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Abstract 

Decomposing empirical or economic phenomena into the contributions of different inputs is a frequent 

goal of economic analysis. However, in many settings, the quantity of interest depends on many inputs 

which are aggregated non-linearly. In these settings, decompositions need not sum to one and often 

depend on the order in which inputs are “zeroed out.” In this note we describe a simple but convenient 

alternative. We show that using the Shapley-Owen value, extended to inequality decompositions in 

Shorrocks (1999, 2013), provides an additive decomposition that sums to one and is easily interpretable in 

terms of the contribution of different inputs (or groups of them) to some aggregate outcome. We provide 

several examples to help implement the approach. We believe this is exceptionally well-suited to 

decompositions in rich-structural models of economic phenomena which are typically non-linear. 
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In this short note, we aim to provide a simple overview of the
Shapley-Owen-Shorrocks decomposition. The objective of the decomposition is to
obtain values measuring the contribution of several inputs (or groups of them) to some
aggregate outcome. When the outcome can be expressed as a linear function of inputs
the decomposition is immediate: the value of of each input can be obtained by setting
all other inputs to their baseline value, say zero. But, when the outcome is the product
of a non-linear aggregation, as is the case in structural models of economic decision
making, the order in which inputs are “zero-ed out” matters.

The decomposition, developed in Shorrocks (1999, 2013) for the study of inequality,
uses the concept of the Shapley value to treat each input (a variable, policy function,
or price) as a player and the outcome of interest as the surplus being generated by
the inputs collective “action.” In this way, the Shapley value of each input provides
its contribution, adding up to the aggregate outcome. The same concept applies when
a group of inputs moves together, as is the case when changing all prices or initial
conditions in counterfactuals, following the generalization of Shapley (1953) in Owen
(1977) to unions of players. We have found this decomposition useful in our own work,
as well as in discussions with colleagues, collaborators, and students.

Despite being common in some areas of economics, or within some research
networks, we believe it is an underused tool. We see this approach as providing an
intuitive decomposition when there are non-trivial interactions between various
factors, as is the case for virtually all economic phenomena. Our goal is to
transparently define the decomposition and illustrate its uses through fully worked-out
toy examples. We hope that this will contribute to wider use.

Before proceeding, we provide a short and non-exhaustive list of the uses of the
decomposition in economics research. It has been used for decomposing the R2 in
regression analysis (Israeli 2007; Huettner and Sunder 2012); and to decompose the
contribution of groups of regressors to the variance of earnings as in Allen andArkolakis
(2014); in structural models, it has been used to quantify the roles of changing labor
market and demographic conditions for the take up of disability insurance in a structural
life cycle model (Michaud and Wiczer 2018); in the literature on earnings dynamics, it
has been used to decompose higher ordermoments of earnings changes, distinguishing
the roles of employer and occupational switchers (Carrillo Tudela, Visschers, andWiczer
2022), and the role of changes in earnings risk for homeownership (Paz Pardo 2024); in
Hubmer, Halvorsen, Salgado, and Ozkan (2024) the decomposition is used in accounting
for the roles of returns, savings, income, and inheritances in wealth accumulation; in
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Audoly, McGee, Ocampo, and Paz Pardo (2024) we use it to decompose the explanatory
power of groups of regressors in amultinomial logitmodel; in firm dynamics it has been
used to account for drivers of output volatility (Kabir and Tan 2024); Kwon, Lee, and
Pouliot (2024) highlight the relationship between the Shapley value and least squares
and perform the decomposition on groups of inputs in the context of a Roy model; in
Athreya, Gordon, Jones, and Neelakantan (2025) it is used to decompose differences
in wealth accumulation by race; Millard (2025) decomposes the gap in post-secondary
education between individuals with and without an early-onset disability; Freund (2025)
uses it to account for the change in the variance of log-wages over time in terms of
structural parameters of an assignment model; and Guler, Kuruscu, and Robinson
(2025) use it to separate the contribution of return heterogeneity, long-term debt, and
the liquidity of housing wealth, to the marginal propensity to consume in a life-cycle
housing model.

