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Abstract

We study the economics of homeowners’ property insurance by examining how contract design balances
the trade-off between incentive alignment and risk sharing. Using granular contract-level property
insurance data merged with property-level disaster risk for millions of U.S. households, we develop and
structurally estimate a model in which insurers optimally determine contract terms given property risk and
household risk preferences. The estimates provide, to our knowledge, the first large-scale contract-level
structural measures of risk aversion, risk premia, and the cost of moral hazard, allowing us to quantify
how disaster risk is allocated between insurers and households. We find that the cost of moral hazard is
small, yet the very mechanism used to mitigate it substantially increases households’ exposure to disaster
risk: contract design leaves policyholders exposed to roughly 29 percent of total expected losses. This
residual exposure is most pronounced for low-FICO households and for properties with the greatest tail
risk. Counterfactuals indicate that mandating full insurance would lead to substantial market exit,
increasing household vulnerability. We further show that insurers’ financial constraints are systematically
correlated with the riskiness of underwritten properties and with household characteristics.
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1 Introduction

Housing is the largest component of household wealth in the US; totaling more than $45
trillion. This suggests that, from households’ perspective, property risk is primary, not
incidental. Losses from natural disasters are rare but lumpy. Realized damages typically
far exceed the liquid savings of many households.!

Insurance is the primary means of hedging these losses. Homeowners’ property
insurance is one of the most widely held financial contracts in the household portfolio,
comparable in prevalence to checking accounts. US households pay about $150 billion per
year to insure personal property and catastrophe.

However, what households actually receive in return for these premiums depends
crucially on the structure of the insurance contract. Property insurance is not a simple
promise to cover the entire loss. Instead, contracts include a deductible, which is the
amount the household must pay before the insurer compensates anything, and a coverage
limit, which caps the insurer’s total payout. These terms determine how much of a disaster
loss is ultimately borne by the household. Since many households have limited liquid
savings, the extent to which a disaster is financially smoothed through insurance versus
passed through to the households” balance sheet is a critical matter for household financial
stability. Contract design therefore plays a central role in the financial consequences of
disasters, both at the household level, in shaping risk exposure and recovery, and at
the macro level, by influencing how local shocks transmit into housing markets, credit
outcomes, and aggregate economic activity.

These contract features arise from a fundamental risk-sharing versus incentive trade-off.
In a frictionless setting, insurers, who are diversified and thus effectively risk-neutral,

would provide full insurance to risk-averse households against property losses. In practice,

1A lower-bound proxy for realized damage, paid claim amounts, averages about $19,000 in low-risk
areas and $24,000 in high-risk areas (Federal Insurance Office, 2025). By constrast, Federal Reserve surveys
indicate that 48% of US adults report being unable to cover unexpected expense of $2,000 or more using
liquid savings (Federal Reserve Board, 2025).
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however, insurers cannot observe the effort households take to maintain or protect the
property once insured. This classic moral hazard problem can be mitigated by exposing
policyholders to residual risk through deductibles and coverage limits.

In this paper, we study three key questions about the economics of homeowners’ prop-
erty insurance contracts. First, how are insurance contracts designed in practice—specifically,
how do premiums, deductibles, and coverage limits relate to underlying property risk
and insurer pricing? Second, how large is moral hazard in homeowners insurance, and to
what extent do cost-sharing terms mitigate it? Third, how much risk is ultimately retained
by households as a result of contract design, and how does this retained risk vary across
households and insurers?

These questions are important because contract design determines how disaster losses
are allocated between insurers and households, with implications for household financial
resilience and for how shocks propagate more broadly. However, surprisingly little is
known about property insurance contracts, both about facts and mechanisms. A primary
challenge is data availability: granular data on contract terms, premiums, and underlying
property-level risk have been rarely observed. Second, even with such a dataset, reduced-
form approaches face identification difficulties, as premiums, deductibles, and coverage
limits are joint equilibrium outcomes shaped by both household preferences and insurer
pricing and risk management. Before describing our approach, we summarize the main
contributions of this paper.

To our knowledge, this paper provides the first contract-level structural estimates of
policyholders’ risk preferences and moral hazard in property insurance, allowing us to
construct contract-specific counterfactuals and characterize how incentive and risk-sharing
primitives vary across households, properties, and insurers. We use this framework
to show that insurance contract design plays a central role in allocating disaster risk
between insurers and households. We then document that the resulting residual risk has

meaningful financial consequences, with liquidity-constrained households retaining the
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greatest exposure precisely in high-risk areas. Finally, we show that insurer financial
constraints are systematically correlated with the riskiness of underwritten properties
and with the characteristics of households selecting into these contracts, highlighting the
importance of accounting for endogenous selection when analyzing contract design and
risk allocation.

We address the first challenge above by exploiting granular contract-level insurance
data covering premiums and contract terms, combined with property-level disaster risk and
recovery value, as well as characteristics of policyholders and insurers. The fully merged
dataset covers about 8.7 million contracts per year, allowing us to exploit the rich cross-
sections. The second challenge is addressed by writing a structural model of insurance
contracting. The model provides a connection between the observable contract features,
such as deductible and coverage, and the unobservable primitives of policyholders, such
as their risk preference and the effect of their negligence on property risk. The model
not only allows for the estimation of these primitives, but also counterfactual analysis to
examine potential effects of regulatory interventions, which are prevalent in the insurance
market.

Our main finding is that while insurance contracts effectively mitigate moral hazard,
they do so by shifting a substantial amount of risk back to households. To quantify the
tradeoff, we develop and structurally estimate a model in which insurers optimally design
contract terms given the property risk and household risk preference. The estimates yield
contract-level measures of risk aversion, risk premium, cost of moral hazard, and the result-
ing increase in uninsured exposure. We find that the cost of moral hazard is quantitatively
small, about 0.7% of the risk premium, indicating the ease of incentivizing policyholder’s
effort through risk exposure. However, the very mechanisms that mitigate moral hazard
lead policyholders to retain considerable risk: contract design leaves policyholders ex-
posed to roughly 29% of total expected losses. This residual risk is large especially for

properties subject to severe tail risk. In the cross-section, these effects are most pronounced
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among low-FICO households. Among insurers, more constrained insurers underwrite
riskier properties and therefore charge higher premiums, but these higher premiums
reflect higher expected losses rather than higher risk premia. Taken together, the results
suggest that moral-hazard mitigation comes at a distributional cost; financially constrained
households retain the most risk precisely where disaster exposure is greatest.

Using our structural model and the estimated parameters, we analyze the counterfac-
tual in which insurers are required to provide full coverage. Under this mandate, a large
share of policyholders would lose access to insurance altogether, implying that removing
insurers’ ability to design incentive-compatible contracts could trigger market failure and
ultimately expose households to even greater risk.

We make use of state of the art contract-level data, from Intercontinental Exchange
(“ICE”) McDash, covering the details of homeowners’ property insurance and rich charac-
teristics of the insurance policyholder. We merge this dataset with property-level disaster
risk metrics from CoreLogic. The merge is done at the loan-level, meaning that, for each
insurance policyholder, we observe the contract terms of insurance policy, including
premium, coverage limit, deductible, insurer identity, and the policyholder’s property
characteristics, including location, expected damage, and tail damage values. We further
merge this dataset with per-square-foot-structural value estimates provided by the Na-
tional Structure Inventory at the zip code level. For our main cross-sectional analysis, we
focus on the year when the structural value estimates are readily available at the most
granular level.

For this one year, we observe almost 8.7 million contracts spanning all states of the
US, including over 200 insurance companies. This granular dataset allows us to estimate
key parameters, such as policyholder-level risk aversion, property-level damage distri-
bution, contract-level risk premium, and cost of moral hazard. The rich cross-section of
policyholders, properties, and insurance companies, in turn, allows us to make progress

on understanding mechanisms through cross-sectional analyses.
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Based on the constructed dataset, we begin by documenting key stylized facts about
the US property insurance contracts. We document that coverage limits are rarely binding.
The median ratio of coverage to property value far exceeds the 99th-percentile loss rate,
meaning that insurers would pay the same amount in nearly all realized loss scenarios even
if coverage were higher. Thus, coverage plays a limited role in limiting insurer payouts,
implying that deductibles, rather than coverage, are likely the primary mechanism used to
mitigate moral hazard. Second, deductibles are small relative to property value, but large
relative to expected loss. This suggests that, because a large share of losses occur in the
region where the deductible applies, the deductible plays a particularly important role
in determining household risk retention and mitigating moral hazard. Third, premiums
substantially exceed expected losses. This is consistent with equilibrium in a market with
risk-averse policyholders: households are willing to pay more than the expected claim
payout to transfer disaster risk off their balance sheets, generating a risk premium. Fourth,
damage risk is low on average but highly skewed.

To analyze these endogenous contract terms, we develop a model in which premiums,
deductibles, and coverage limits are designed optimally by insurers given the households’
risks and preferences. The model links the distribution of damage risk and household
risk aversion to the observed structure of insurance contracts. This framework allows
us to quantify how much risk is transferred to insurers versus retained by households,
how much risk premium is forgone due to moral hazard, and how these components vary
across households, insurers, and regions.

