (1 − 𝜌𝑐)

[
1 − 3𝑋
2
√
𝑋

]
This expression looks complicated, but we can simplify it by using the equilibrium condition
𝐺 (𝑋, 𝜌𝑐) = 0 itself, which implies 1 − 2𝑋 = (1 − 𝜌𝑐)

√
𝑋 (1 − 𝑋). From this, we can isolate
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(1 − 𝜌𝑐) = 1−2𝑋√
𝑋 (1−𝑋)

. Substitute this into the expression for 𝜕𝐺/𝜕𝑋:

𝜕𝐺

𝜕𝑋
= −2 −

(
1 − 2𝑋

√
𝑋 (1 − 𝑋)

) [
1 − 3𝑋
2
√
𝑋

]
= −2 − (1 − 2𝑋) (1 − 3𝑋)

2𝑋 (1 − 𝑋) (Combine terms)

=
−2 × 2𝑋 (1 − 𝑋) − (1 − 2𝑋) (1 − 3𝑋)

2𝑋 (1 − 𝑋) (Common denominator)

=
−4𝑋 (1 − 𝑋) − (1 − 3𝑋 − 2𝑋 + 6𝑋2)

2𝑋 (1 − 𝑋)

=
−4𝑋 + 4𝑋2 − (1 − 5𝑋 + 6𝑋2)

2𝑋 (1 − 𝑋)

=
−4𝑋 + 4𝑋2 − 1 + 5𝑋 − 6𝑋2

2𝑋 (1 − 𝑋)

=
−2𝑋2 + 𝑋 − 1

2𝑋 (1 − 𝑋)

Now we need the sign of this derivative. The denominator 2𝑋 (1 − 𝑋) is positive since 0 < 𝑋 < 1.
Consider the numerator: −2𝑋2 + 𝑋 − 1. This is a downward-opening parabola. To check if it can
be positive, we look at its discriminant: Δ = 𝑏2 − 4𝑎𝑐 = (1)2 − 4(−2) (−1) = 1− 8 = −7. Since the
discriminant is negative and the parabola opens downward, the numerator is *always negative* for
any real 𝑋 . Therefore, 𝜕𝐺

𝜕𝑋
=

Negative
Positive = Negative.

Combining the results:
𝑑𝑋

𝑑𝜌𝑐
= −𝜕𝐺/𝜕𝜌𝑐

𝜕𝐺/𝜕𝑋 = − (+)
(−) = (+)

We have successfully shown that 𝑋 = 𝜆1𝛽1 increases as 𝜌𝑐 increases.
Step 2: Show 𝜕𝛽1/𝜕𝑋 > 0 We know the relationship between 𝛽1 and 𝑋 from Eq. 10:

𝛽1 = 𝜎𝑢

√︄
𝑋

Σ0(1 − 𝑋) =

√︄
𝜎2
𝑢

Σ0

√︂
𝑋

1 − 𝑋

Since 𝜎2
𝑢 and Σ0 are positive constants, 𝛽1 is proportional to

√︁
ℎ(𝑋) where ℎ(𝑋) = 𝑋

1−𝑋 . To see
how 𝛽1 changes with 𝑋 , we just need to see how ℎ(𝑋) changes with 𝑋 . Let’s find the derivative of
ℎ(𝑋):

ℎ′(𝑋) = 𝑑

𝑑𝑋

(
𝑋

1 − 𝑋

)
=

(1 − 𝑋) (1) − 𝑋 (−1)
(1 − 𝑋)2 =

1 − 𝑋 + 𝑋

(1 − 𝑋)2 =
1

(1 − 𝑋)2

Since (1 − 𝑋)2 is always positive for 𝑋 ≠ 1, ℎ′(𝑋) is positive for 𝑋 ∈ (0, 1). This means ℎ(𝑋)
is strictly increasing in 𝑋 . Because 𝛽1 is proportional to the square root of an increasing function
of 𝑋 (and the square root function is itself increasing for positive arguments), 𝛽1 must be strictly
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increasing in 𝑋 . That is, 𝜕𝛽1/𝜕𝑋 > 0.
Conclusion: We showed that 𝑋 increases with 𝜌𝑐 (Step 1), and 𝛽1 increases with 𝑋 (Step 2).

Using the chain rule for derivatives:

𝜕𝛽1

𝜕𝜌𝑐
=

𝜕𝛽1

𝜕𝑋︸︷︷︸
(+)

× 𝜕𝑋

𝜕𝜌𝑐︸︷︷︸
(+)

= (+) > 0

This completes the proof. It confirms the theorem’s statement and the economic intuition: when the
informed trader perceives a higher probability (𝜌𝑐) that their information advantage will disappear
soon (due to public disclosure), they have a stronger incentive to trade more aggressively in the
first period to capitalize on the information before it becomes common knowledge. This leads to a
higher initial trading intensity 𝛽1.
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