1. The Decomposition

Given an arbitrary function Y = f (X1,X2, ...,Xn), the Shapley-Owen-Shorrocks
decomposition is a method to decompose the value of f (·) into each of its arguments
X1,X2, ...,Xn. Intuitively, this is the contribution of each argument if it were to be
“removed” from the function. However, because the function can be nonlinear, the
order in which the arguments are removed matters in general for the decomposition.
The function f (·) can be the outcome of a regression, like the predicted values or sum
of square residuals, or the output of a structural model, such as a counterfactual value
for a variable given a list of model parameters or components, or a transformation of
the sample, for example the Gini coefficient.

The Shapley-Owen-Shorrocks decomposition is the unique decomposition satisfying
four important properties.

(i) Exact decomposition under addition. Letting Cj denote the contribution of
argument Xj to the value of the function f (·),

n∑
j =1

Cj = f (X1,X2, ...,Xn), (1)
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so that Cj/ f (·) can be interpreted as the proportion of f (.) that can be attributed to Xj .1

(ii) Symmetry with respect to the order of the arguments. That is, the order in which
the variable Xj is removed from f (·) does not alter the value of Cj .

(iii) The decomposition assigns zero contribution to factors that have a null-effect
(an irrelevance normalization). If a factor Xj never changes the outcome of the function,
in an abuse of notation ∂j f (·) = 0 everywhere, then Cj = 0.

(iv) The attribution operator is linear in the function that is decomposed. This is a
useful closure requirement that implies contributions rescale linearly with a rescaling
of the outcome function and are linear for combinations of outcomes.

The contribution of input Xj is then

Cj =
n–1∑
k=0

(n – k – 1)!k!
n!

 ∑
s⊆Sk\{Xj }:|s|=k

[
f (s ∪ {Xj }) – f (s)

] , (2)

where n is the total number of arguments in the original function f , Sk \ {Xj } is the set
of all “sub-models” that contain k arguments and exclude argument Xj .2 For example,

Sn–1 \ Xn =
{
f (X1,X2, ...,Xn–1)

}
S1 \ Xn =

{
f (X1), f (X2), ..., f (Xn–1)

}
.

The decomposition in (2) accounts for all possible permutations of the
decomposition order. Thus, (n–k–1)!k!n! can be interpreted as the probability that one of
the particular sub-model with k variables is randomly selected when all model sizes are
all equally likely. For example, if n = 3, there are sub-models of size {0, 1, 2}. In
particular, there are 22 permutation of models that exclude each variable:
{(0, 0)︸ ︷︷ ︸
k=0

, (1, 0), (0, 1)︸ ︷︷ ︸
k=1

, (1, 1)︸︷︷︸
k=2

}.

We provide a simple implementation of the decomposition in Matlab at the end of
the document and outline the algorithm below.

1The interpretation holds as long as f is non-negative. If f can take negative values, then the
interpretation of Cj under the exact additive rule can be misleading as some arguments can have Cj < 0.

2We abuse notation here. A “sub-model” is an evaluation of function f with only some of its arguments.
This language is motivated by the function corresponding in practice to the outcome of a regression or
structural model. Formally, when we write f (X1), we mean f (X1, ∅2, ..., ∅n), where we assume the j-th
argument of the function can always take on a null value denoted ∅j . In our regression example below,
this null value corresponds to a zero valued regressor or parameter. In the case of the structural model,
this null value can correspond to setting some parameters to a predetermined value or excluding certain
model components, like the adjustment of prices or a specific shock agents face.
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Shapley-Owen-Shorrocks Algorithm
Inputs: Variable inputs and values across “sub-models.”

(a) X: a binary 2n × nmatrix. Gives inputs in "sub-models."

(b) F: a 2n × 1 vector of model values.

The rows of X and F corresponding to “sub-models”. A row of zeroes represents the
reference value or null-model. A row of ones represent the full model with all inputs.