We model the insurance design problem based on the canonical moral hazard model by
Holmstréom (1979). The policyholder, the agent, can make an unobservable action choice
that determines the risk to the property. Specifically, the policyholder can make a personally
costly effort to reduce the risk to the property. Given the information asymmetry regarding
the agent’s hidden action, the insurer, the principal, faces the tradeoff between risk-sharing

and incentives. On one hand, the risk-neutral insurer profits from taking on the risk-averse
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policyholder’s risk. On the other hand, the insurer also gains from incentivizing the
policyholder to properly manage their property (effort). This tradeoff endogenously gives
rise to insurance contracts that offer only partial coverage; deductibles and coverage limits
limit the range of protection that the insurer provides to the policyholder. By exposing the
policyholder to residual risk, the contract can incentivize the policyholder to exert effort
to reduce their own risk. The region of protection for the insurer, defined below by the
deductible and above by the coverage, is determined by the informativeness of the realized
damage regarding the policyholder’s hidden action. In particular, zero or low damage
would be likely under effort and very high damage would be likely under negligence (no
effort). As a result, the incentive regions are concentrated in the tails, which is consistent
with the contract design we observe in practice: the policyholder is exposed to risk for
damages below the deductible and above the coverage, while enjoying full protection for
damages in between.

The model allows us to uncover the unobservable primitives of policyholders’ risk pref-
erences and hidden actions. Specifically, the key objects we estimate are: the policyholder’s
risk aversion, the cost of policyholder’s unobservable effort, and the counterfactual out-
come distribution had the policyholder chosen negligence. First, the risk aversion is
identified by the participation condition: the policyholder should prefer to be insured.
Second, the cost of effort is identified by the incentive compatibility condition: if the
policyholder participates in the insurance contract, she should prefer exerting effort to
negligence. Third, the counterfactual damage distribution under negligence comes from
the insight in Holmstrom (1979) that the optimal payoff is a function of the likelihood
ratio, which is how likely an outcome is under effort vs. negligence. The counterfactual
distribution can therefore be backed out from the payoff function given the distribution
under effort that we observe in equilibrium.

For the estimation, we use the property’s risk characteristics, such as the expected loss

rate and the recovery value, as well as contract characteristics, including the deductible and
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the coverage. With these data as inputs, we estimate the model in steps. First, we estimate
the loss rate distribution from the property risk characteristics. Second, we decompose
the premium into the expected claim payout and the risk premium. Third, we estimate
the risk aversion from the participation condition. Fourth, we estimate the cost of moral
hazard by constructing the counterfactual optimal contract in the absence of moral hazard.
Fifth, we estimate the cost of the policyholder’s effort, using moment conditions including
the incentive compatibility condition. Sixth and finally, we recover the counterfactual loss
rate distribution had the policyholder neglected her property.

The results of the estimation can be summarized as the following. We estimate contract-
level risk aversion ranging from 15 to 170, with a mean of 79. Our estimates are moderate
relative to those of prior literature on other types of insurance. Unlike pooled estimates in
the literature, our approach yields policyholder-level estimates, allowing us to characterize
rich heterogeneity across contracts. Consistent with economic intuition, we find that more
risk-averse policyholders tend to own safer properties, lending validity to our estimates.
On average, the estimated risk premium accounts for 73% of the total premium, and it
increases with both risk aversion and the underlying level of risk, confirming the internal
consistency of our model. The estimated cost of moral hazard is low, only about $7,
or 0.7% of the risk premium, suggesting that it is cost-efficient to incentivize due care
by policyholders. However, this comes at the expense of higher uninsured exposure:
deductibles and coverage limits that reduce moral hazard expose policyholders to 29% of
total expected losses. As expected, the exposure due to moral hazard is larger for contracts
covering properties with greater tail risk, since deductibles and coverage caps truncate
both tails of the loss distribution.

In the cross-section, we find that low-FICO policyholders are more risk averse, consis-
tent with the financial constraint channel, and face higher costs of moral hazard, reflecting
greater uncertainty about their unobservable actions. They also pay higher risk premiums

and experience larger increases in uninsured exposure due to contract features designed
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to limit moral hazard, underscoring the distributional implications of these frictions. On
the insurer side, we find that more financially constrained insurers, proxied by lower risk-
based capital ratios, tend to underwrite riskier properties and charge higher risk premiums,
although not higher risk premiums relative to total premiums. Together, these indicate
that financial constraints shape both sides of the market, with constrained households
bearing more residual risk and constrained insurers taking on riskier exposures.

To evaluate the economic validity of our cost of moral hazard estimates, we examine
whether they behave consistently with economic intuition in two cross-sectional settings.
First, we relate the estimated cost of moral hazard to the loan-to-value (LTV) ratio at
origination. Because a lower LTV implies greater homeowner equity and hence stronger in-
centives to maintain the property and avoid excessive damages, we expect moral hazard to
decline as ownership increases. Importantly, our moral hazard estimates are derived solely
from insurance contract characteristics—premiums, deductibles, and coverage—along
with the underlying risk distribution, without incorporating borrower or financing vari-
ables such as credit scores or mortgage terms. The relationship with LTV therefore provides
an out-of-sample validation of the measure. Restricting the sample to loans originated
within one year, we find that moral hazard indeed increases significantly with LTV. As
a second validation, we exploit cross-state variation in insurance regulations, such as
requiring pre-binding property condition verification (e.g., roof age, condition, or wind
mitigation features). We expect such regulations to mitigate information asymmetry and
thereby reduce moral hazard. Consistent with this hypothesis, we find that states with
inspection requirements exhibit significantly lower estimated costs of moral hazard.

With the parameters and the counterfactual distribution, we examine the potential
effect of mandating insurers to provide complete insurance. Under this hypothetical
regulation, we find that a substantial portion of policyholders will lose insurance, exposing

them fully to property risk. The result suggests that taking away the insurers” means of
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incentivizing the policyholders” effort to manage their properties can result in market

failure, and thus greater risk to households.

Contribution to literature. This paper contributes to several strands of literature. First,
this paper contributes to the literature studying insurance. We contribute by quantitatively
estimating the tradeoff between risk-sharing and incentive provision.

First, this paper contributes to the studies identifying and estimating agency frictions
with a structural model. In the context of executive compensation, works such as Margiotta
and Miller (2000), Gayle and Miller (2009), Gayle and Miller (2015), Gayle et al. (2022),
Bertomeu et al. (2025b), and Jung (2025b) use structural model building on Holmstrém
(1979) to identify and estimate moral hazard. In the insurance literature, Einav et al.
(2010) estimate the demand for insurance and the welfare implications of adverse selection.
Einav et al. (2013) estimate the impact of moral hazard on the policyholder’s selection of
medical insurance. We contribute to this literature by providing, to our knowledge, the
first large-scale contract-level structural estimates of policyholders’ risk preferences and
moral hazard in property insurance. Our framework also constructs the counterfactuals for
each insurance contract, enabling rich characterization of how risk aversion and incentive
effects vary across households, properties, and insurers.

Second, we contribute to the growing literature on climate finance and insurance. Keys
and Mulder (2024) link rising premiums to climate risk; Jung et al. (2025) measure property
insurers” exposure to physical climate risk; Blonz et al. (2024) highlight the role of policy-
holders’ credit risk in insurance pricing; and Sastry et al. (2025) analyze property insurance
demand using an IO framework. We complement this work by showing that insurance
contract design is central to how climate risk is allocated between insurers and households.
While contract terms effectively curb moral hazard, they systematically determine how
much of the increasing tail risk associated with climate exposure is transferred back to

policyholders.
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Third, this paper contributes to the real effects of insurance and hedging. On house-
holds, Ge et al. (2024) show that rising insurance premiums increase mortgage delinquency,
and Jotikasthira et al. (2025) document delays in claim payouts after insurers experiencing
adverse events. On firms, Aunon-Nerin and Ehling (2008), Perez-Gonzalez and Yun (2010),
and Jung (2025a) document real effects of insurance and derivative hedging. We add
to this literature by showing that the contract features that mitigate moral hazard also
generate significant household exposure to disaster risk, and that financially constrained
households retain the most risk precisely in regions where disaster exposure is greatest.
This highlights a previously underexplored channel through which insurance contract
design affects household financial resilience.

Fourth, we contribute to the literature on financial constraints faced by intermediaries.
Koijen and Yogo (2014) and Koijen and Yogo (2016) document the role of regulatory
frictions in pricing by life insurers; Ge (2021) shows how insurers’ capital constraints affect
premiums; and Oh et al. (2025) examine regulatory frictions in P&C pricing. We extend this
line of work by documenting that insurer financial constraints are systematically correlated
with the riskiness of the properties they underwrite and with the characteristics of the
households that select into these contracts, including their risk preferences and financial
constraints. These patterns highlight the need to account for endogenous selection when

analyzing insurance contract design and risk allocation.

