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Abstract 

We study the economics of homeowners’ property insurance by examining how contract design balances 

the trade-off between incentive alignment and risk sharing. Using granular contract-level property 

insurance data merged with property-level disaster risk for millions of U.S. households, we develop and 

structurally estimate a model in which insurers optimally determine contract terms given property risk and 

household risk preferences. The estimates provide, to our knowledge, the first large-scale contract-level 

structural measures of risk aversion, risk premia, and the cost of moral hazard, allowing us to quantify 

how disaster risk is allocated between insurers and households. We find that the cost of moral hazard is 

small, yet the very mechanism used to mitigate it substantially increases households’ exposure to disaster 

risk: contract design leaves policyholders exposed to roughly 29 percent of total expected losses. This 

residual exposure is most pronounced for low-FICO households and for properties with the greatest tail 

risk. Counterfactuals indicate that mandating full insurance would lead to substantial market exit, 

increasing household vulnerability. We further show that insurers’ financial constraints are systematically 

correlated with the riskiness of underwritten properties and with household characteristics. 
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1 Introduction

Housing is the largest component of household wealth in the US; totaling more than $45

trillion. This suggests that, from households’ perspective, property risk is primary, not

incidental. Losses from natural disasters are rare but lumpy. Realized damages typically

far exceed the liquid savings of many households.1

Insurance is the primary means of hedging these losses. Homeowners’ property

insurance is one of the most widely held financial contracts in the household portfolio,

comparable in prevalence to checking accounts. US households pay about $150 billion per

year to insure personal property and catastrophe.

However, what households actually receive in return for these premiums depends

crucially on the structure of the insurance contract. Property insurance is not a simple

promise to cover the entire loss. Instead, contracts include a deductible, which is the

amount the household must pay before the insurer compensates anything, and a coverage

limit, which caps the insurer’s total payout. These terms determine how much of a disaster

loss is ultimately borne by the household. Since many households have limited liquid

savings, the extent to which a disaster is financially smoothed through insurance versus

passed through to the households’ balance sheet is a critical matter for household financial

stability. Contract design therefore plays a central role in the financial consequences of

disasters, both at the household level, in shaping risk exposure and recovery, and at

the macro level, by influencing how local shocks transmit into housing markets, credit

outcomes, and aggregate economic activity.

These contract features arise from a fundamental risk-sharing versus incentive trade-off.

In a frictionless setting, insurers, who are diversified and thus effectively risk-neutral,

would provide full insurance to risk-averse households against property losses. In practice,

1A lower-bound proxy for realized damage, paid claim amounts, averages about $19,000 in low-risk
areas and $24,000 in high-risk areas (Federal Insurance Office, 2025). By constrast, Federal Reserve surveys
indicate that 48% of US adults report being unable to cover unexpected expense of $2,000 or more using
liquid savings (Federal Reserve Board, 2025).
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however, insurers cannot observe the effort households take to maintain or protect the

property once insured. This classic moral hazard problem can be mitigated by exposing

policyholders to residual risk through deductibles and coverage limits.

In this paper, we study three key questions about the economics of homeowners’ prop-

erty insurance contracts. First, how are insurance contracts designed in practice—specifically,

how do premiums, deductibles, and coverage limits relate to underlying property risk

and insurer pricing? Second, how large is moral hazard in homeowners insurance, and to

what extent do cost-sharing terms mitigate it? Third, how much risk is ultimately retained

by households as a result of contract design, and how does this retained risk vary across

households and insurers?

These questions are important because contract design determines how disaster losses

are allocated between insurers and households, with implications for household financial

resilience and for how shocks propagate more broadly. However, surprisingly little is

known about property insurance contracts, both about facts and mechanisms. A primary

challenge is data availability: granular data on contract terms, premiums, and underlying

property-level risk have been rarely observed. Second, even with such a dataset, reduced-

form approaches face identification difficulties, as premiums, deductibles, and coverage

limits are joint equilibrium outcomes shaped by both household preferences and insurer

pricing and risk management. Before describing our approach, we summarize the main

contributions of this paper.

To our knowledge, this paper provides the first contract-level structural estimates of

policyholders’ risk preferences and moral hazard in property insurance, allowing us to

construct contract-specific counterfactuals and characterize how incentive and risk-sharing

primitives vary across households, properties, and insurers. We use this framework

to show that insurance contract design plays a central role in allocating disaster risk

between insurers and households. We then document that the resulting residual risk has

meaningful financial consequences, with liquidity-constrained households retaining the
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greatest exposure precisely in high-risk areas. Finally, we show that insurer financial

constraints are systematically correlated with the riskiness of underwritten properties

and with the characteristics of households selecting into these contracts, highlighting the

importance of accounting for endogenous selection when analyzing contract design and

risk allocation.

We address the first challenge above by exploiting granular contract-level insurance

data covering premiums and contract terms, combined with property-level disaster risk and

recovery value, as well as characteristics of policyholders and insurers. The fully merged

dataset covers about 8.7 million contracts per year, allowing us to exploit the rich cross-

sections. The second challenge is addressed by writing a structural model of insurance

contracting. The model provides a connection between the observable contract features,

such as deductible and coverage, and the unobservable primitives of policyholders, such

as their risk preference and the effect of their negligence on property risk. The model

not only allows for the estimation of these primitives, but also counterfactual analysis to

examine potential effects of regulatory interventions, which are prevalent in the insurance

market.

Our main finding is that while insurance contracts effectively mitigate moral hazard,

they do so by shifting a substantial amount of risk back to households. To quantify the

tradeoff, we develop and structurally estimate a model in which insurers optimally design

contract terms given the property risk and household risk preference. The estimates yield

contract-level measures of risk aversion, risk premium, cost of moral hazard, and the result-

ing increase in uninsured exposure. We find that the cost of moral hazard is quantitatively

small, about 0.7% of the risk premium, indicating the ease of incentivizing policyholder’s

effort through risk exposure. However, the very mechanisms that mitigate moral hazard

lead policyholders to retain considerable risk: contract design leaves policyholders ex-

posed to roughly 29% of total expected losses. This residual risk is large especially for

properties subject to severe tail risk. In the cross-section, these effects are most pronounced
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among low-FICO households. Among insurers, more constrained insurers underwrite

riskier properties and therefore charge higher premiums, but these higher premiums

reflect higher expected losses rather than higher risk premia. Taken together, the results

suggest that moral-hazard mitigation comes at a distributional cost; financially constrained

households retain the most risk precisely where disaster exposure is greatest.

Using our structural model and the estimated parameters, we analyze the counterfac-

tual in which insurers are required to provide full coverage. Under this mandate, a large

share of policyholders would lose access to insurance altogether, implying that removing

insurers’ ability to design incentive-compatible contracts could trigger market failure and

ultimately expose households to even greater risk.

We make use of state of the art contract-level data, from Intercontinental Exchange

(“ICE”) McDash, covering the details of homeowners’ property insurance and rich charac-

teristics of the insurance policyholder. We merge this dataset with property-level disaster

risk metrics from CoreLogic. The merge is done at the loan-level, meaning that, for each

insurance policyholder, we observe the contract terms of insurance policy, including

premium, coverage limit, deductible, insurer identity, and the policyholder’s property

characteristics, including location, expected damage, and tail damage values. We further

merge this dataset with per-square-foot-structural value estimates provided by the Na-

tional Structure Inventory at the zip code level. For our main cross-sectional analysis, we

focus on the year when the structural value estimates are readily available at the most

granular level.

For this one year, we observe almost 8.7 million contracts spanning all states of the

US, including over 200 insurance companies. This granular dataset allows us to estimate

key parameters, such as policyholder-level risk aversion, property-level damage distri-

bution, contract-level risk premium, and cost of moral hazard. The rich cross-section of

policyholders, properties, and insurance companies, in turn, allows us to make progress

on understanding mechanisms through cross-sectional analyses.
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Based on the constructed dataset, we begin by documenting key stylized facts about

the US property insurance contracts. We document that coverage limits are rarely binding.

The median ratio of coverage to property value far exceeds the 99th-percentile loss rate,

meaning that insurers would pay the same amount in nearly all realized loss scenarios even

if coverage were higher. Thus, coverage plays a limited role in limiting insurer payouts,

implying that deductibles, rather than coverage, are likely the primary mechanism used to

mitigate moral hazard. Second, deductibles are small relative to property value, but large

relative to expected loss. This suggests that, because a large share of losses occur in the

region where the deductible applies, the deductible plays a particularly important role

in determining household risk retention and mitigating moral hazard. Third, premiums

substantially exceed expected losses. This is consistent with equilibrium in a market with

risk-averse policyholders: households are willing to pay more than the expected claim

payout to transfer disaster risk off their balance sheets, generating a risk premium. Fourth,

damage risk is low on average but highly skewed.

To analyze these endogenous contract terms, we develop a model in which premiums,

deductibles, and coverage limits are designed optimally by insurers given the households’

risks and preferences. The model links the distribution of damage risk and household

risk aversion to the observed structure of insurance contracts. This framework allows

us to quantify how much risk is transferred to insurers versus retained by households,

how much risk premium is forgone due to moral hazard, and how these components vary

across households, insurers, and regions.