Output: C, a n× 1 vector of input contributions.
Computing contribution for j th input:

• Initialize contribution to 0, C(j ) = 0.

• Loop over sub-model sizes, k = 0, . . . ,n – 1.

i Define weight for this class of sub-modelsωk =
(n–k–1)!k!

n! .
ii Find sub-models Sk \ {Xj }:Rows of X with k inputs and without j .
iii Loop over s ∈ Sk \ {Xj } updating the contribution of input j :

C(j ) = C(j ) +ωk × (F (s ∪ {j }) – F (s))

2. Linear Example

We begin with the benchmark case of a linearly-aggregated outcome. In this case the
natural decomposition is just the individual value of each input as they are already
additive. We take this case to illustrate how the weighting scheme in (2) works.

Consider a linear model with 3 variables:

Y = f (X1,X2,X3) = β1X1 + β2X2 + β3X3 (3)

Consider the the partial effect ofX3 on Y . There are four possiblemodels that exclude
X3, one with no variable, two with one variable and one with two variables

k = 0 : {0}

k = 1 : {β0 + β1X1,β0 + β2X2}

k = 2 : {β0 + β1X1 + β2X2}.
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In all fourmodels, the partial effect of includingX3 is always f (s∪{X3})– f (s) = β3X3 ∀s.
Hence, linearity is such that the order in which variables are included to construct C3
does not matter:

C3 =
2∑
k=0

(n – k – 1)!k!
n!

∑
s⊆Sk\{X3}:|s|=k

[
f (s ∪ {Xj }) – f (s)

]

=
2∑
k=0

(3 – k – 1)!k!
3!

∑
s⊆Sk\{X3}:|s|=k

β3X3 = β3X3 (4)

Notice that this would be the same if the original function took an arbitrary number
of variables: Y = f (X1,X2, ...,Xj ) =

∑n
j =1 βj Xj . The only difference is that the number

of sub-models grows exponentially: 2n–1, but the partial effect of including Xj for some
j ∈ {0, 1, ...,n} is always βj Xj .

Thus, in the linear case, the decomposition is mathematically identical to the usual
regression decomposition. We average over the same object in each permutation
because the effect does not depend on the order in this special case.

3. Nonlinear example I

We illustrate the value of this decomposition with a simple nonlinear model including
n = 3 variables:

Y = f (X1,X2,X3) = β0 + β1X1 + β2X2 + β3X3X2. (5)

The objective is to decompose the value of Y into the contribution (or partial effect) of
each variable.

Removing X1 . There are four possible models that exclude X1—one with no variable,
two with one variable, and one with two variables:

k = 0 : β0
k = 1 : {β0 + β2X2 , β0}

k = 2 : β0 + β2X2 + β3X3X2

In all four models, the partial effect of including X1 is always f (s ∪ X1) – f (s) = β1X1.
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This reflects the fact that the order in which variables are included does not matter to
construct C1:

C1 =
2∑
k=0

(3 – k – 1)!k!
3!

 ∑
s⊆Sk\{X3}:|s|=k

[
f (s ∪ {Xj }) – f (s)

] = β1X1 (6)

Thiswould be the same for any argumentXj entering linearly into f an arbitrary number
of variables: Y = f (X1,X2,X3,X4, ...,Xn) = β0 + β1X1 + β2X2 + β3X3X2 +

∑n
j =4 βj Xj . The

only difference is that the number of sub-models grows exponentially, 2n–1, but the
partial effect of including Xj for some j ∈ {4, ...,n} is always Cj = βj Xj .

Removing X2. In this case, the partial effect can be decomposed into all the possible
ways X2 can be added into the model, f (s ∪ {X2}) – f (s), these are

k = 0 (∅1, ∅3) : β0 + β2X2 – β0 = β2X2
k = 1 (X1, ∅3) : β0 + β1X1 + β2X2 – (β0 + β1X1) = β2X2
k = 1 (∅1,X3) : β0 + β2X2 + β3X2X3 – β0 = β2X2 + β3X2X3
k = 2 (X1,X3) : β0 + β1X1 + β2X2 + β3X2X3 – (β0 + β1X1) = β2X2 + β3X2X3

Here, the partial effects of adding X2 are not the same across sub-models because
X2 enters nonlinearly into the original model. The symmetric property of the
decomposition takes care of this.