Outline of the Paper. The rest of the paper is organized as the following. In Section
2, we describe the data sources and how we construct the sample dataset. Section 3
explains the main components of property insurance contracts and documents stylized
facts about the key contract terms. Section 4 covers the model and Section 5 describes
the structural estimation approach. Section 6 studies the estimated results and Section 7

analyzes counterfactuals and discusses policy implications. Section 8 concludes.

10
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2 Data

We use a number of large datasets on insurance policy, mortgage loans, property-, borrower-

, and insurer characteristics from the following data sources.

Property Insurance Data. ICE McDash insurance module provides data on the US
homeowners’ property insurance contracts. The data contains detailed characteristics of
the contract, including the premium, the deductible, the coverage limit, and the identity of
the insurer. Since this database comes from residential mortgage servicers, McDash also
provides a mortgage loan module, which provides data on the mortgage loan associated
with each insurance policy.?> Therefore, we observe rich information on borrowers (e.g.,
credit score), mortgage contract details (e.g., loan amount, origination date), and property
characteristics (e.g., zip code, appraisal value). The dataset covers approximately two-

thirds of installment-type loans in the residential mortgage servicing market.

Disaster Risk Data. We complement the insurance data with property-level climate risk
metrics from CoreLogic. CoreLogic uses proprietary information to generate measures of
disaster risk by peril, such as earthquake, wildfire, inland flood, severe convective storm,
winter storm, hurricane storm surge, and hurricane wind. The metrics include average
annual loss (AAL) and aggregate exceedance probability loss (AEP) as a share of recovery
value. We use AEP 1% (and AEP 2%) loss rates, which correspond to the loss that has a
1% (and 2%) chance of being exceeded in a given year. These estimates are known to be
used by insurance companies. CoreLogic also provides a real estate deed module and a

property module, and therefore the disaster risk metrics can be merged with mortgage

2Mortgage servicers are responsible for monitoring insurance coverage on the properties securing
mortgages. Furthermore, they are required to enforce various rules related to insurance coverage. If there are
lapses in insurance coverage the servicer is required to force-place insurance on the property. If insurance
coverage is not maintained, the servicer is liable for any damage that may result (e.g., disaster strikes while
the property is uninsured). Because of these legal responsibilities and liability risks, servicers maintain
detailed data on insurance.

11
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loan information and property characteristics at the property level. This dataset covers

approximately 192 million residential and non-residential properties.

Structure Value Data. AAL measure from CoreLogic is computed as a loss rate in terms
of recovery value, and therefore computing the expected loss in dollars requires data on
recovery value. As this is not available from either McDash or CoreLogic, we impute it from
the structural value estimates provided by the National Structure Inventory (NSI). NSI base
layer was created and is maintained by the US Army Corps of Engineers (USACE), and
the data has been used in various applications by USACE, FEMA and other agencies. The
data provides structure-level characteristics, such as type (e.g., residential or commercial),
structure value, content value, and year of construction. We use these variables to compute
the zip-level recovery value. Since this particular dataset is most readily available for the
year of 2021 (released in 2022), we focus on that year. We confirm that the patterns of

contract characteristics are consistent with those of other years.

Insurer Data. We use insurer regulatory filings collected by the National Association of

Insurance Commissioners (NAIC) to obtain insurers’ financial information.

To construct a panel of insurance policy characteristics and expected losses, we take
the following steps. First, we merge the insurance data with the climate risk data by key
mortgage characteristics: loan amount, origination date, and zip code. We rarely find
multiple loans with the same amount originated on the same day within a zip code. By
using the three variables, we are able to match about 70% of the insurance dataset. For
those observations that are not merged, we assign the average climate risk metric of that
zipcode originated in that year for that loan size bin.

Second, we merge the insurance-climate risk-merged dataset with the structural value
data at the zip-year level. For this, we converted each longitude-latitude combination to a

corresponding zip code. Since the NSI structural value variable is adjusted for depreciation,

12
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we undo this adjustment for it based on the formula provided by the NSI. We then compute
a per-square-feet recovery value by dividing the gross recovery value by the structure
size in square feet provided by the NSI, and obtain a mean value for each zip code. We
multiply this zip-level per-square-feet recovery value by the property size (in square feet)
in CoreLogic side.?

Third, we merge the above with insurer financial information at the insurer-year level.
For the main cross-sectional analysis, we focus on the year when the structural value is
readily available. Since the estimation requires all insurance characteristics (premium,
coverage, and deductible) as well as loss distribution parameters (annual average loss
and aggregate exceedance probabilities), we keep contracts with all those variables non-
missing. Moreover, we focus on non-expired contracts on non-condo properties because
condos typically have building-level policies purchased by the condo association. We
focus on escrowed accounts because they are mainly monitored by the data provider,
mortgage servicers. This leaves us with almost 8.7 million contracts. Table 1 shows

summary statistics of the key contract-level characteristics.

Mean  St.Dev. P10 Median P90 N
Premium (Annual) 1,515 816 720 1,308 2,604 8,699,672
Coverage 340,709 174,743 177,900 300,676 546,000 8,699,672
Deductible 1,521 1,006 736 1,000 2,500 8,699,672
AAL .0011 .00095 .00016  .00092 .0022 8,699,672
AEP 2% .0099 011 .00065 .008 .02 8,699,672
AEP 1% .019 .022 .0011 .014 .04 8,699,672

Recovery Value 445,196 222,809 224,469 391,763 733,906 8,699,672

Table 1: Summary Statistics of Insurance Contract Characteristics Annualized premium,
coverage, deductible, and recovery value are in dollar amount. AAL represents annual
average loss, AEP 2% corresponds to the damage value with aggregate exceedance proba-
bility equal to 2 and AEP 1% corresponds to the damage value with aggregate exceedance
probability equal to 1%.

30ne may be concerned about differential selection bias between the NSI dataset and the CoreLogic. We
compare the zip-code level statistics of the two datasets and confirm that the mean ratio between them is
0.98, alleviating the concern.

13
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Although the three moments of the damage distribution - mean, 98th percentile (AEP
2%), and 99th percentile (AEP 1%) - are correlated, depending on the nature of hazard, a
region with a high mean can have low tail risk. See Figure A.1 for comparing the three
moments spatially. For instance, counties in California with high AAL (value above 75

percentile) can have medium AEP 1% value (falling between the 25 and 75 percentile).

3 Anatomy of Property Insurance Contracts

A property insurance contract transfers the financial consequences of property loss from the
policyholder to the insurer in exchange for the premium.* The main economic components
of property insurance contracts are the premium, the coverage limit, and the deductible.

The premium is the price of transferring risk to the insurer. Economically, it reflects
the expected loss and risk premium. The expected loss would depend on the exposure to
natural hazards as well as policyholder characteristics. The exposure to natural hazards
would depend on the property location as well as property characteristics such as building
age, level, and materials. The observable policyholder characteristics are relevant because
it could be informative about the extent of moral hazard, i.e. unobservable actions by
policyholders that affect the riskiness of the property. Both policyholder characteristics
and insurers’ ability to manage risk (e.g., through reinsurance) subject to constraints (e.g.,
regulation and other frictions) would affect the risk premium.

The coverage limit specifies the limit of protection. Coverage caps the insurer’s liability
and controls exposure to tail risks. Broader coverage provides greater consumption
smoothing from the policyholder’s side and therefore comes with a higher premium. A
contract with a lower coverage increases the residual risk born by the policyholder and

therefore comes with a lower premium. From the insurer’s perspective, lower coverage

4For a comprehensive overview of public and private natural disaster insurance programs in the United
States, see Wagner and Marcoux (2024).

14
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offers protection from moral hazard because it incentivizes policyholders to put more
efforts into maintaining their homes.

The deductible is the amount of loss the policyholder must bear before the insurer
starts to cover any damages. It plays an important role in aligning incentives. By exposing
the policyholder to the initial portion of loss, deductibles discourage negligent behavior
and mitigate moral hazard. An optimal level of deductible depends on the relative
likeliness of small damages under policyholder’s effort vs. negligence. If small damages
are informative about the policyholder’s actions, the insurer has the incentive to expose

the policyholder to that risk via deductibles.

3.1 Stylized Facts

Based on the constructed dataset of 8.7 million contracts, we examine the relationships
among premium, coverage limit, deductible, as well as the damage risk distribution, and

document stylized facts about US property insurance contracts.

1. Coverage limits are rarely binding. The median coverage-to-recovery value ratio is
77%, while the median 99th-percentile damage-to-recovery value ratio is only 1.4%.
This implies that the realized losses rarely approaches the coverage limit, so reducing
coverage limit would not meaningfully reduce expected insurer payouts. In other
words, coverage plays a limited role in constraining payouts from the insurers’ per-
spective. This suggests that deductibles are relatively more important than coverage

limits for determining household risk exposure and incentive provision.

This also implies that measures such as premium divided by coverage are not infor-
mative about the effective price of insurance. Expected payouts are highly nonlinear
in the coverage limit, and the deductible determines whether any payout occurs at
all. The relevant price of insurance is therefore determined by the deductible and the

distribution of losses relative to it, rather than by the nominal coverage limit.