We model the insurance design problem based on the canonical moral hazard model by

Holmström (1979). The policyholder, the agent, can make an unobservable action choice

that determines the risk to the property. Specifically, the policyholder can make a personally

costly effort to reduce the risk to the property. Given the information asymmetry regarding

the agent’s hidden action, the insurer, the principal, faces the tradeoff between risk-sharing

and incentives. On one hand, the risk-neutral insurer profits from taking on the risk-averse
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policyholder’s risk. On the other hand, the insurer also gains from incentivizing the

policyholder to properly manage their property (effort). This tradeoff endogenously gives

rise to insurance contracts that offer only partial coverage; deductibles and coverage limits

limit the range of protection that the insurer provides to the policyholder. By exposing the

policyholder to residual risk, the contract can incentivize the policyholder to exert effort

to reduce their own risk. The region of protection for the insurer, defined below by the

deductible and above by the coverage, is determined by the informativeness of the realized

damage regarding the policyholder’s hidden action. In particular, zero or low damage

would be likely under effort and very high damage would be likely under negligence (no

effort). As a result, the incentive regions are concentrated in the tails, which is consistent

with the contract design we observe in practice: the policyholder is exposed to risk for

damages below the deductible and above the coverage, while enjoying full protection for

damages in between.

The model allows us to uncover the unobservable primitives of policyholders’ risk pref-

erences and hidden actions. Specifically, the key objects we estimate are: the policyholder’s

risk aversion, the cost of policyholder’s unobservable effort, and the counterfactual out-

come distribution had the policyholder chosen negligence. First, the risk aversion is

identified by the participation condition: the policyholder should prefer to be insured.

Second, the cost of effort is identified by the incentive compatibility condition: if the

policyholder participates in the insurance contract, she should prefer exerting effort to

negligence. Third, the counterfactual damage distribution under negligence comes from

the insight in Holmström (1979) that the optimal payoff is a function of the likelihood

ratio, which is how likely an outcome is under effort vs. negligence. The counterfactual

distribution can therefore be backed out from the payoff function given the distribution

under effort that we observe in equilibrium.

For the estimation, we use the property’s risk characteristics, such as the expected loss

rate and the recovery value, as well as contract characteristics, including the deductible and
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the coverage. With these data as inputs, we estimate the model in steps. First, we estimate

the loss rate distribution from the property risk characteristics. Second, we decompose

the premium into the expected claim payout and the risk premium. Third, we estimate

the risk aversion from the participation condition. Fourth, we estimate the cost of moral

hazard by constructing the counterfactual optimal contract in the absence of moral hazard.

Fifth, we estimate the cost of the policyholder’s effort, using moment conditions including

the incentive compatibility condition. Sixth and finally, we recover the counterfactual loss

rate distribution had the policyholder neglected her property.

The results of the estimation can be summarized as the following. We estimate contract-

level risk aversion ranging from 15 to 170, with a mean of 79. Our estimates are moderate

relative to those of prior literature on other types of insurance. Unlike pooled estimates in

the literature, our approach yields policyholder-level estimates, allowing us to characterize

rich heterogeneity across contracts. Consistent with economic intuition, we find that more

risk-averse policyholders tend to own safer properties, lending validity to our estimates.

On average, the estimated risk premium accounts for 73% of the total premium, and it

increases with both risk aversion and the underlying level of risk, confirming the internal

consistency of our model. The estimated cost of moral hazard is low, only about $7,

or 0.7% of the risk premium, suggesting that it is cost-efficient to incentivize due care

by policyholders. However, this comes at the expense of higher uninsured exposure:

deductibles and coverage limits that reduce moral hazard expose policyholders to 29% of

total expected losses. As expected, the exposure due to moral hazard is larger for contracts

covering properties with greater tail risk, since deductibles and coverage caps truncate

both tails of the loss distribution.

In the cross-section, we find that low-FICO policyholders are more risk averse, consis-

tent with the financial constraint channel, and face higher costs of moral hazard, reflecting

greater uncertainty about their unobservable actions. They also pay higher risk premiums

and experience larger increases in uninsured exposure due to contract features designed
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to limit moral hazard, underscoring the distributional implications of these frictions. On

the insurer side, we find that more financially constrained insurers, proxied by lower risk-

based capital ratios, tend to underwrite riskier properties and charge higher risk premiums,

although not higher risk premiums relative to total premiums. Together, these indicate

that financial constraints shape both sides of the market, with constrained households

bearing more residual risk and constrained insurers taking on riskier exposures.

To evaluate the economic validity of our cost of moral hazard estimates, we examine

whether they behave consistently with economic intuition in two cross-sectional settings.

First, we relate the estimated cost of moral hazard to the loan-to-value (LTV) ratio at

origination. Because a lower LTV implies greater homeowner equity and hence stronger in-

centives to maintain the property and avoid excessive damages, we expect moral hazard to

decline as ownership increases. Importantly, our moral hazard estimates are derived solely

from insurance contract characteristics—premiums, deductibles, and coverage—along

with the underlying risk distribution, without incorporating borrower or financing vari-

ables such as credit scores or mortgage terms. The relationship with LTV therefore provides

an out-of-sample validation of the measure. Restricting the sample to loans originated

within one year, we find that moral hazard indeed increases significantly with LTV. As

a second validation, we exploit cross-state variation in insurance regulations, such as

requiring pre-binding property condition verification (e.g., roof age, condition, or wind

mitigation features). We expect such regulations to mitigate information asymmetry and

thereby reduce moral hazard. Consistent with this hypothesis, we find that states with

inspection requirements exhibit significantly lower estimated costs of moral hazard.

With the parameters and the counterfactual distribution, we examine the potential

effect of mandating insurers to provide complete insurance. Under this hypothetical

regulation, we find that a substantial portion of policyholders will lose insurance, exposing

them fully to property risk. The result suggests that taking away the insurers’ means of
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incentivizing the policyholders’ effort to manage their properties can result in market

failure, and thus greater risk to households.

Contribution to literature. This paper contributes to several strands of literature. First,

this paper contributes to the literature studying insurance. We contribute by quantitatively

estimating the tradeoff between risk-sharing and incentive provision.

First, this paper contributes to the studies identifying and estimating agency frictions

with a structural model. In the context of executive compensation, works such as Margiotta

and Miller (2000), Gayle and Miller (2009), Gayle and Miller (2015), Gayle et al. (2022),

Bertomeu et al. (2025b), and Jung (2025b) use structural model building on Holmström

(1979) to identify and estimate moral hazard. In the insurance literature, Einav et al.

(2010) estimate the demand for insurance and the welfare implications of adverse selection.

Einav et al. (2013) estimate the impact of moral hazard on the policyholder’s selection of

medical insurance. We contribute to this literature by providing, to our knowledge, the

first large-scale contract-level structural estimates of policyholders’ risk preferences and

moral hazard in property insurance. Our framework also constructs the counterfactuals for

each insurance contract, enabling rich characterization of how risk aversion and incentive

effects vary across households, properties, and insurers.

Second, we contribute to the growing literature on climate finance and insurance. Keys

and Mulder (2024) link rising premiums to climate risk; Jung et al. (2025) measure property

insurers’ exposure to physical climate risk; Blonz et al. (2024) highlight the role of policy-

holders’ credit risk in insurance pricing; and Sastry et al. (2025) analyze property insurance

demand using an IO framework. We complement this work by showing that insurance

contract design is central to how climate risk is allocated between insurers and households.

While contract terms effectively curb moral hazard, they systematically determine how

much of the increasing tail risk associated with climate exposure is transferred back to

policyholders.
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Third, this paper contributes to the real effects of insurance and hedging. On house-

holds, Ge et al. (2024) show that rising insurance premiums increase mortgage delinquency,

and Jotikasthira et al. (2025) document delays in claim payouts after insurers experiencing

adverse events. On firms, Aunon-Nerin and Ehling (2008), Perez-Gonzalez and Yun (2010),

and Jung (2025a) document real effects of insurance and derivative hedging. We add

to this literature by showing that the contract features that mitigate moral hazard also

generate significant household exposure to disaster risk, and that financially constrained

households retain the most risk precisely in regions where disaster exposure is greatest.

This highlights a previously underexplored channel through which insurance contract

design affects household financial resilience.

Fourth, we contribute to the literature on financial constraints faced by intermediaries.

Koijen and Yogo (2014) and Koijen and Yogo (2016) document the role of regulatory

frictions in pricing by life insurers; Ge (2021) shows how insurers’ capital constraints affect

premiums; and Oh et al. (2025) examine regulatory frictions in P&C pricing. We extend this

line of work by documenting that insurer financial constraints are systematically correlated

with the riskiness of the properties they underwrite and with the characteristics of the

households that select into these contracts, including their risk preferences and financial

constraints. These patterns highlight the need to account for endogenous selection when

analyzing insurance contract design and risk allocation.

Outline of the Paper. The rest of the paper is organized as the following. In Section

2, we describe the data sources and how we construct the sample dataset. Section 3

explains the main components of property insurance contracts and documents stylized

facts about the key contract terms. Section 4 covers the model and Section 5 describes

the structural estimation approach. Section 6 studies the estimated results and Section 7

analyzes counterfactuals and discusses policy implications. Section 8 concludes.
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2 Data

We use a number of large datasets on insurance policy, mortgage loans, property-, borrower-

, and insurer characteristics from the following data sources.