C2 =
1
3
β2X2︸ ︷︷ ︸
k=0

+
1
6
(β2X2) +

1
6
(β2X2 + β3X2X3)︸ ︷︷ ︸
k=1

+
1
3
(β2X2 + β3X2X3)︸ ︷︷ ︸

k=2

= β2X2 +
1
2
β3X2X3

(7)

The result is quite intuitive. β2X2 appears in all sub-models; hence, its probability
of appearing in the decomposition is 1. β3X2X3 appears in two of the four sub-models;
hence, its probability of appearing is 1/2. Weighting each term by its probability of
appearing in the decomposition ensures symmetry.

Removing X3. We proceed in the same way for X3 as we did for X2. There are four
sub-models. In two of them, the effect of adding X3 is null, because X2 is not in the
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model. In the two remaining sub-models, the effect is β3X2X3. Hence,

C3 =
1
2
β3X2X3. (8)

Finally, we verify the decomposition:

C1 + C2 + C3 = β1X1 +
(
β2X2 +

1
2
β3X2X3

)
+
(
1
2
β3X2X3

)
= β1X1 + β2X2 + β3X2X3
= f (X1,X2,X3) – β0
= f (X1,X2,X3) – f (∅1, ∅2, ∅3).

Reference value for the decomposition. The decomposition is additive with respect to
the “null” model where none of the variables is included. This is made apparent in the
previous result, where the decomposition does not include the value of β0.

4. Nonlinear example II: R2

Finally, we consider a decomposition of the coefficient of determination in the linear
model. Our own use of the decomposition applies this for a nonlinearmodel, combining
the insights from this and the preceding example (see Audoly et al. 2024). We note that
this application of the decomposition was first proposed by Israeli (2007) and Huettner
and Sunder (2012). Recent applications include Nikolova and Cnossen (2020); Engstrom,
Hersh, andNewhouse (2021); Biasi andMa (2022); and Biasi, Lafortune, and Schönholzer
(2025); among others.

Consider a linear regression model with n regressors and i = 1, ...,M observations,

yi = x
′
iβ + ui = β0 +

n∑
j =1

βj xij + ui, (9)

and define the average value of y as y ≡
∑M

i=1 yi/M and the predicted value

ŷi = x
′
iβ̂ = β̂0 +

n∑
j =1

β̂j xij , (10)

where we assume that all regressors have zero mean so that β̂0 = y.
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The function of interest is f (X1, . . . ,XK) = R2, defined as the explained sum of
squares SSE over the total sum of squares SST

R2(X1,X2, ..,Xn) =
SSE
SST

=
∑M
i=1( ŷi – y)

2∑M
i=1( yi – y)2

. (11)

This makes it clear that the function being decomposed is nonlinear even though the
model that generates it is itself linear.

Reference value for the decomposition. The reference value for the R2 in the Shapley-
Owen-Shorrocks decomposition is given by the model without regressors, satisfying

R2(∅) =
∑M
i (β̂0 – y)

2∑M
i ( yi – y)2

= 0, (12)

so that, in this case, the decomposition recovers the level of the R2 of the full model
(with all variables), unlike the previous example.

Decomposition when n = 3. We explicitly calculate the decomposition for n = 3
regressors. As before, we abuse notation by only listing the arguments being included
in each sub-model. The contribution of each variable is:

R21 =
1
3

[
R2(X1) – R2(∅)

]
+
1
6

([
R2(X1,X2) – R2(X2)

]
+
[
R2(X1,X3) – R2(X3)

])
+
1
3

[
R2(X1,X2,X3) – R2(X2,X3)

]
; (13)

R22 =
1
3

[
R2(X2) – R2(∅)

]
+
1
6

([
R2(X1,X2) – R2(X1)