15
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2. Deductibles are small relative to property value, but large relative to expected
loss. Deductibles are typically offered in discrete, round-number increments (e.g.,
$500, $1,000, $1,500, $2,000, $2,500, $5,000), with $1,000 as the modal choice. Scaled
by property recovery value, the median deductible is only 0.3%. However, the
median annual expected loss is even smaller, at 0.09%, implying that households
frequently absorb the initial portion of damages. Consistent with this, we find
that approximately two-thirds of realized damage events fall entirely below the
deductible, resulting in no insurer payout. Thus, because a large share of losses
occur in the region where the deductible applies, the deductible plays a particularly

important role in determining household risk retention and mitigating moral hazard.

3. Premiums substantially exceed expected losses. The median ratio of annual ex-
pected loss (AAL) to premium is 28%, indicating that a large share of the premium is
not accounted for by expected claim costs alone. This is consistent with equilibrium
in a market with risk-averse policyholders: households are willing to pay more than
the expected claim payout to transfer disaster risk off their balance sheets, generating

a risk premium.

Figure 1 summarizes the cross-sectional relationships among premiums, coverage,
and deductibles. Panel (a) shows that, controlling for AAL, recovery value, and
deductible (and including insurer and state fixed effects), premiums increase with
coverage, which is consistent with the fact that higher coverage transfers a larger
share of losses to the insurer and is therefore priced higher.” Panel (b) suggests that
premium decreases with the deductible, for the same coverage, recovery value, and
damage risk (AAL) within the same insurer and the state where policy was sold. This
is consistent with households bearing more of the initial loss when the deductible is

higher. The slope is relatively flat especially for the middle range, though. Panel (c)

SInstead of controlling for the recovery value, one could compare premium/recovery value versus
coverage/recovery value; we confirm that this does not change the result.
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shows that deductibles increase with coverage after controlling for premium and the

same controls.

4. Damage risk is low on average but highly skewed. The median annual expected
loss rate is 0.09% of property value, yet the median 98th-percentile loss rate is 0.8%
and the 99th-percentile loss rate is 1.4%. Thus, although policyholders are expected
to lose less than 0.1% of property value per year on average, tail losses are an order of
magnitude larger: a one-in-one-hundred-years event is roughly 16 times the expected
annual loss. This combination of low mean and heavy upper tail implies that the
loss distribution is highly skewed with substantial mass near zero, which motivates

modeling damage using a zero-inflated beta family of distributions.

Taken together, these stylized facts show that coverage limits rarely bind, while de-
ductibles frequently do, and that premiums reflect both expected loss and the value of
transferring tail risk, rather than simply expected payouts. Moreover, losses are highly
skewed, with a large mass of small damages and infrequent but substantial tail events. As
a result, the deductible is an economically relevant contract margin, governing both risk
retention and incentive provision, and must be understood jointly with premiums and
coverage.

To analyze these endogenous contract terms, we develop a model in which premiumes,
deductibles, and coverage limits are designed optimally by insurers, given the risks and
preferences of households. The model links the distribution of damage risk and household
risk aversion, to the observed structure of insurance contracts. This framework allows
us to quantify how much risk is transferred versus retained, how much moral hazard
is mitigated through cost-sharing, and how these components vary across households,

insurers, and regions.
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Figure 1: Bivariate relationships among premium, coverage, and deductible These
tigures are binned scatter plots after controlling for AAL, recovery value, insurer fixed
effects, and state fixed effects. Panels (b) and (c) plot coefficients on deductible dummies,
where the base category is deductible of $1,000.
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4 Model

We write a model that is consistent with the stylized facts that we document. With this
model, we structurally estimate risk premium, cost of moral hazard, and other latent
parameters, such as the cost of effort and the distribution of damages given negligence.

This allows us to provide policy implications based on the counterfactual analyses.

4.1 Model Setting

A potential policyholder seeks insurance for stochastic damage x to the property. She is
risk averse; she has a CARA utility with risk aversion parameter of p.° If she takes good
care of the property (a = 1) at effort cost of ¢, the damage x is drawn from distribution
f1(x) with a finite support of [0, H]|, where H denotes the recovery value. If she is negligent
(a = 0), the damage x is drawn from distribution fy(x) with the same support of [0, %].
We make the simplest assumption on the two distributions that the expected damage is
lower under effort than under negligence: E[x|a = 1] < E[x|a = 0]. Her utility function
can therefore be written as:
1

u(w,a) = —‘(—)ep(w“q’) (1)

, Where w denotes her terminal wealth and ¢ denotes the cost of effort. Here, we assume
that the welfare implication of action a is additively separable from that of wealth within
the exponent.

We assume that, in the absence of insurance, the potential policyholder finds it optimal

to exert effort (@ = 1). In other words, we assume the following;:

E[u(—x,1)|la=1] > E[u(—x,0)|a = 0] (2)

®CARA utility offers a number of benefits and is a common choice in the theoretical literature on
insurance. First, it is highly tractable and allows for analytical inversion of moment conditions. Second,
the utility does not depend on the current level of wealth, which tends to be difficult to observe in practice.
Third, it allows for dynamic extensions that preserves the dynamics in the static model. The dynamic optimal
contract is a series of static optimal contract, as the utility doesn’t depend on the level of wealth.
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4.2 Optimal Contract

Based on the setting provided in the previous section, we solve for the optimal contract, the
net insurance payoff y(x) to the policyholder for a given damage of x. The net insurance

payoff y(x) to the policyholder can be broken down as follows:

y(x) = —p+I1(x) 3)

where p denotes the premium and I(x) denotes the claim payout. The policyholder’s
terminal wealth is therefore —x + y(x) with insurance and —x without insurance.

The insurer’s problem is to minimize the expected payoff to the policyholder, subject to
the following constraints: (1) the participation constraint, where the policyholder should
prefer to participate in the insurance contract as opposed to staying uninsured’ and (2) the
incentive compatibility constraint, where the policyholder should prefer to take the action
stipulated by the contract instead of deviating to the other. In this model, we assume that
the insurer is risk-neutral.® We focus on the contract that induces effort from policyholders.
A contract that does not induce effort would trivially imply complete insurance, but the
data do not support this: the observed contracts do not take the form of full insurance.

The insurer’s problem can therefore be written as follows:

max —E[y(x)|a = 1] 4)
y()
subject to:
Elu(—x+y(x),1)la=1] > Efu(—x,1)[a =1] (P)
Utility with Insurance Utility with:);t Insurance

"We are thereby implicitly assuming that the best outside option is not having insurance, as opposed
to having another insurance product. This is not a strong assumption in light of the literature suggesting
that households typically face significant search frictions. Such frictions would allow insurers to extract
significant rent from their market power.

8The rationale is that insurers are sufficiently diversified that they are effectively risk-neutral when
designing individual contracts. This is consistent with the lack of coinsurance, which Arrow (1965) predicts
as an outcome when the insurer is risk-averse and therefore shares risk with the policyholder.

20



NONCONFIDENTIAL // EXTERNAL

and
Elu(—x +y(x), )l = 1] > E[u(—x + y(x),0)|a = 0] ()
Utility V;ﬁh Effort Utility wi?lqout Effort

We assume that both constraints above bind, as the insurer would not have any incen-
tive to leave money on the table by allowing for slack in either of the constraints.

The first order condition FOC w.r.t. payoff y is:

A+ (emp _ %) — %e—p(x—y(x)) (FOQ)
1

where A and u denote shadow costs of P and IC, respectively.

The optimal payoff is thus:

I A )

To check the optimality of this solution, we examine the second order condition 6. For

the solution above to be optimal, the following must hold:

Pl ferece o

which is true if and only if:

/\+y(ep¢—%)>0 (6)

It can there be seen that if there exists y*(x) that is real for every x in the support of f1(x),

the y*(x) indeed (locally) maximizes the insurer’s objective function.
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5 Structural Estimation

5.1 Identification

For the identification to be feasible, we make additional assumptions. First, we assume
that the two constraints, P and IC, bind with equality. The binding P identifies the risk
aversion p. The risk aversion should be such that the policyholder is indifferent between

being insured and being uninsured:

1 /% 15 L
_‘(_)/0 e—p(—x+y(x)—¢)f1(x)dx:_E/() el ‘/’)fl(x)dx 7)

Given that the policyholder will exert effort in either case, the above can be further

simplified:
1 1

5/092 PV £ (x)dx = ‘(—)/Ox e f1(x)dx (8)

The binding IC, combined with binding P and the FOC, identifies the shadow cost:

1
p [y e fi(x)dx

©)

The intuition for the result above is that participation is harder to induce when the policy-
holder is happier without insurance.