Property Insurance Data. ICE McDash insurance module provides data on the US

homeowners’ property insurance contracts. The data contains detailed characteristics of

the contract, including the premium, the deductible, the coverage limit, and the identity of

the insurer. Since this database comes from residential mortgage servicers, McDash also

provides a mortgage loan module, which provides data on the mortgage loan associated

with each insurance policy.2 Therefore, we observe rich information on borrowers (e.g.,

credit score), mortgage contract details (e.g., loan amount, origination date), and property

characteristics (e.g., zip code, appraisal value). The dataset covers approximately two-

thirds of installment-type loans in the residential mortgage servicing market.

Disaster Risk Data. We complement the insurance data with property-level climate risk

metrics from CoreLogic. CoreLogic uses proprietary information to generate measures of

disaster risk by peril, such as earthquake, wildfire, inland flood, severe convective storm,

winter storm, hurricane storm surge, and hurricane wind. The metrics include average

annual loss (AAL) and aggregate exceedance probability loss (AEP) as a share of recovery

value. We use AEP 1% (and AEP 2%) loss rates, which correspond to the loss that has a

1% (and 2%) chance of being exceeded in a given year. These estimates are known to be

used by insurance companies. CoreLogic also provides a real estate deed module and a

property module, and therefore the disaster risk metrics can be merged with mortgage

2Mortgage servicers are responsible for monitoring insurance coverage on the properties securing
mortgages. Furthermore, they are required to enforce various rules related to insurance coverage. If there are
lapses in insurance coverage the servicer is required to force-place insurance on the property. If insurance
coverage is not maintained, the servicer is liable for any damage that may result (e.g., disaster strikes while
the property is uninsured). Because of these legal responsibilities and liability risks, servicers maintain
detailed data on insurance.
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loan information and property characteristics at the property level. This dataset covers

approximately 192 million residential and non-residential properties.

Structure Value Data. AAL measure from CoreLogic is computed as a loss rate in terms

of recovery value, and therefore computing the expected loss in dollars requires data on

recovery value. As this is not available from either McDash or CoreLogic, we impute it from

the structural value estimates provided by the National Structure Inventory (NSI). NSI base

layer was created and is maintained by the US Army Corps of Engineers (USACE), and

the data has been used in various applications by USACE, FEMA and other agencies. The

data provides structure-level characteristics, such as type (e.g., residential or commercial),

structure value, content value, and year of construction. We use these variables to compute

the zip-level recovery value. Since this particular dataset is most readily available for the

year of 2021 (released in 2022), we focus on that year. We confirm that the patterns of

contract characteristics are consistent with those of other years.

Insurer Data. We use insurer regulatory filings collected by the National Association of

Insurance Commissioners (NAIC) to obtain insurers’ financial information.

To construct a panel of insurance policy characteristics and expected losses, we take

the following steps. First, we merge the insurance data with the climate risk data by key

mortgage characteristics: loan amount, origination date, and zip code. We rarely find

multiple loans with the same amount originated on the same day within a zip code. By

using the three variables, we are able to match about 70% of the insurance dataset. For

those observations that are not merged, we assign the average climate risk metric of that

zipcode originated in that year for that loan size bin.

Second, we merge the insurance-climate risk-merged dataset with the structural value

data at the zip-year level. For this, we converted each longitude-latitude combination to a

corresponding zip code. Since the NSI structural value variable is adjusted for depreciation,
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we undo this adjustment for it based on the formula provided by the NSI. We then compute

a per-square-feet recovery value by dividing the gross recovery value by the structure

size in square feet provided by the NSI, and obtain a mean value for each zip code. We

multiply this zip-level per-square-feet recovery value by the property size (in square feet)

in CoreLogic side.3

Third, we merge the above with insurer financial information at the insurer-year level.

For the main cross-sectional analysis, we focus on the year when the structural value is

readily available. Since the estimation requires all insurance characteristics (premium,

coverage, and deductible) as well as loss distribution parameters (annual average loss

and aggregate exceedance probabilities), we keep contracts with all those variables non-

missing. Moreover, we focus on non-expired contracts on non-condo properties because

condos typically have building-level policies purchased by the condo association. We

focus on escrowed accounts because they are mainly monitored by the data provider,

mortgage servicers. This leaves us with almost 8.7 million contracts. Table 1 shows

summary statistics of the key contract-level characteristics.

Mean St.Dev. P10 Median P90 N
Premium (Annual) 1,515 816 720 1,308 2,604 8,699,672
Coverage 340,709 174,743 177,900 300,676 546,000 8,699,672
Deductible 1,521 1,006 736 1,000 2,500 8,699,672
AAL .0011 .00095 .00016 .00092 .0022 8,699,672
AEP 2% .0099 .011 .00065 .008 .02 8,699,672
AEP 1% .019 .022 .0011 .014 .04 8,699,672
Recovery Value 445,196 222,809 224,469 391,763 733,906 8,699,672

Table 1: Summary Statistics of Insurance Contract Characteristics Annualized premium,
coverage, deductible, and recovery value are in dollar amount. AAL represents annual
average loss, AEP 2% corresponds to the damage value with aggregate exceedance proba-
bility equal to 2 and AEP 1% corresponds to the damage value with aggregate exceedance
probability equal to 1%.

3One may be concerned about differential selection bias between the NSI dataset and the CoreLogic. We
compare the zip-code level statistics of the two datasets and confirm that the mean ratio between them is
0.98, alleviating the concern.
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Although the three moments of the damage distribution - mean, 98th percentile (AEP

2%), and 99th percentile (AEP 1%) - are correlated, depending on the nature of hazard, a

region with a high mean can have low tail risk. See Figure A.1 for comparing the three

moments spatially. For instance, counties in California with high AAL (value above 75

percentile) can have medium AEP 1% value (falling between the 25 and 75 percentile).

3 Anatomy of Property Insurance Contracts

A property insurance contract transfers the financial consequences of property loss from the

policyholder to the insurer in exchange for the premium.4 The main economic components

of property insurance contracts are the premium, the coverage limit, and the deductible.

The premium is the price of transferring risk to the insurer. Economically, it reflects

the expected loss and risk premium. The expected loss would depend on the exposure to

natural hazards as well as policyholder characteristics. The exposure to natural hazards

would depend on the property location as well as property characteristics such as building

age, level, and materials. The observable policyholder characteristics are relevant because

it could be informative about the extent of moral hazard, i.e. unobservable actions by

policyholders that affect the riskiness of the property. Both policyholder characteristics

and insurers’ ability to manage risk (e.g., through reinsurance) subject to constraints (e.g.,

regulation and other frictions) would affect the risk premium.

The coverage limit specifies the limit of protection. Coverage caps the insurer’s liability

and controls exposure to tail risks. Broader coverage provides greater consumption

smoothing from the policyholder’s side and therefore comes with a higher premium. A

contract with a lower coverage increases the residual risk born by the policyholder and

therefore comes with a lower premium. From the insurer’s perspective, lower coverage

4For a comprehensive overview of public and private natural disaster insurance programs in the United
States, see Wagner and Marcoux (2024).
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offers protection from moral hazard because it incentivizes policyholders to put more

efforts into maintaining their homes.

The deductible is the amount of loss the policyholder must bear before the insurer

starts to cover any damages. It plays an important role in aligning incentives. By exposing

the policyholder to the initial portion of loss, deductibles discourage negligent behavior

and mitigate moral hazard. An optimal level of deductible depends on the relative

likeliness of small damages under policyholder’s effort vs. negligence. If small damages

are informative about the policyholder’s actions, the insurer has the incentive to expose

the policyholder to that risk via deductibles.

3.1 Stylized Facts

Based on the constructed dataset of 8.7 million contracts, we examine the relationships

among premium, coverage limit, deductible, as well as the damage risk distribution, and

document stylized facts about US property insurance contracts.

1. Coverage limits are rarely binding. The median coverage-to-recovery value ratio is

77%, while the median 99th-percentile damage-to-recovery value ratio is only 1.4%.

This implies that the realized losses rarely approaches the coverage limit, so reducing

coverage limit would not meaningfully reduce expected insurer payouts. In other

words, coverage plays a limited role in constraining payouts from the insurers’ per-

spective. This suggests that deductibles are relatively more important than coverage

limits for determining household risk exposure and incentive provision.

This also implies that measures such as premium divided by coverage are not infor-

mative about the effective price of insurance. Expected payouts are highly nonlinear

in the coverage limit, and the deductible determines whether any payout occurs at

all. The relevant price of insurance is therefore determined by the deductible and the

distribution of losses relative to it, rather than by the nominal coverage limit.
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2. Deductibles are small relative to property value, but large relative to expected

loss. Deductibles are typically offered in discrete, round-number increments (e.g.,

$500, $1,000, $1,500, $2,000, $2,500, $5,000), with $1,000 as the modal choice. Scaled

by property recovery value, the median deductible is only 0.3%. However, the

median annual expected loss is even smaller, at 0.09%, implying that households

frequently absorb the initial portion of damages. Consistent with this, we find

that approximately two-thirds of realized damage events fall entirely below the

deductible, resulting in no insurer payout. Thus, because a large share of losses

occur in the region where the deductible applies, the deductible plays a particularly

important role in determining household risk retention and mitigating moral hazard.