]
+
[
R2(X2,X3) – R2(X3)

])
+
1
3

[
R2(X1,X2,X3) – R2(X1,X3)

]
; (14)

R23 =
1
3

[
R2(X3) – R2(∅)

]
+
1
6

([
R2(X3,X2) – R2(X2)

]
+
[
R2(X1,X3) – R2(X1)

])
+
1
3

[
R2(X1,X2,X3) – R2(X2,X1)

]
. (15)

Summing across all the contributions we obtain back R2(X1,X2,X3),

R21 + R
2
2 + R

2
3 = R

2 = f (X1,X2,X3). (16)
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Decomposing the R2 versus the partial R2. The value of the contribution differs from
the standard definition of partial R2. This is because the partial R2 is an all-else-being-
equal comparison of excluding regressor Xj . However, it is worth noting that the partial
R2 does not satisfy the exact decomposition requirement or (when applied iteratively)
the symmetry requirement.

5. Summary

The Shapley-Owen-Shorrocks decomposition provides an effective alternative when
studying non-linear outcomes that come from the interaction of various factors, as is
the case in most economic applications. The decomposition is additive, symmetric with
respect to factors, and it allows naturally for groups of factors that move together.

While the decomposition is already used by some authors, and in many contexts,
there are still examples where it may be useful. We conclude by highlight some of these
examples. De Nardi, French, Jones, and McGee (2025) decompose the contribution of
various factors to retirement savings in a structural life cycle model, but do not provide
an additive decomposition. Nakajima and Telyukova (2020) provide a decomposition
under one order of elimination in their main text, but (commendably!) provide
robustness to various alternative orders of elimination. Although the cost of
implementing the Shapley-Owen-Shorrocks decomposition grows substantially with
the number of factors, judiciously grouping them can help minimize costs. Additionally,
alternative approaches also impose large computational burdens on researchers.

Finally, the decomposition can also be useful in the context of welfare
decompositions from counterfactual exercises, like those in Flodén (2001) and Conesa,
Kitao, and Krueger (2009) that separate the roles of changes in the aggregate level and
distributions of consumption and leisure for welfare, or in Moschini and Tran Xuan
(2025) that extend these exercises to separate gains from redistribution over the life
cycle and across generations. The value of these decompositions depends in general on
the order in which all these factors are incorporated. The symmetry of the
Shapley-Owen-Shorrocks decomposition can therefore enhance the interpretability of
welfare decompositions at little additional cost in most applications.
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Shapley-Owen-Shorrocks Implementation in Matlab

function C = shapley_owen_shorrocks(X_ind , f_vals)
% X_ind: binary matrix of size ((2^n) x n)
% f_vals: 2^n vector of function values
n = size(X_ind , 2) ; % Number of variables
C = zeros(n, 1) ; % Store contributions
fact_vec = factorial (0:n); % Precompute factorial terms

for j = 1:n % Loop over all inputs
contrib = 0; % Initialize input j contribution

for k = 0:n-1 % Loop over sub -models without input j
% Weight for size -k sub -models --adj. by 1 for

indexing
w = fact_vec(n-k-1+1)*fact_vec(k+1)/fact_vec(n+1);
% Find rows of X_ind with k inputs excluding j
mask_k = sum(X_ind , 2) == k ; % k inputs
mask_j = X_ind(:, j) == 0 ; % Excluding j
idx_base = find(mask_k & mask_j) ; % Both

for idx = idx_base ' % Loop over sub -models (k, no j)
base = X_ind(idx , :); % Reference sub -model
base_val = f_vals(idx) ; % Reference value

% Add variable j to form S U {j}
with_j = base; with_j(j) = 1;
% Find index of "with_j" sub -model and its value
idx_with_j = find(ismember(X_ind , with_j , 'rows'));

if isempty(idx_with_j);
error('sub -model not found');
end

with_j_val = f_vals(idx_with_j);

% Update contriution
contrib = contrib + w*( with_j_val - base_val);

end
end

C(j) = contrib; % Update output
end

end
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