Second, we assume that zero damage almost perfectly signals effort by the policyholder.
In other words, we assume that % ~ 0. This is consistent with the fact that the minimum
net cost (x — y(x)) under insurance to the policyholder is typically well-defined in practice:

insurance premium for zero damage.’ This assumption, combined with the FOC, provides

the following moment condition:

1 A f0(0)
= ePy(0) L 2y e — ~0 (10)
ou [ f1(0)

9While the signal being “perfect” may be a strong assumption, we find it plausible that it is still a strong
signal of effort, particularly in high-risk properties where disasters are more likely.
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Let p = —y(0) denote the premium. Then, the above condition can be rewritten as:
1 _
Ee PP = A\ + pef? (11)

The FOC, in conjunction with the property of probability distribution that integrates to 1

(i.e., fof fi(x)dx =1and fof fo(x)dx = 1), provides the final moment condition:

1 /x e_p(x—y(x))fl(x)dx = A+ u(ef? —1) (12)
p Jo

The two conditions above, Equations (11) and (12) jointly identify the shadow cost of
incentive compatibility p and the cost of effort ¢.

For the estimation, we use the observed contract y(x) and the distribution of damage
given the policyholder’s effort f1(x). We define the following moments as functions of risk

aversion p:

lp) = 5 [ e i) a3
Blo) = —tog ( [+ () (14)
(o) = = log [ e () (15)
d(p) = e (16)

Then, we take the following steps for estimating the parameters. The first step is to

numerically estimate p from 8:

B(p) = v(p) (17)

Given that the payoff under insurance is less risky relative to that without insurance, we
conjecture that there exists a unique p that satisfies the condition above. The second step is

to compute the three moments, a(9), v(p), 6(p) for the estimated risk aversion p = p. The

final step is to compute the parameters A, y, and ¢ from the remaining moment conditions,
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Equations (9) - (12). A follows immediately from Equation (9):

A= %em(ﬁ) (18)

fi and ¢ follow jointly from Equations (11) and (12):

i =5(0) () 19
1 5(p) — e07P)

=1 d 20
’ pOg( 50— (p) ) .

5.2 Cost of Moral Hazard

In the absence of moral hazard, the insurer would offer a “complete” insurance: y(x) =
—p"B + x. The optimal contract can trivially discourage negligence when it is observable.

The first-best premium p'? will be determined by the participation constraint:

1 rB 1 r*
PP — 0x d 21
pe = p/O e f1(x)dx (21)

This gives:
=) (22)

Note that the estimation of risk aversion does not depend on model assumptions other
than the CARA utility of policyholders and the feasibility of inducing effort.

The cost of moral hazard would be the difference between the risk premium that can
be charged in the complete insurance and that charged in the partial insurance we observe

in the data. The risk premium for the complete insurance is given as:

RPFB = pfB _ E[x|a = 1] (23)
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That for the insurance we observe is given as:
RP =p—E[I(x)|a =1] (24)
Therefore, the cost of moral hazard becomes:

AV = RPFB —RP = (p'® —E[x|a =1]) — (p — E[I(x)|a = 1]) (25)

5.3 Estimation

Having established the model and identification, we now turn to estimation. This section
outlines how we use the data to recover the model’s key parameters and illustrates how
the estimation approach operationalizes the mechanisms described above.

The first step is to estimate the distribution of loss rate, the damage as a portion
of recovery value (§; € [0,1]). Considering the pattern we document in Section 3 that
the distribution features a very low mean and a thick tail, we fit a zero-inflated (mass
at zero) beta-family distribution. Among the beta-family distribution, we choose the
Kumaraswamy distribution, which is very close to the beta distribution but is more
numerically stable and better behaved around the edges.! The probability distribution
function (PDF) of the zero-inflated Kumaraswamy distribution is given as:

f(x; m9,a,b) = 1100 (%) + abx"1 (1 — <£>a> o (26)

where (t) denotes a Dirac delta function that captures the mass of 7p at 0, and a and b
are non-negative shape parameters. As the distribution is modeled for the loss rate, the

damage x is scaled by the recovery value H.

19The behavior at the edges is non-trivial, because many contracts feature very low deductibles (% ~ 0)
and very high coverages (% ~1).
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We make use of three moments of loss rate provided by CoreLogic. For each property,
we observe: mean denoted by m, 98th percentile denoted by gog, and 99th percentile
denoted by gg9. With these three moments (1, og, G99 ), the parameters (77, 4, b) are just

identified.

Cumulative Likelihood
° °

Figure 2: CDF of Estimated Loss Rate Distribution This figure plots the fitted loss rate
CDF distribution for a property with (1, qog, g99) = (0.003,0.042,0.079).

Figure 2 plots an example of the cumulative distribution function (CDF) of the estimated
loss rate distribution for a contract. Note that it closely replicates the quantile moments.
The two key aspects of this distribution are: (i) a heavy point mass at 0 (779) and (ii) a thick
tail that diminishes much slower than the normal or the exponential distributions. These
jointly explain the small mean and the large quantiles. As we assume that the contract
induces effort by the policyholder, this equilibrium damage distribution f(x; 7, a,b) will
serve as f1(x).

The second step is to decompose the premium into the expected claim payout and the
risk premium. Specifically, we compute the negative expected net payoff of a contract of
premium p, deductible D, and coverage C to the policyholder. This is equivalent to the

risk premium that the risk-neutral insurer collects from the risk-averse policyholder:

—E[y(x;p,D,C)] = p — E[min(max(x — D, 0),C)] (27)
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The third step is to estimate the risk aversion (p), using the participation condition
in Equation (P). In the numerical implementation, we compare the certainty equivalent
(CE) with and without insurance, as opposed to comparing the expected utility. Using
the CE offers both numerical stability for high level of risk aversion, as well as smooth
convergence to risk neutrality as the risk aversion approaches zero..!! Based on the CE

representation, we numerically solve for the risk aversion parameter p that satisfies:

_% log(E[e"* ¥ |q = 1]) = —%log(E[eP’CM —1)) (28)

T T T
e \Without Insurance
e \With INsurance 4

Certainty Equivalent
w

-5.5

. . . . . . . . .
0 5 10 15 20 25 30 35 40 45 50
Risk Aversion

Figure 3: CE with and without Insurance This figure plots certainty equivalent, with
and without insurance, as a function of risk aversion for a hypothetical contract with
(p, D, C) = (2000, 2000, 94000).

For an illustration, we plot the CE with and without insurance with respect to the risk
aversion parameter p in Figure 3 based on the same contract used for Figure 2. Given that
the payoff under insurance features lower mean and higher risk, the two CEs cross only
once, offering identification of a unique risk aversion of p. The estimated risk aversion for
this hypothetical policyholder is about 37, where her CE with insurance equals her CE

without an insurance.

Hwhile Bertomeu et al. (2025a) show that the CARA utility does converge to risk neutrality as p ap-
proaches to 0, the numerical implementation suffers from dividing by 0.
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The fourth step is to estimate the cost of moral hazard, which involves the premium and
the expected damage under the complete insurance. Following from the analysis in Section
5.2, the premium of this first-best contract, p'®, should equal to the negative CE with and
without insurance. We expect to find pf? higher than the observed premium. The expected
damage under complete insurance is simply the untruncated expected damage: E[x|a = 1],
which would be higher than the expected payout under the second-best contract. The risk
premium that the insurer could have earned in the first-best case is the premium less the
expected payout, and we expect it to be higher than the risk premium in the second-best

case we observe. The difference between the two is the cost of moral hazard:
Cost of Moral Hazard = RPFE — RP

which represents the risk premium that the insurer could have earned had there been no
moral hazard.

The fifth step is to estimate the remaining parameters, including the policyholder’s
cost of exerting effort, ¢. To that end, we first compute compute the three moments, a(p),
v(p), 6(p) for the estimated risk aversion p = p. Then, we input the computed moments
into Equations (18) to (20) and obtain estimates (A, 1, ¢).

The sixth and final step is to infer the counterfactual damage distribution f(x) from

the FOC. By rearranging the FOC, we obtain the following expression for the fo(x):

fo(x) = (epsb _% (%e—p(x—y(x» - A)) fi(x) (29)

For consistency with the assumption in Section 5.1 that zero damage fully reveals effort

(Equation (10)), we rebalance the recovered distribution so that it does not have a mass at

zero. This adjustment ensures that the likelihood ratio jﬁ‘iggg = 0 and has no effect on the

relative informativeness among positive damages.
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Likelihood Ratio

05
Loss Rate

Figure 4: Likelihood Ratio This figure plots likelihood ratio, ﬁ)g;g;, of a hypothetical

contract with (p, D, C) = (2000,2000,94000) and (17, gog, goo) = (0.003,0.042,0.079).

fo(x)

Figure 4 plots the likelihood ratio, L implied by the insurance contract we analyzed

for Figure 2 and Figure 3. The two vertical lines represent the deductible and the sum of
coverage scaled by recovery value. The likelihood ratio increases sharply in the deductible
range (left of the left vertical line), remains stable in the intermediate range where the
insurer covers the damage, and increases substantially in the coverage range (right of the

right vertical line) where the insurer limits the coverage.
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Figure 5: Cumulative Likelihood under Negligence vs. under Effort This figure plots
cumulative likelihood under negligence (Fy) vs. effort (F;) of a hypothetical contract with
(p, D,C) = (2000,2000,94000) and (m, 98, q99) = (0.003,0.042,0.079).