3. Premiums substantially exceed expected losses. The median ratio of annual ex-

pected loss (AAL) to premium is 28%, indicating that a large share of the premium is

not accounted for by expected claim costs alone. This is consistent with equilibrium

in a market with risk-averse policyholders: households are willing to pay more than

the expected claim payout to transfer disaster risk off their balance sheets, generating

a risk premium.

Figure 1 summarizes the cross-sectional relationships among premiums, coverage,

and deductibles. Panel (a) shows that, controlling for AAL, recovery value, and

deductible (and including insurer and state fixed effects), premiums increase with

coverage, which is consistent with the fact that higher coverage transfers a larger

share of losses to the insurer and is therefore priced higher.5 Panel (b) suggests that

premium decreases with the deductible, for the same coverage, recovery value, and

damage risk (AAL) within the same insurer and the state where policy was sold. This

is consistent with households bearing more of the initial loss when the deductible is

higher. The slope is relatively flat especially for the middle range, though. Panel (c)

5Instead of controlling for the recovery value, one could compare premium/recovery value versus
coverage/recovery value; we confirm that this does not change the result.
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shows that deductibles increase with coverage after controlling for premium and the

same controls.

4. Damage risk is low on average but highly skewed. The median annual expected

loss rate is 0.09% of property value, yet the median 98th-percentile loss rate is 0.8%

and the 99th-percentile loss rate is 1.4%. Thus, although policyholders are expected

to lose less than 0.1% of property value per year on average, tail losses are an order of

magnitude larger: a one-in-one-hundred-years event is roughly 16 times the expected

annual loss. This combination of low mean and heavy upper tail implies that the

loss distribution is highly skewed with substantial mass near zero, which motivates

modeling damage using a zero-inflated beta family of distributions.

Taken together, these stylized facts show that coverage limits rarely bind, while de-

ductibles frequently do, and that premiums reflect both expected loss and the value of

transferring tail risk, rather than simply expected payouts. Moreover, losses are highly

skewed, with a large mass of small damages and infrequent but substantial tail events. As

a result, the deductible is an economically relevant contract margin, governing both risk

retention and incentive provision, and must be understood jointly with premiums and

coverage.

To analyze these endogenous contract terms, we develop a model in which premiums,

deductibles, and coverage limits are designed optimally by insurers, given the risks and

preferences of households. The model links the distribution of damage risk and household

risk aversion, to the observed structure of insurance contracts. This framework allows

us to quantify how much risk is transferred versus retained, how much moral hazard

is mitigated through cost-sharing, and how these components vary across households,

insurers, and regions.
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(a) Premium vs. Coverage (Controlling for deductible)

(b) Premium vs. Deductible (Controlling for coverage)

(c) Deductible vs. Coverage (Controlling for premium)

Figure 1: Bivariate relationships among premium, coverage, and deductible These
figures are binned scatter plots after controlling for AAL, recovery value, insurer fixed
effects, and state fixed effects. Panels (b) and (c) plot coefficients on deductible dummies,
where the base category is deductible of $1,000.
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4 Model

We write a model that is consistent with the stylized facts that we document. With this

model, we structurally estimate risk premium, cost of moral hazard, and other latent

parameters, such as the cost of effort and the distribution of damages given negligence.

This allows us to provide policy implications based on the counterfactual analyses.

4.1 Model Setting

A potential policyholder seeks insurance for stochastic damage x to the property. She is

risk averse; she has a CARA utility with risk aversion parameter of ρ.6 If she takes good

care of the property (a = 1) at effort cost of ϕ, the damage x is drawn from distribution

f1(x) with a finite support of [0, H], where H denotes the recovery value. If she is negligent

(a = 0), the damage x is drawn from distribution f0(x) with the same support of [0, x̄].

We make the simplest assumption on the two distributions that the expected damage is

lower under effort than under negligence: E[x|a = 1] < E[x|a = 0]. Her utility function

can therefore be written as:

u(w, a) = −1
ρ

e−ρ(w−aϕ) (1)

, where w denotes her terminal wealth and ϕ denotes the cost of effort. Here, we assume

that the welfare implication of action a is additively separable from that of wealth within

the exponent.

We assume that, in the absence of insurance, the potential policyholder finds it optimal

to exert effort (a = 1). In other words, we assume the following:

E[u(−x, 1)|a = 1] > E[u(−x, 0)|a = 0] (2)
6CARA utility offers a number of benefits and is a common choice in the theoretical literature on

insurance. First, it is highly tractable and allows for analytical inversion of moment conditions. Second,
the utility does not depend on the current level of wealth, which tends to be difficult to observe in practice.
Third, it allows for dynamic extensions that preserves the dynamics in the static model. The dynamic optimal
contract is a series of static optimal contract, as the utility doesn’t depend on the level of wealth.
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4.2 Optimal Contract

Based on the setting provided in the previous section, we solve for the optimal contract, the

net insurance payoff y(x) to the policyholder for a given damage of x. The net insurance

payoff y(x) to the policyholder can be broken down as follows:

y(x) = −p + I(x) (3)

where p denotes the premium and I(x) denotes the claim payout. The policyholder’s

terminal wealth is therefore −x + y(x) with insurance and −x without insurance.

The insurer’s problem is to minimize the expected payoff to the policyholder, subject to

the following constraints: (1) the participation constraint, where the policyholder should

prefer to participate in the insurance contract as opposed to staying uninsured7 and (2) the

incentive compatibility constraint, where the policyholder should prefer to take the action

stipulated by the contract instead of deviating to the other. In this model, we assume that

the insurer is risk-neutral.8 We focus on the contract that induces effort from policyholders.

A contract that does not induce effort would trivially imply complete insurance, but the

data do not support this: the observed contracts do not take the form of full insurance.

The insurer’s problem can therefore be written as follows:

max
y(·)

−E[y(x)|a = 1] (4)

subject to:

E[u(−x + y(x), 1)|a = 1]︸ ︷︷ ︸
Utility with Insurance

≥ E[u(−x, 1)|a = 1]︸ ︷︷ ︸
Utility without Insurance

(P)

7We are thereby implicitly assuming that the best outside option is not having insurance, as opposed
to having another insurance product. This is not a strong assumption in light of the literature suggesting
that households typically face significant search frictions. Such frictions would allow insurers to extract
significant rent from their market power.

8The rationale is that insurers are sufficiently diversified that they are effectively risk-neutral when
designing individual contracts. This is consistent with the lack of coinsurance, which Arrow (1965) predicts
as an outcome when the insurer is risk-averse and therefore shares risk with the policyholder.
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and

E[u(−x + y(x), 1)|a = 1]︸ ︷︷ ︸
Utility with Effort

≥ E[u(−x + y(x), 0)|a = 0]︸ ︷︷ ︸
Utility without Effort

(IC)

We assume that both constraints above bind, as the insurer would not have any incen-

tive to leave money on the table by allowing for slack in either of the constraints.

The first order condition FOC w.r.t. payoff y is:

λ + µ

(
eρϕ − f0(x)

f1(x)

)
=

1
ρ

e−ρ(x−y(x)) (FOC)

where λ and µ denote shadow costs of P and IC, respectively.

The optimal payoff is thus:

y∗(x) = x +
1
ρ

log
(

ρλ + ρµ

(
eρϕ − f0(x)

f1(x)

))
(5)

To check the optimality of this solution, we examine the second order condition 6. For

the solution above to be optimal, the following must hold:

−ρ2
(

λ + µ

(
eρϕ − f0(x)

f1(x)

))
e−ρ(x−y(x)) < 0 (SOC)

which is true if and only if:

λ + µ

(
eρϕ − f0(x)

f1(x)

)
> 0 (6)

It can there be seen that if there exists y∗(x) that is real for every x in the support of f1(x),

the y∗(x) indeed (locally) maximizes the insurer’s objective function.
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5 Structural Estimation

5.1 Identification

For the identification to be feasible, we make additional assumptions. First, we assume

that the two constraints, P and IC, bind with equality. The binding P identifies the risk

aversion ρ. The risk aversion should be such that the policyholder is indifferent between

being insured and being uninsured:

−1
ρ

∫ x̄

0
e−ρ(−x+y(x)−ϕ) f1(x)dx = −1

ρ

∫ x̄

0
e−ρ(−x−ϕ) f1(x)dx (7)

Given that the policyholder will exert effort in either case, the above can be further

simplified:
1
ρ

∫ x̄

0
eρ(x−y(x)) f1(x)dx =

1
ρ

∫ x̄

0
eρx f1(x)dx (8)

The binding IC, combined with binding P and the FOC, identifies the shadow cost:

λ =
1

ρ
∫ x̄

0 eρx f1(x)dx
(9)

The intuition for the result above is that participation is harder to induce when the policy-

holder is happier without insurance.

Second, we assume that zero damage almost perfectly signals effort by the policyholder.