Figure 5 plots the same contract’s CDF of loss rate x under negligence (Fy) and that

under effort (F;). It can be immediately seen that the damage under negligence first-order
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stochastically dominates (FOSD) that under effort. Both the expected damage and the
likelihood of extremely high damage is higher under negligence. For this contract, the
expected damage increases substantially, which is 5 times higher than that under effort.
That the expected increase in damage exceeds the monetary cost of effort is consistent with
our assumption, Equation (2), that the policyholder prefers to exert effort in the absence of
insurance.

These estimates are useful for counterfactual analysis, which we examine in detail in
Section 7. In the counterfactual world where insurers are forced by regulation to provide
full insurance at the premium that the policyholder would be willing to pay, the insurer
would choose to withdraw from the market. By comparing the expected claim payout,
which is the expected damage under negligence (E[x|a = 0]), with the premium that
policyholder would be willing to pay for a full insurance (pf?), the structural model allows
us to assess whether taking away the insurer’s ability to provide incentives will result in

market failure.

6 Empirical Analysis

We apply the steps we outline in the previous section, contract by contract. In this section,

we report the estimation results and validate our estimates based on economic hypotheses.

6.1 Estimation Results

Table 2 reports summary statistics of the risk aversion, risk premium, cost of moral hazard,
and increase in exposure due to moral hazard estimated at the contract level. This is possible
because we exploit proprietary data on property-level moments (mean and quantiles) of
loss distribution used by insurers, rather than inferring from realized losses that tend to
be sparse and infrequent for home insurance. The latter would likely require a pooled

estimation from observations across properties and time to infer the loss distribution.
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However, since the underlying loss information is already estimated by insurers at the
contract level, we are able to estimate the policyholders’ risk aversion, risk premium
component of the premium, the cost of moral hazard, and the increase in exposure due to

moral hazard at the contract level.

Mean St.Dev. P10 Median P90

Risk Aversion 79 64 15 61 172
Risk Premium ($) 1,135 690 463 970 2,022
Risk Premium /Total Premium (%) 73 19 47 77 95
Moral Hazard ($) 7 37 27 1.6 9.5
Moral Hazard /Risk Premium (%) 7 3.6 .031 16 92
Increase in Exposure () 71 82 20 37 179
Increase in Exposure/Expected Payoff (%) 40 64 3.5 12 120

Table 2: Estimation Results This table reports summary statistics of the estimated vari-
ables.

6.1.1 Risk Aversion

Our estimated risk aversion ranges mostly between 15 and 170, with a mean of 79. In
contrast to the existing estimates based on a pooled estimation, we provide risk aversion
estimates at the contract level, which allows us to study its cross-sections. To our knowledge,
this is the first paper offering estimates of policyholder-level risk aversion from a large
sample and characterizing its rich heterogeneity spanning multiple cross-sections.

First, we show that high risk aversion is associated with low property risk, which
adds validity to our estimates. Figure 6 shows the bilateral relationship, indicating that
risk-averse policyholders are drawn to low risk (safer) properties.

Next, we examine the relationship between risk aversion and borrower characteristics,
which are equilibrium outcomes. Note that the goal of this exercise is to test relationships
that are ex-ante unclear, rather than to establish causality. The relationship between
estimated risk aversion and FICO can be both positive and negative due to countervailing

forces. On one hand, lower-FICO policyholders face tighter financial constraints, making
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Figure 6: Risk Aversion Estimates vs. Damage Risk This figure shows a binned scatter
plot of p estimates vs. the 99-percentile damage (AEP 100).

them more sensitive to consequences of loss and are therefore more risk averse.'?> On the
other hand, higher-FICO policyholders likely have higher value at risk and therefore more
risk averse.!® Figure 7a shows that, overall, risk aversion declines in FICO, supporting
the financial constraint channel. However, for the highest FICO bins, we find that risk

aversion slightly bounces back, which is consistent with the at-risk channel.
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Figure 7: Risk Aversion, Policyholder Characteristics, and Insurer Financial Constraint

The relationship between risk aversion and the debt-to-income (DTI) ratio is also
theoretically ambiguous. A higher DTI can be associated with tighter financial constraints
and therefore higher marginal cost of financial distress, leading to a higher risk aversion.

Therefore, risk aversion can increase in DTI. At the same time, a higher DTI indicates a

12Campello et al. (2010)
13Paravisini et al. (2017)
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higher leverage, reflecting greater willingness to take risk. In this case, risk aversion will
decrease in DTI. We find evidence supporting the former as shown in Figure 7b.

We also examine the relationship between policyholder risk aversion and insurer
characteristics. Motivated by papers emphasizing the effect of financial constraint on
insurer behavior, we focus on insurers’ risk-based capital (RBC) ratios. We invert the RBC
ratio to proxy it as the financial constraint. Again, the relationship between policyholder’s
risk aversion and insurer’s financial constraint is ex-ante unclear. We find that more
financially constrained insurers tend to provide insurance to less risk averse policyholders.
Building upon the finding on risk aversion increasing in risk (Figure 6), this would be
consistent with mechanism where more constrained insurers taking more risk, selling
insurance to properties with higher risk, and policyholders who live in risky properties
tend to have low risk aversion.

We estimate the relationships discussed above using the following regression specifica-

tion for policyholder-level variables, FICO score and DTI ratio:
Yc,s,z' = o+ ,BHHHHc,s,i + ,B/Xc +9s +0; + €cs,i (30)

where HH_ ; ; denotes a household characteristic, either standardized FICO score or DTI
ratio of contract c in state s, offered by insurer i. The outcome variable Y, ; ; denotes the
estimated parameter of interest— risk aversion parameter rho in this subsection— and the
same specification is applied when Y represents other estimated parameters in the next
subsections. The dependent variable X, includes contract-level controls including AEP
100, property recovery value. We include state-fixed effects (vs) and insurer- fixed effects
(6;), and cluster standard errors at the zip-code level.

To examine the cross-section of insurer characteristics, we aggregate the contract-level

data to the insurer level by taking the premium-weighted average of each variable. We
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then estimate the following regression:
Y, o = a+ B Insurer; + B'X; + ¢ (31)

where Insurer; denotes insurer characteristic, such as insurer financial constraint, proxied
by the inverse RBC ratio. X; denotes insurer-level controls, including size, leverage, and
equity-to-premium ratio. Because this regression is conducted at the insurer level, we do
not include state or insurer fixed effects.

Table 3 reports the results, showing that the coefficients are significant after controlling
for the fixed effects. Taken together, we find that households with low credit scores and
high DTI ratios tend to show high risk aversion. Insurers facing tighter financial constraint
tend to offer insurance to those with low risk aversion, who tend to own properties that

are more exposed to damage risk.

1) 2) 3)
Risk Aversion Risk Aversion Risk Aversion

FICO Score -2.5171%**

(-31.87)
DTI Ratio 0.111**

(2.33)
Inverse RBC Ratio -5.425**
(-2.34)

Controls Y Y Y
State FE Y Y N
Insurer FE Y Y N
N 6,121,694 3,439,829 139

t statistics in parentheses
*p<01,* p <005 " p <001

Table 3: Risk Aversion, Policyholder Characteristics, and Insurer Financial Constraint

These results highlight the importance of accounting for endogenous matching between

households and properties.
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6.1.2 Risk Premium

The observed annual premium is decomposed into the expected claim payout and the risk
premium:
NS = E[I(x)la=1] + RP, (32)
Observed Premium  Expected Claim Payout ~ Risk Premium
Table 2 shows that, on average, the risk premium constitutes about 73% of the annual
premium. We first confirm that higher risk aversion is associated with a higher risk
premium. This relationship is expected because more risk-averse agents would offer
greater compensation to the insurer for bearing the same level of risk. Likewise, the
estimated risk premium should increase with the underlying level of risk. Figure 8
documents both patterns, serving as a consistency check for our estimates. Moreover, in
light of previous work, this risk premium is not unusually high; it follows directly from
our estimated risk aversion, which lies toward the lower end of estimates in the literature

(e.g., Cohen and Einav, 2007; Einav et al., 2010; Sydnor, 2010; Handel, 2013; Hendren, 2020).
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Figure 8: Risk Premium, Risk Aversion, and Damage Risk

While the risk premium represents policyholders’” willingness to pay for transferring
the risk to the insurer, from the insurer’s perspective, it represents the expected profit that
insurer can make from the respective contract. We find that this risk premium, either in

dollar value or as a share of premium, decreases in FICO score. The relationship between
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scaled premium and FICO score is as presented in Figure 9a. Taken together with Figure 7a,
a mechanism behind the premium increasing in credit risk is low-FICO policyholders
having higher risk aversion, plausibly due to the household’s financial constraint. These
findings are consistent with low-FICO policyholders acquiring insurance to avoid having

to borrow at exceedingly high rates (i.e., risk-taking capacity channel).

Risk Premium (%)
Log Risk Premium
Risk Premium (%)

4 6 8 0 2 Kl 0 1 2 2 Kl 0
FICO Score Inverse RBC Ratio Inverse RBC Ratio

(a) FICO Score (b) Insurer Fin. Constraint (¢) Insurer Fin. Constraint

Figure 9: Risk Premium, FICO Score, and Insurer Financial Constraint

Similar to the previous subsection, we investigate the role of insurer’s financial con-
straint on risk premium. Consistent with the association between constrained insurers
and high risk (from Figure 7c and Figure 6), we find that more financially constrained
insurers charge higher risk premium, as presented in Figure 9b. However, this does not
necessarily imply that financially constrained insurers are extracting high profitability by
selling insurance policies to households with risky properties. In fact, Figure 9c shows that
risk premium as a share of total premium does not increase in the inverse RBC ratio.

Using the same specifications as in equations (30) and (31), we test the relationship
between the risk premium, FICO, and the insurer’s inverse RBC ratio. The results are
reported in Table 4. Consistent with the description above, we find that the risk premium
and the FICO score are negatively associated. In the cross-section of insurer financial
constraint, we find that while more constrained insurers tend to collect more risk premium,
the risk premium as a proportion of total premium is flat across insurers’ financial con-
straint. This is consistent with the finding in the previous section that constrained insurers
tend to insure more risky properties, and therefore, the expected claim payout proportion

in (32) is large and the proportion of risk premium is relatively small.
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1) 2 ®3) 4

Log Risk Premium Risk Premium (%) Log Risk Premium Risk Premium (%)

FICO Score -0.0817*** -1.403***

(-98.92) (-62.99)
Inverse RBC Ratio 0.107*** -0.0344

(3.15) (-0.03)

Controls Y Y Y Y
State FE Y Y N N
Insurer FE Y Y N N
N 7,691,488 6,886,496 139 139

t statistics in parentheses
*p <01, p<0.05**p <001

Table 4: Risk Premium, Policyholder Characteristics, and Insurer Financial Constraint

6.1.3 Cost of Moral Hazard

Recall that we compute the risk premium in a counterfactual first-best world to compute the
moral hazard. Specifically, in the first-best world in the absence of information asymmetry,
full insurance would be optimal; insurers would offer full insurance in exchange for
counterfactual premium, and the coverage limit and deductible would be unnecessary
because there is no moral hazard. The counterfactual premium can be decomposed into
the expected damage and the counterfactual (first-best) risk premium:

pt? = E[l(x)la=1] + RPP (33)

—

Counterfactual Premium  Expected Claim Payout ~ Counterfactual Risk Premium

The cost of moral hazard estimate is:

AV = RPFEB — RP
~~ —~— ~~—

Cost of Moral Hazard Counterfactual Risk Premium  Observed Risk Premium

from the equations (32) and (33).
We find that the cost of moral hazard is low. Table 2 shows that the average cost of
moral hazard is only $7, or 0.7% of the estimated risk premium. This indicates that the

contracts are well designed to discourage moral hazard; at the same time, this suggests
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that the deductible and the coverage, which reduces moral hazard, increases policyholder’s
risk exposure. We quantify this increase in risk exposure in the next subsection.

In the cross-section of FICO score, we find that the cost of moral hazard is higher for
low-FICO policyholders, as presented in Figure 10a. This is consistent with the economic
intuition that there would be more uncertainty regarding the unobservable actions by
low-FICO policyholders than by high-FICO ones. In the cross-section of insurer’s financial
constraint, we find that more constrained insurers tend to face higher cost of moral hazard
as shown in Figure 10b. Combined with previous results, constrained insurers are willing
to take on more risk (i.e., insure riskier properties), facing higher costs of moral hazard as

a result. Table 5 shows consistent results from regressions using the same specifications as

(30) and (31).
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Figure 10: Cost of Moral Hazard, FICO Score, and Insurer Financial Constraint

6.1.4 Increase in Exposure due to Moral Hazard

The increase in exposure due to the coverage and deductible, which are in place to discour-

age moral hazard, is computed as:

AL = Elfa=1] - E[(®)a=1]

Increase in Exposure  pypected Damage  Expected Claim Payout
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(1) )
Cost of Moral Hazard Cost of Moral Hazard

FICO Score -0.0400***
(-10.36)

Inverse RBC Ratio 0.349**

(2.49)
Controls Y Y
State FE Y N
Insurer FE Y N
N 5,442,243 139

t statistics in parentheses
*p <01, p <005 " p <001

Table 5: Cost of Moral Hazard, FICO Score, and Insurer Financial Constraint

from the equations (32) and (33). We scale this by the expected claim payout. Table 2
shows that the average increase in exposure relative to the expected payoff is 40%. That
is, although the cost of moral hazard is low, the coverage limit and deductible that are
designed to curb the moral hazard, exposes policyholders to 29% of expected payoff.'*

We first examine the relationship between the increase in exposure and tail risk. Con-
trolling for risk aversion and the average expected loss, we expect to find a positive
relationship because increase in exposure is effectively the sum of the left tail cut off by the
deductible and the right tail curtailed by the coverage. Therefore, the increase in exposure
naturally increases with the tail risk that is not covered by the insurance contract. We
control for risk aversion to isolate the negative correlation between risk aversion and tail
risk. Because tail risk, not the average risk, is relevant for the increase in exposure, we
control for the AAL. Figure 11 confirms this relationship. That is, households exposed to
higher damage tail risk tend to retain more risk even after getting insurance.

In the cross-section of FICO, we find that low-FICO policyholders tend to be left with
more exposure, as presented in Figure 12a. On the other hand, while increase in exposure is

weakly negatively related with insurer’s financial constraint (Figure 12b), this relationship

4That the insurer’s claim payout increases by 40% under full insurance means that the partial insurance
we observe in equilibrium covers only 71% of expected losses.
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Figure 11: Increase in Exposure vs. Tail Risk This figure plots relationship between

increase in exposure divided by expected payoff and tail risk (AEP 100), after controlling
for risk aversion and expected loss (AAL).

is not significant in regression. Table 6 reports the regression results using the same

specifications (30) and (31).
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Figure 12: Increase in Exposure due to Moral Hazard, FICO Score, and Insurer Financial
Constraint

6.1.5 Spatial Distribution

We map the spatial distribution of the estimated parameters in Figure A.2. To illustrate, we

focus on Florida, a region with high exposure to natural disasters, as shown in Figure A.1.
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1) (2)

Increase in Exposure (%) Increase in Exposure (%)

FICO Score 0.181**
(2.01)

Inverse RBC Ratio -3.240

(-1.11)
Controls Y Y
State FE Y N
Insurer FE Y N
N 6,955,719 139

t statistics in parentheses
*p<01,* p <005 ** p <001

Table 6: Increase in Exposure due to Moral Hazard, FICO Score, and Insurer Financial
Constraint

Panel (a) shows that estimated risk aversion is relatively low, consistent with the idea
that less risk-averse households are more willing to own property in higher-risk areas.
Despite this, the elevated underlying risk leads to higher risk premiums (panel b). The
average cost of moral hazard is moderate, reflecting contract designs that effectively
limit opportunistic behavior (panel c). However, these same features leave households
with substantial residual risk, as shown by the increase in uninsured exposure in panel
(d). Comparing these results with the tail-risk patterns in Figure A.1 highlights that
policyholders in regions with greater disaster exposure tend to retain the most residual
risk.

Taken together, our estimates suggest that, although the cost of moral hazard is low,
the contract design substantially increases the policyholders” risk exposure. From the
cross-sectional analyses, we find that policyholders with low credit scores and high DTI

ratio tend to be more risk averse and pay higher risk premium to insure property damage.

6.2 Validation

In this section, we test the validity of the cost of moral hazard estimates exploiting variation

in the loan-to-value and variation in regulations across states.
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6.2.1 Exploiting variation in “skin in the game”

To evaluate the economic validity of our cost of moral hazard estimates, we examine their
cross-sectional relationship with the loan-to-value (LTV) ratio at origination. This test is
not intended to establish causality, but rather to assess whether the estimates behave in a
manner consistent with economic intuition.

In the cross-section, we hypothesize that moral hazard decreases as the property
becomes more “owned.” We proxy ownership by the LTV ratio. A lower LTV indicates
that the homeowner has greater equity in the property and thus more “skin in the game.”
With more equity at stake, homeowners have stronger incentives to maintain the property,
take preventive actions, and avoid filing excessive claims. Accordingly, we expect moral
hazard to be less severe for properties with lower loan-to-value ratios.

Importantly, our estimate of moral hazard is derived exclusively from insurance con-
tract characteristics—premium, deductible, and coverage—along with the underlying risk
distribution, f1(x). It does not incorporate any borrower or financing information such as
credit risk, loan-to-value, or other mortgage attributes. Consequently, examining how the
estimated moral hazard varies with these external borrower characteristics provides an
out-of-sample validation of our measure.

To test the hypothesis, we confine our sample to the loans that originated within one
year and examine the relationship. Figure 13 shows that the moral hazard indeed increases
in LTV. More formally, we regress the moral hazard estimate on LTV ratio, controlling for
FICO, risk, and insurer fixed effects:

As a result, we find significant and positive coefficients on the loan-to-value ratio.