In other words, we assume that f0(0)
f1(0)

≈ 0. This is consistent with the fact that the minimum

net cost (x − y(x)) under insurance to the policyholder is typically well-defined in practice:

insurance premium for zero damage.9 This assumption, combined with the FOC, provides

the following moment condition:

− 1
ρµ

eρy(0) +
λ

µ
+ eρϕ =

f0(0)
f1(0)

≈ 0 (10)

9While the signal being ”perfect” may be a strong assumption, we find it plausible that it is still a strong
signal of effort, particularly in high-risk properties where disasters are more likely.
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Let p = −y(0) denote the premium. Then, the above condition can be rewritten as:

1
ρ

e−ρp = λ + µeρϕ (11)

The FOC, in conjunction with the property of probability distribution that integrates to 1

(i.e.,
∫ x̄

0 f1(x)dx = 1 and
∫ x̄

0 f0(x)dx = 1), provides the final moment condition:

1
ρ

∫ x̄

0
e−ρ(x−y(x)) f1(x)dx = λ + µ(eρϕ − 1) (12)

The two conditions above, Equations (11) and (12) jointly identify the shadow cost of

incentive compatibility µ and the cost of effort ϕ.

For the estimation, we use the observed contract y(x) and the distribution of damage

given the policyholder’s effort f1(x). We define the following moments as functions of risk

aversion ρ:

α(ρ) =
1
ρ

∫ x̄

0
e−ρ(x−y(x)) f1(x)dx (13)

β(ρ) = −1
ρ

log
(∫ x̄

0
eρ(x−y(x)) f1(x)dx

)
(14)

γ(ρ) = −1
ρ

log
(∫ x̄

0
eρx f1(x)dx

)
(15)

δ(ρ) =
1
ρ

e−ρp (16)

Then, we take the following steps for estimating the parameters. The first step is to

numerically estimate ρ̂ from 8:

β(ρ̂) = γ(ρ̂) (17)

Given that the payoff under insurance is less risky relative to that without insurance, we

conjecture that there exists a unique ρ̂ that satisfies the condition above. The second step is

to compute the three moments, α(ρ̂), γ(ρ̂), δ(ρ̂) for the estimated risk aversion ρ = ρ̂. The

final step is to compute the parameters λ, µ, and ϕ from the remaining moment conditions,
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Equations (9) - (12). λ̂ follows immediately from Equation (9):

λ̂ =
1
ρ̂

eρ̂γ(ρ̂) (18)

µ̂ and ϕ̂ follow jointly from Equations (11) and (12):

µ̂ = δ(ρ̂)− γ(ρ̂) (19)

ϕ̂ =
1
ρ

log

(
δ(ρ̂)− 1

ρ̂ eρ̂γ(ρ̂)

δ(ρ̂)− α(ρ̂)

)
(20)

5.2 Cost of Moral Hazard

In the absence of moral hazard, the insurer would offer a “complete” insurance: y(x) =

−pFB + x. The optimal contract can trivially discourage negligence when it is observable.

The first-best premium pFB will be determined by the participation constraint:

1
ρ

eρpFB
=

1
ρ

∫ x̄

0
eρx f1(x)dx (21)

This gives:

p̂FB = −γ(ρ̂) (22)

Note that the estimation of risk aversion does not depend on model assumptions other

than the CARA utility of policyholders and the feasibility of inducing effort.

The cost of moral hazard would be the difference between the risk premium that can

be charged in the complete insurance and that charged in the partial insurance we observe

in the data. The risk premium for the complete insurance is given as:

RPFB = pFB − E[x|a = 1] (23)
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That for the insurance we observe is given as:

RP = p − E[I(x)|a = 1] (24)

Therefore, the cost of moral hazard becomes:

∆V = RPFB − RP = (pFB − E[x|a = 1])− (p − E[I(x)|a = 1]) (25)

5.3 Estimation

Having established the model and identification, we now turn to estimation. This section

outlines how we use the data to recover the model’s key parameters and illustrates how

the estimation approach operationalizes the mechanisms described above.

The first step is to estimate the distribution of loss rate, the damage as a portion

of recovery value ( x
H ∈ [0, 1]). Considering the pattern we document in Section 3 that

the distribution features a very low mean and a thick tail, we fit a zero-inflated (mass

at zero) beta-family distribution. Among the beta-family distribution, we choose the

Kumaraswamy distribution, which is very close to the beta distribution but is more

numerically stable and better behaved around the edges.10 The probability distribution

function (PDF) of the zero-inflated Kumaraswamy distribution is given as:

f (x; π0, a, b) = π0δ
( x

H

)
+ abxa−1

(
1 −

( x
H

)a)b−1
(26)

where δ(t) denotes a Dirac delta function that captures the mass of π0 at 0, and a and b

are non-negative shape parameters. As the distribution is modeled for the loss rate, the

damage x is scaled by the recovery value H.

10The behavior at the edges is non-trivial, because many contracts feature very low deductibles ( D
H ≈ 0)

and very high coverages ( C
H ≈ 1).
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We make use of three moments of loss rate provided by CoreLogic. For each property,

we observe: mean denoted by m, 98th percentile denoted by q98, and 99th percentile

denoted by q99. With these three moments (m, q98, q99), the parameters (π0, a, b) are just

identified.
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Figure 2: CDF of Estimated Loss Rate Distribution This figure plots the fitted loss rate
CDF distribution for a property with (m, q98, q99) = (0.003, 0.042, 0.079).

Figure 2 plots an example of the cumulative distribution function (CDF) of the estimated

loss rate distribution for a contract. Note that it closely replicates the quantile moments.

The two key aspects of this distribution are: (i) a heavy point mass at 0 (π0) and (ii) a thick

tail that diminishes much slower than the normal or the exponential distributions. These

jointly explain the small mean and the large quantiles. As we assume that the contract

induces effort by the policyholder, this equilibrium damage distribution f (x; π0, a, b) will

serve as f̂1(x).

The second step is to decompose the premium into the expected claim payout and the

risk premium. Specifically, we compute the negative expected net payoff of a contract of

premium p, deductible D, and coverage C to the policyholder. This is equivalent to the

risk premium that the risk-neutral insurer collects from the risk-averse policyholder:

−E[y(x; p, D, C)] = p − E[min(max(x − D, 0), C)] (27)
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The third step is to estimate the risk aversion (ρ), using the participation condition

in Equation (P). In the numerical implementation, we compare the certainty equivalent

(CE) with and without insurance, as opposed to comparing the expected utility. Using

the CE offers both numerical stability for high level of risk aversion, as well as smooth

convergence to risk neutrality as the risk aversion approaches zero..11 Based on the CE

representation, we numerically solve for the risk aversion parameter ρ that satisfies:

−1
ρ

log(E[eρ(x−y(x))|a = 1]) = −1
ρ

log(E[eρx|a = 1]) (28)
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Figure 3: CE with and without Insurance This figure plots certainty equivalent, with
and without insurance, as a function of risk aversion for a hypothetical contract with
(p, D, C) = (2000, 2000, 94000).

For an illustration, we plot the CE with and without insurance with respect to the risk

aversion parameter ρ in Figure 3 based on the same contract used for Figure 2. Given that

the payoff under insurance features lower mean and higher risk, the two CEs cross only

once, offering identification of a unique risk aversion of ρ̂. The estimated risk aversion for

this hypothetical policyholder is about 37, where her CE with insurance equals her CE

without an insurance.
11While Bertomeu et al. (2025a) show that the CARA utility does converge to risk neutrality as ρ ap-

proaches to 0, the numerical implementation suffers from dividing by 0.
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The fourth step is to estimate the cost of moral hazard, which involves the premium and

the expected damage under the complete insurance. Following from the analysis in Section

5.2, the premium of this first-best contract, pFB, should equal to the negative CE with and

without insurance. We expect to find p̂FB higher than the observed premium. The expected

damage under complete insurance is simply the untruncated expected damage: E[x|a = 1],

which would be higher than the expected payout under the second-best contract. The risk

premium that the insurer could have earned in the first-best case is the premium less the

expected payout, and we expect it to be higher than the risk premium in the second-best

case we observe. The difference between the two is the cost of moral hazard:

Cost of Moral Hazard = RPFB − RP

which represents the risk premium that the insurer could have earned had there been no

moral hazard.

The fifth step is to estimate the remaining parameters, including the policyholder’s

cost of exerting effort, ϕ. To that end, we first compute compute the three moments, α(ρ̂),

γ(ρ̂), δ(ρ̂) for the estimated risk aversion ρ = ρ̂. Then, we input the computed moments

into Equations (18) to (20) and obtain estimates (λ̂, µ̂, ϕ̂).

The sixth and final step is to infer the counterfactual damage distribution f0(x) from

the FOC. By rearranging the FOC, we obtain the following expression for the f0(x):

f0(x) =
(

eρϕ − 1
µ

(
1
ρ

e−ρ(x−y(x)) − λ

))
f1(x) (29)

For consistency with the assumption in Section 5.1 that zero damage fully reveals effort

(Equation (10)), we rebalance the recovered distribution so that it does not have a mass at

zero. This adjustment ensures that the likelihood ratio f0(0)
f1(0)

= 0 and has no effect on the

relative informativeness among positive damages.
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Figure 4: Likelihood Ratio This figure plots likelihood ratio, f0(x/H)
f1(x/H)

, of a hypothetical
contract with (p, D, C) = (2000, 2000, 94000) and (m, q98, q99) = (0.003, 0.042, 0.079).

Figure 4 plots the likelihood ratio, f0(x)
f1(x) , implied by the insurance contract we analyzed

for Figure 2 and Figure 3. The two vertical lines represent the deductible and the sum of

coverage scaled by recovery value. The likelihood ratio increases sharply in the deductible

range (left of the left vertical line), remains stable in the intermediate range where the

insurer covers the damage, and increases substantially in the coverage range (right of the

right vertical line) where the insurer limits the coverage.
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Figure 5: Cumulative Likelihood under Negligence vs. under Effort This figure plots
cumulative likelihood under negligence (F0) vs. effort (F1) of a hypothetical contract with
(p, D, C) = (2000, 2000, 94000) and (m, q98, q99) = (0.003, 0.042, 0.079).

Figure 5 plots the same contract’s CDF of loss rate x under negligence (F0) and that

under effort (F1). It can be immediately seen that the damage under negligence first-order
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stochastically dominates (FOSD) that under effort. Both the expected damage and the

likelihood of extremely high damage is higher under negligence. For this contract, the

expected damage increases substantially, which is 5 times higher than that under effort.

That the expected increase in damage exceeds the monetary cost of effort is consistent with

our assumption, Equation (2), that the policyholder prefers to exert effort in the absence of

insurance.

These estimates are useful for counterfactual analysis, which we examine in detail in

Section 7. In the counterfactual world where insurers are forced by regulation to provide

full insurance at the premium that the policyholder would be willing to pay, the insurer

would choose to withdraw from the market. By comparing the expected claim payout,

which is the expected damage under negligence (E[x|a = 0]), with the premium that

policyholder would be willing to pay for a full insurance (p̂FB), the structural model allows

us to assess whether taking away the insurer’s ability to provide incentives will result in

market failure.

6 Empirical Analysis

We apply the steps we outline in the previous section, contract by contract. In this section,

we report the estimation results and validate our estimates based on economic hypotheses.

6.1 Estimation Results

Table 2 reports summary statistics of the risk aversion, risk premium, cost of moral hazard,

and increase in exposure due to moral hazard estimated at the contract level. This is possible

because we exploit proprietary data on property-level moments (mean and quantiles) of

loss distribution used by insurers, rather than inferring from realized losses that tend to

be sparse and infrequent for home insurance. The latter would likely require a pooled

estimation from observations across properties and time to infer the loss distribution.
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However, since the underlying loss information is already estimated by insurers at the

contract level, we are able to estimate the policyholders’ risk aversion, risk premium

component of the premium, the cost of moral hazard, and the increase in exposure due to

moral hazard at the contract level.

Mean St.Dev. P10 Median P90
Risk Aversion 79 64 15 61 172
Risk Premium ($) 1,135 690 463 970 2,022
Risk Premium/Total Premium (%) 73 19 47 77 95
Moral Hazard ($) 7 37 .27 1.6 9.5
Moral Hazard/Risk Premium (%) .7 3.6 .031 .16 .92
Increase in Exposure ($) 71 82 20 37 179
Increase in Exposure/Expected Payoff (%) 40 64 3.5 12 120

Table 2: Estimation Results This table reports summary statistics of the estimated vari-
ables.

6.1.1 Risk Aversion

Our estimated risk aversion ranges mostly between 15 and 170, with a mean of 79. In

contrast to the existing estimates based on a pooled estimation, we provide risk aversion

estimates at the contract level, which allows us to study its cross-sections. To our knowledge,

this is the first paper offering estimates of policyholder-level risk aversion from a large

sample and characterizing its rich heterogeneity spanning multiple cross-sections.

First, we show that high risk aversion is associated with low property risk, which

adds validity to our estimates. Figure 6 shows the bilateral relationship, indicating that

risk-averse policyholders are drawn to low risk (safer) properties.

Next, we examine the relationship between risk aversion and borrower characteristics,

which are equilibrium outcomes. Note that the goal of this exercise is to test relationships

that are ex-ante unclear, rather than to establish causality. The relationship between

estimated risk aversion and FICO can be both positive and negative due to countervailing

forces. On one hand, lower-FICO policyholders face tighter financial constraints, making
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Figure 6: Risk Aversion Estimates vs. Damage Risk This figure shows a binned scatter
plot of ρ estimates vs. the 99-percentile damage (AEP 100).

them more sensitive to consequences of loss and are therefore more risk averse.12 On the

other hand, higher-FICO policyholders likely have higher value at risk and therefore more

risk averse.13 Figure 7a shows that, overall, risk aversion declines in FICO, supporting

the financial constraint channel. However, for the highest FICO bins, we find that risk

aversion slightly bounces back, which is consistent with the at-risk channel.

(a) FICO Score (b) DTI Ratio (c) Insurer Fin. Constraint

Figure 7: Risk Aversion, Policyholder Characteristics, and Insurer Financial Constraint

The relationship between risk aversion and the debt-to-income (DTI) ratio is also

theoretically ambiguous. A higher DTI can be associated with tighter financial constraints

and therefore higher marginal cost of financial distress, leading to a higher risk aversion.

Therefore, risk aversion can increase in DTI. At the same time, a higher DTI indicates a
12Campello et al. (2010)
13Paravisini et al. (2017)
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higher leverage, reflecting greater willingness to take risk. In this case, risk aversion will

decrease in DTI. We find evidence supporting the former as shown in Figure 7b.

We also examine the relationship between policyholder risk aversion and insurer

characteristics. Motivated by papers emphasizing the effect of financial constraint on

insurer behavior, we focus on insurers’ risk-based capital (RBC) ratios. We invert the RBC

ratio to proxy it as the financial constraint. Again, the relationship between policyholder’s

risk aversion and insurer’s financial constraint is ex-ante unclear. We find that more

financially constrained insurers tend to provide insurance to less risk averse policyholders.

Building upon the finding on risk aversion increasing in risk (Figure 6), this would be

consistent with mechanism where more constrained insurers taking more risk, selling

insurance to properties with higher risk, and policyholders who live in risky properties

tend to have low risk aversion.

We estimate the relationships discussed above using the following regression specifica-

tion for policyholder-level variables, FICO score and DTI ratio:

Yc,s,i = α + βHH HHc,s,i + β′Xc + γs + δi + εc,s,i (30)

where HHc,s,i denotes a household characteristic, either standardized FICO score or DTI

ratio of contract c in state s, offered by insurer i. The outcome variable Yc,s,i denotes the

estimated parameter of interest— risk aversion parameter rho in this subsection— and the

same specification is applied when Y represents other estimated parameters in the next

subsections. The dependent variable Xc includes contract-level controls including AEP

100, property recovery value. We include state-fixed effects (γs) and insurer- fixed effects

(δi), and cluster standard errors at the zip-code level.

To examine the cross-section of insurer characteristics, we aggregate the contract-level

data to the insurer level by taking the premium-weighted average of each variable. We
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then estimate the following regression:

Yc,s,i = α + βInsurer Insureri + β′Xi + εi (31)

where Insureri denotes insurer characteristic, such as insurer financial constraint, proxied

by the inverse RBC ratio. Xi denotes insurer-level controls, including size, leverage, and

equity-to-premium ratio. Because this regression is conducted at the insurer level, we do

not include state or insurer fixed effects.

Table 3 reports the results, showing that the coefficients are significant after controlling

for the fixed effects. Taken together, we find that households with low credit scores and

high DTI ratios tend to show high risk aversion. Insurers facing tighter financial constraint

tend to offer insurance to those with low risk aversion, who tend to own properties that

are more exposed to damage risk.

(1) (2) (3)
Risk Aversion Risk Aversion Risk Aversion

FICO Score -2.511∗∗∗

(-31.87)

DTI Ratio 0.111∗∗

(2.33)

Inverse RBC Ratio -5.425∗∗

(-2.34)
Controls Y Y Y
State FE Y Y N
Insurer FE Y Y N
N 6,121,694 3,439,829 139
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 3: Risk Aversion, Policyholder Characteristics, and Insurer Financial Constraint

These results highlight the importance of accounting for endogenous matching between

households and properties.
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6.1.2 Risk Premium

The observed annual premium is decomposed into the expected claim payout and the risk

premium:

p︸︷︷︸
Observed Premium

= E[I(x)|a = 1]︸ ︷︷ ︸
Expected Claim Payout

+ RP︸︷︷︸
Risk Premium

(32)

Table 2 shows that, on average, the risk premium constitutes about 73% of the annual

premium. We first confirm that higher risk aversion is associated with a higher risk

premium. This relationship is expected because more risk-averse agents would offer

greater compensation to the insurer for bearing the same level of risk. Likewise, the

estimated risk premium should increase with the underlying level of risk. Figure 8

documents both patterns, serving as a consistency check for our estimates. Moreover, in

light of previous work, this risk premium is not unusually high; it follows directly from

our estimated risk aversion, which lies toward the lower end of estimates in the literature

(e.g., Cohen and Einav, 2007; Einav et al., 2010; Sydnor, 2010; Handel, 2013; Hendren, 2020).

Figure 8: Risk Premium, Risk Aversion, and Damage Risk

While the risk premium represents policyholders’ willingness to pay for transferring

the risk to the insurer, from the insurer’s perspective, it represents the expected profit that

insurer can make from the respective contract. We find that this risk premium, either in

dollar value or as a share of premium, decreases in FICO score. The relationship between
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scaled premium and FICO score is as presented in Figure 9a. Taken together with Figure 7a,

a mechanism behind the premium increasing in credit risk is low-FICO policyholders

having higher risk aversion, plausibly due to the household’s financial constraint. These

findings are consistent with low-FICO policyholders acquiring insurance to avoid having

to borrow at exceedingly high rates (i.e., risk-taking capacity channel).