6.2.2 Exploiting variation in regulatory environment

Another approach to validating the cost of moral hazard estimate is to use cross-state
differences in the insurance regulatory environment. Because insurance is regulated at

the state level in the US, policies written on properties in a given state must comply with
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Figure 13: Cost of Moral Hazard vs. Loan-to-Value Ratio

(1) ) 3)
Moral Hazard Moral Hazard Moral Hazard
LTV Ratio 0.227%*** 0.119*** 0.125***
(15.53) (20.95) (22.44)
Tail Risk (AEP100) 0.205*** 0.0639***
(9.74) (3.36)
FICO Score -0.0736*** -0.0631***
(-12.59) (-11.36)
Log Recovery Value -1.051*** -1.027***
(-39.32) (-39.47)
Insurer FE N N Y
N 1,261,431 1,261,431 1,261,424

t statistics in parentheses
*p <01, p <005 " p <0.01

Table 7: Cost of Moral Hazard vs. LTV Ratio
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that state’s requirements. These requirements include not only formal statutes, but also
supervisory guidance and binding market practices that shape underwriting standards.
The regulatory environment has several dimensions relevant for moral hazard.

The most prominent dimension is the requirement that homeowners provide docu-
mentation or inspection reports on the condition of key structural features, such as roof
age and condition, hurricane tie-downs, or wind-mitigation features, before a policy is
issued. Florida imposes these through statute. Several other high-risk Gulf and South-
eastern states, insurers commonly require documentation of roof or structural condition,
and coverage or pricing often depends on verified structural features. Although these
requirements are not statutory in these states except Florida, they reflect state guidance
and common underwriting practice.

We exploit this cross-state variation in regulation as a strategy to validate the cost
of moral hazard estimates; we expect less severe moral hazard in the states with the
inspection-related regulations discussed above. We test this hypothesis by running the

following regression:
Cost of Moral Hazard, s; = ﬁREg“l”tiO”Inspection Regulations + B'Xc +6; +ecs;  (34)

where the outcome variable is cost of moral hazard estimate of contract ¢, sold in state
s by insurer i and the Inspection Regulation dummy takes a value of 1 if the state has
inspection-related regulation and 0 otherwise. We control for the policyholder’s FICO
score, property’s damage risk, recovery value, and the insurer fixed effects. Standard errors
are clustered at the zip-code level. We expect gRe€%4ti0m to be negative, as the regulations
would likely reduce the cost of moral hazard by reducing the information asymmetry.
Consistent with the hypothesis, Figure 14 shows that the gRes¥/aon jg negative and

significant.
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Figure 14: Cost of Moral Hazard vs. Inspection Requirement Regulation

The inspection requirement is the regulatory feature most directly connected to the
moral hazard mechanism in our model. However, several additional regulations poten-
tially affect the cost of moral hazard, either by influencing the incentives to file or inflate
claims or by affecting the observability of risk. We therefore compile a broader set of regu-
latory provisions and combine them into a single index, where a higher value corresponds
to a lower cost of moral hazard.

We consider five types of regulations in addition to the inspection requirement used
above. First, some states restrict assignment of benefits (AOB), preventing contractors
or third-party adjusters from assuming control of the claim and negotiating directly
with the insurer. These restrictions limit the scope for repair-cost inflation and should
therefore reduce moral hazard. Second, some states cap public adjuster fees, which
reduces the financial incentive to expand the claimed scope of damage. Third, states differ
in the strength of fraud investigation and enforcement (e.g., mandatory insurer Special
Investigation Units or active state fraud bureaus), which increases the expected cost of
submitting exaggerated claims. For these three categories, we define indicator variables

equal to 1 when the regulation is present.
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The remaining two regulatory categories operate through information asymmetry.
Some states restrict the use of prior claims history or credit information in pricing or
renewal decisions. By limiting insurers’ ability to condition premiums on observable risk
indicators, these regulations weaken dynamic incentives to avoid marginal or inflated
claims. For these two categories, we define indicator variables equal to -1 when the

restriction is present.

) ) 3)
Moral Hazard Moral Hazard Moral Hazard

MH Reducing Regulation -1.228%** -1.062*** -1.026***
(-106.49) (-79.55) (-12.99)
Tail Risk (AEP 100) -1.065*** -1.015***
(-55.25) (-14.04)
FICO Score -0.260*** -0.225%**
(-17.21) (-7.34)
Log Recovery Value -1.695** -1.598***
(-48.87) (-10.17)
Constant 7.891%** 29.97*** 28.62***
(457.53) (66.25) (13.98)
Insurer FE N N Y
N 5,926,005 5,926,005 5,925,999

t statistics in parentheses
*p<01,* p <005 **p <001

Table 8: Moral Hazard vs. Regulations Reducing Moral Hazard

Our moral-hazard regulation index is defined as the sum of these five indicator vari-
ables. Accordingly, higher values correspond to regulatory environments that make moral
hazard more costly. By regressing the cost of moral hazard on the regulation index con-
trolling for the same set of control variables and insurer fixed effects, we find that the
coefficient on the regulation index is negative, as reported in Table 8. This confirms that
regulations that are associated with reducing moral hazard, indeed, reduces the cost of
moral hazard.

While not intended to establish causality, the results in this section add validity to our

estimates.
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7 Counterfactual Analysis and Policy Implications

Our results so far have shown that policyholders, particularly those exposed to tail risk
and those with low FICO scores, retain considerable risk even after being insured. This
prompts a policy-relevant question: what if insurers are required to offer full coverage?

Our structural model is useful for answering this question. In this section, we focus on
one application of it to consider a hypothetical regulation that mandates full coverage of
insurance. In this case, insurers would not be able to incentivize effort from policyholders
and be required to cover all the property damage under the policyholder’s negligence. If
the expected damage under negligence exceeds the premium that the insurer can earn
from a complete insurance, the insurer will choose to leave the market, resulting in
market failure. In short, the regulation that aims to extend insurance coverage may leave
policyholders entirely exposed to property risk.

We first estimate the counterfactual damage distribution under negligence, fo(x),

using the model. Specifically, we obtain the likelihood ratio LR = 0G) from Equation
fi(x)

(FOC). Then, we recover fy(x) using the LR and the f;(x) that we had estimated earlier.
This allows us to infer the distribution of property damage when policyholders are not
incentivized to properly manage their properties.

The median increase in expected damage is $1,107; the damage increases by the factor
of 3.3 under negligence relative to effort. In the counterfactual world where insurers
are forced by regulation to provide full insurance at the premium that the policyholder
would be willing to pay, the insurer would choose to withdraw from the market. For
approximately 46% of the contracts, the expected claim payout, E[x|a = 0] exceeds the
premium that the policyholder would be willing to pay for a complete insurance, which is
pFB. For the other 54%, the insurer still finds it profitable to provide full insurance. Our
result suggests that taking away the insurer’s ability to provide incentives would leave a

substantial portion of households uninsured, exposing them entirely to property risk.
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8 Conclusion

Housing represents the largest component of household wealth in the United States,
making property risk a key financial for households. Losses due to natural disasters often
exceed the liquid savings of most households. Therefore, property insurance plays a critical
role in smoothing these shocks. Yet the protection households ultimately receive from
insurance depends crucially on contract design, specifically, the deductible and coverage
limit that determine how much loss remains with the household. These features, designed
to balance risk sharing and incentives, shape how disaster shocks propagate through
household balance sheets and, by extension, the broader economy.

Drawing on rich contract-level data matched to property-level disaster risk, this paper
presents one of the first comprehensive analyses of the structure of property insurance
contracts and the economic forces underlying their design. We develop a structural model
linking household risk aversion, property risk, and insurer pricing to observed contract
terms.

Our estimation results show that insurance contracts successfully mitigate moral haz-
ard—the estimated cost of moral hazard is only 0.7% of the risk premium—but this incen-
tive alignment comes at the cost of substantial uninsured exposure, roughly 29% of total
expected losses on average. The burden of this retained risk falls disproportionately on
low-FICO households and those in high-risk regions, suggesting important distributional
consequences. A counterfactual analysis further shows that mandating full insurance
would lead many policyholders to lose coverage altogether, highlighting the trade-off

between incentive alignment and risk sharing.
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Appendix
Additional Figures
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Figure A.1: Disaster Risk Map These figures show spatial distribution of the three disaster
risk moments, mean, 98 percentile, and 99 percentile. The data source is CoreLogic.
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Figure A.2: Spatial Distribution of Estimated Variables



	Introduction
	Data
	Anatomy of Property Insurance Contracts
	Stylized Facts

	Model
	Model Setting
	Optimal Contract

	Structural Estimation
	Identification
	Cost of Moral Hazard
	Estimation

	Empirical Analysis
	Estimation Results
	Risk Aversion
	Risk Premium
	Cost of Moral Hazard
	Increase in Exposure due to Moral Hazard
	Spatial Distribution

	Validation
	Exploiting variation in ``skin in the game"
	Exploiting variation in regulatory environment


	Counterfactual Analysis and Policy Implications
	Conclusion