(a) FICO Score (b) Insurer Fin. Constraint (c) Insurer Fin. Constraint

Figure 9: Risk Premium, FICO Score, and Insurer Financial Constraint

Similar to the previous subsection, we investigate the role of insurer’s financial con-

straint on risk premium. Consistent with the association between constrained insurers

and high risk (from Figure 7c and Figure 6), we find that more financially constrained

insurers charge higher risk premium, as presented in Figure 9b. However, this does not

necessarily imply that financially constrained insurers are extracting high profitability by

selling insurance policies to households with risky properties. In fact, Figure 9c shows that

risk premium as a share of total premium does not increase in the inverse RBC ratio.

Using the same specifications as in equations (30) and (31), we test the relationship

between the risk premium, FICO, and the insurer’s inverse RBC ratio. The results are

reported in Table 4. Consistent with the description above, we find that the risk premium

and the FICO score are negatively associated. In the cross-section of insurer financial

constraint, we find that while more constrained insurers tend to collect more risk premium,

the risk premium as a proportion of total premium is flat across insurers’ financial con-

straint. This is consistent with the finding in the previous section that constrained insurers

tend to insure more risky properties, and therefore, the expected claim payout proportion

in (32) is large and the proportion of risk premium is relatively small.
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(1) (2) (3) (4)
Log Risk Premium Risk Premium (%) Log Risk Premium Risk Premium (%)

FICO Score -0.0817∗∗∗ -1.403∗∗∗

(-98.92) (-62.99)

Inverse RBC Ratio 0.107∗∗∗ -0.0344
(3.15) (-0.03)

Controls Y Y Y Y
State FE Y Y N N
Insurer FE Y Y N N
N 7,691,488 6,886,496 139 139
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 4: Risk Premium, Policyholder Characteristics, and Insurer Financial Constraint

6.1.3 Cost of Moral Hazard

Recall that we compute the risk premium in a counterfactual first-best world to compute the

moral hazard. Specifically, in the first-best world in the absence of information asymmetry,

full insurance would be optimal; insurers would offer full insurance in exchange for

counterfactual premium, and the coverage limit and deductible would be unnecessary

because there is no moral hazard. The counterfactual premium can be decomposed into

the expected damage and the counterfactual (first-best) risk premium:

pFB︸︷︷︸
Counterfactual Premium

= E[I(x)|a = 1]︸ ︷︷ ︸
Expected Claim Payout

+ RPFB︸ ︷︷ ︸
Counterfactual Risk Premium

(33)

The cost of moral hazard estimate is:

∆V︸︷︷︸
Cost of Moral Hazard

= RPFB︸ ︷︷ ︸
Counterfactual Risk Premium

− RP︸︷︷︸
Observed Risk Premium

from the equations (32) and (33).

We find that the cost of moral hazard is low. Table 2 shows that the average cost of

moral hazard is only $7, or 0.7% of the estimated risk premium. This indicates that the

contracts are well designed to discourage moral hazard; at the same time, this suggests
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that the deductible and the coverage, which reduces moral hazard, increases policyholder’s

risk exposure. We quantify this increase in risk exposure in the next subsection.

In the cross-section of FICO score, we find that the cost of moral hazard is higher for

low-FICO policyholders, as presented in Figure 10a. This is consistent with the economic

intuition that there would be more uncertainty regarding the unobservable actions by

low-FICO policyholders than by high-FICO ones. In the cross-section of insurer’s financial

constraint, we find that more constrained insurers tend to face higher cost of moral hazard

as shown in Figure 10b. Combined with previous results, constrained insurers are willing

to take on more risk (i.e., insure riskier properties), facing higher costs of moral hazard as

a result. Table 5 shows consistent results from regressions using the same specifications as

(30) and (31).

(a) FICO Score (b) Insurer Fin. Constraint

Figure 10: Cost of Moral Hazard, FICO Score, and Insurer Financial Constraint

6.1.4 Increase in Exposure due to Moral Hazard

The increase in exposure due to the coverage and deductible, which are in place to discour-

age moral hazard, is computed as:

∆I︸︷︷︸
Increase in Exposure

= E[x|a = 1]︸ ︷︷ ︸
Expected Damage

− E[I(x)|a = 1]︸ ︷︷ ︸
Expected Claim Payout
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(1) (2)
Cost of Moral Hazard Cost of Moral Hazard

FICO Score -0.0400∗∗∗

(-10.36)

Inverse RBC Ratio 0.349∗∗

(2.49)
Controls Y Y
State FE Y N
Insurer FE Y N
N 5,442,243 139
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 5: Cost of Moral Hazard, FICO Score, and Insurer Financial Constraint

from the equations (32) and (33). We scale this by the expected claim payout. Table 2

shows that the average increase in exposure relative to the expected payoff is 40%. That

is, although the cost of moral hazard is low, the coverage limit and deductible that are

designed to curb the moral hazard, exposes policyholders to 29% of expected payoff.14

We first examine the relationship between the increase in exposure and tail risk. Con-

trolling for risk aversion and the average expected loss, we expect to find a positive

relationship because increase in exposure is effectively the sum of the left tail cut off by the

deductible and the right tail curtailed by the coverage. Therefore, the increase in exposure

naturally increases with the tail risk that is not covered by the insurance contract. We

control for risk aversion to isolate the negative correlation between risk aversion and tail

risk. Because tail risk, not the average risk, is relevant for the increase in exposure, we

control for the AAL. Figure 11 confirms this relationship. That is, households exposed to

higher damage tail risk tend to retain more risk even after getting insurance.

In the cross-section of FICO, we find that low-FICO policyholders tend to be left with

more exposure, as presented in Figure 12a. On the other hand, while increase in exposure is

weakly negatively related with insurer’s financial constraint (Figure 12b), this relationship

14That the insurer’s claim payout increases by 40% under full insurance means that the partial insurance
we observe in equilibrium covers only 71% of expected losses.
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Figure 11: Increase in Exposure vs. Tail Risk This figure plots relationship between
increase in exposure divided by expected payoff and tail risk (AEP 100), after controlling
for risk aversion and expected loss (AAL).

is not significant in regression. Table 6 reports the regression results using the same

specifications (30) and (31).

(a) FICO Score (b) Insurer Fin. Constraint

Figure 12: Increase in Exposure due to Moral Hazard, FICO Score, and Insurer Financial
Constraint

6.1.5 Spatial Distribution

We map the spatial distribution of the estimated parameters in Figure A.2. To illustrate, we

focus on Florida, a region with high exposure to natural disasters, as shown in Figure A.1.
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(1) (2)
Increase in Exposure (%) Increase in Exposure (%)

FICO Score 0.181∗∗

(2.01)

Inverse RBC Ratio -3.240
(-1.11)

Controls Y Y
State FE Y N
Insurer FE Y N
N 6,955,719 139
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 6: Increase in Exposure due to Moral Hazard, FICO Score, and Insurer Financial
Constraint

Panel (a) shows that estimated risk aversion is relatively low, consistent with the idea

that less risk-averse households are more willing to own property in higher-risk areas.

Despite this, the elevated underlying risk leads to higher risk premiums (panel b). The

average cost of moral hazard is moderate, reflecting contract designs that effectively

limit opportunistic behavior (panel c). However, these same features leave households

with substantial residual risk, as shown by the increase in uninsured exposure in panel

(d). Comparing these results with the tail-risk patterns in Figure A.1 highlights that

policyholders in regions with greater disaster exposure tend to retain the most residual

risk.

Taken together, our estimates suggest that, although the cost of moral hazard is low,

the contract design substantially increases the policyholders’ risk exposure. From the

cross-sectional analyses, we find that policyholders with low credit scores and high DTI

ratio tend to be more risk averse and pay higher risk premium to insure property damage.

6.2 Validation

In this section, we test the validity of the cost of moral hazard estimates exploiting variation

in the loan-to-value and variation in regulations across states.
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6.2.1 Exploiting variation in “skin in the game”

To evaluate the economic validity of our cost of moral hazard estimates, we examine their

cross-sectional relationship with the loan-to-value (LTV) ratio at origination. This test is

not intended to establish causality, but rather to assess whether the estimates behave in a

manner consistent with economic intuition.

In the cross-section, we hypothesize that moral hazard decreases as the property

becomes more “owned.” We proxy ownership by the LTV ratio. A lower LTV indicates

that the homeowner has greater equity in the property and thus more “skin in the game.”

With more equity at stake, homeowners have stronger incentives to maintain the property,

take preventive actions, and avoid filing excessive claims. Accordingly, we expect moral

hazard to be less severe for properties with lower loan-to-value ratios.

Importantly, our estimate of moral hazard is derived exclusively from insurance con-

tract characteristics—premium, deductible, and coverage—along with the underlying risk

distribution, f1(x). It does not incorporate any borrower or financing information such as

credit risk, loan-to-value, or other mortgage attributes. Consequently, examining how the

estimated moral hazard varies with these external borrower characteristics provides an

out-of-sample validation of our measure.

To test the hypothesis, we confine our sample to the loans that originated within one

year and examine the relationship. Figure 13 shows that the moral hazard indeed increases

in LTV. More formally, we regress the moral hazard estimate on LTV ratio, controlling for

FICO, risk, and insurer fixed effects:

As a result, we find significant and positive coefficients on the loan-to-value ratio.

6.2.2 Exploiting variation in regulatory environment

Another approach to validating the cost of moral hazard estimate is to use cross-state

differences in the insurance regulatory environment. Because insurance is regulated at

the state level in the US, policies written on properties in a given state must comply with
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Figure 13: Cost of Moral Hazard vs. Loan-to-Value Ratio

(1) (2) (3)
Moral Hazard Moral Hazard Moral Hazard

LTV Ratio 0.221∗∗∗ 0.119∗∗∗ 0.125∗∗∗

(15.53) (20.95) (22.44)

Tail Risk (AEP100) 0.205∗∗∗ 0.0639∗∗∗

(9.74) (3.36)

FICO Score -0.0736∗∗∗ -0.0631∗∗∗

(-12.59) (-11.36)

Log Recovery Value -1.051∗∗∗ -1.027∗∗∗

(-39.32) (-39.47)
Insurer FE N N Y
N 1,261,431 1,261,431 1,261,424
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 7: Cost of Moral Hazard vs. LTV Ratio
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that state’s requirements. These requirements include not only formal statutes, but also

supervisory guidance and binding market practices that shape underwriting standards.

The regulatory environment has several dimensions relevant for moral hazard.

The most prominent dimension is the requirement that homeowners provide docu-

mentation or inspection reports on the condition of key structural features, such as roof

age and condition, hurricane tie-downs, or wind-mitigation features, before a policy is

issued. Florida imposes these through statute. Several other high-risk Gulf and South-

eastern states, insurers commonly require documentation of roof or structural condition,

and coverage or pricing often depends on verified structural features. Although these

requirements are not statutory in these states except Florida, they reflect state guidance

and common underwriting practice.

We exploit this cross-state variation in regulation as a strategy to validate the cost

of moral hazard estimates; we expect less severe moral hazard in the states with the

inspection-related regulations discussed above. We test this hypothesis by running the

following regression:

Cost o f Moral Hazardc,s,i = βRegulation Inspection Regulations + β′Xc + δi + εc,s,i (34)

where the outcome variable is cost of moral hazard estimate of contract c, sold in state

s by insurer i and the Inspection Regulation dummy takes a value of 1 if the state has

inspection-related regulation and 0 otherwise. We control for the policyholder’s FICO

score, property’s damage risk, recovery value, and the insurer fixed effects. Standard errors

are clustered at the zip-code level. We expect βRegulation to be negative, as the regulations

would likely reduce the cost of moral hazard by reducing the information asymmetry.

Consistent with the hypothesis, Figure 14 shows that the βRegulation is negative and

significant.
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Figure 14: Cost of Moral Hazard vs. Inspection Requirement Regulation

The inspection requirement is the regulatory feature most directly connected to the

moral hazard mechanism in our model. However, several additional regulations poten-

tially affect the cost of moral hazard, either by influencing the incentives to file or inflate

claims or by affecting the observability of risk. We therefore compile a broader set of regu-

latory provisions and combine them into a single index, where a higher value corresponds

to a lower cost of moral hazard.

We consider five types of regulations in addition to the inspection requirement used

above. First, some states restrict assignment of benefits (AOB), preventing contractors

or third-party adjusters from assuming control of the claim and negotiating directly

with the insurer. These restrictions limit the scope for repair-cost inflation and should

therefore reduce moral hazard. Second, some states cap public adjuster fees, which

reduces the financial incentive to expand the claimed scope of damage. Third, states differ

in the strength of fraud investigation and enforcement (e.g., mandatory insurer Special

Investigation Units or active state fraud bureaus), which increases the expected cost of

submitting exaggerated claims. For these three categories, we define indicator variables

equal to 1 when the regulation is present.
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The remaining two regulatory categories operate through information asymmetry.

Some states restrict the use of prior claims history or credit information in pricing or

renewal decisions. By limiting insurers’ ability to condition premiums on observable risk

indicators, these regulations weaken dynamic incentives to avoid marginal or inflated

claims. For these two categories, we define indicator variables equal to –1 when the

restriction is present.

(1) (2) (3)
Moral Hazard Moral Hazard Moral Hazard

MH Reducing Regulation -1.228∗∗∗ -1.062∗∗∗ -1.026∗∗∗

(-106.49) (-79.55) (-12.99)

Tail Risk (AEP 100) -1.065∗∗∗ -1.015∗∗∗

(-55.25) (-14.04)

FICO Score -0.260∗∗∗ -0.225∗∗∗

(-17.21) (-7.34)

Log Recovery Value -1.695∗∗∗ -1.598∗∗∗

(-48.87) (-10.17)

Constant 7.891∗∗∗ 29.91∗∗∗ 28.62∗∗∗

(457.53) (66.25) (13.98)
Insurer FE N N Y
N 5,926,005 5,926,005 5,925,999
t statistics in parentheses
∗ p < 0.1, ∗∗ p < 0.05, ∗∗∗ p < 0.01

Table 8: Moral Hazard vs. Regulations Reducing Moral Hazard

Our moral-hazard regulation index is defined as the sum of these five indicator vari-

ables. Accordingly, higher values correspond to regulatory environments that make moral

hazard more costly. By regressing the cost of moral hazard on the regulation index con-

trolling for the same set of control variables and insurer fixed effects, we find that the

coefficient on the regulation index is negative, as reported in Table 8. This confirms that

regulations that are associated with reducing moral hazard, indeed, reduces the cost of

moral hazard.

While not intended to establish causality, the results in this section add validity to our

estimates.
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7 Counterfactual Analysis and Policy Implications

Our results so far have shown that policyholders, particularly those exposed to tail risk

and those with low FICO scores, retain considerable risk even after being insured. This

prompts a policy-relevant question: what if insurers are required to offer full coverage?

Our structural model is useful for answering this question. In this section, we focus on

one application of it to consider a hypothetical regulation that mandates full coverage of

insurance. In this case, insurers would not be able to incentivize effort from policyholders

and be required to cover all the property damage under the policyholder’s negligence. If

the expected damage under negligence exceeds the premium that the insurer can earn

from a complete insurance, the insurer will choose to leave the market, resulting in

market failure. In short, the regulation that aims to extend insurance coverage may leave

policyholders entirely exposed to property risk.

We first estimate the counterfactual damage distribution under negligence, f0(x),

using the model. Specifically, we obtain the likelihood ratio LR = f0(x)
f1(x) from Equation

(FOC). Then, we recover f0(x) using the LR and the f1(x) that we had estimated earlier.

This allows us to infer the distribution of property damage when policyholders are not

incentivized to properly manage their properties.

The median increase in expected damage is $1, 107; the damage increases by the factor

of 3.3 under negligence relative to effort. In the counterfactual world where insurers

are forced by regulation to provide full insurance at the premium that the policyholder

would be willing to pay, the insurer would choose to withdraw from the market. For

approximately 46% of the contracts, the expected claim payout, E[x|a = 0] exceeds the

premium that the policyholder would be willing to pay for a complete insurance, which is

pFB. For the other 54%, the insurer still finds it profitable to provide full insurance. Our

result suggests that taking away the insurer’s ability to provide incentives would leave a

substantial portion of households uninsured, exposing them entirely to property risk.
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8 Conclusion

Housing represents the largest component of household wealth in the United States,

making property risk a key financial for households. Losses due to natural disasters often

exceed the liquid savings of most households. Therefore, property insurance plays a critical

role in smoothing these shocks. Yet the protection households ultimately receive from

insurance depends crucially on contract design, specifically, the deductible and coverage

limit that determine how much loss remains with the household. These features, designed

to balance risk sharing and incentives, shape how disaster shocks propagate through

household balance sheets and, by extension, the broader economy.

Drawing on rich contract-level data matched to property-level disaster risk, this paper

presents one of the first comprehensive analyses of the structure of property insurance

contracts and the economic forces underlying their design. We develop a structural model

linking household risk aversion, property risk, and insurer pricing to observed contract

terms.

Our estimation results show that insurance contracts successfully mitigate moral haz-

ard—the estimated cost of moral hazard is only 0.7% of the risk premium—but this incen-

tive alignment comes at the cost of substantial uninsured exposure, roughly 29% of total

expected losses on average. The burden of this retained risk falls disproportionately on

low-FICO households and those in high-risk regions, suggesting important distributional

consequences. A counterfactual analysis further shows that mandating full insurance

would lead many policyholders to lose coverage altogether, highlighting the trade-off

between incentive alignment and risk sharing.
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Appendix

Additional Figures

(a) Average Loss (AAL)

(b) 98 Percentile Loss (AEP 2%)

(c) 99 Percentile Loss (AEP 1%)

Figure A.1: Disaster Risk Map These figures show spatial distribution of the three disaster
risk moments, mean, 98 percentile, and 99 percentile. The data source is CoreLogic.
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(a) Risk Aversion (b) Risk Premium

(c) Cost of Moral Hazard (d) Increase in Exposure due to Moral Hazard

Figure A.2: Spatial Distribution of Estimated Variables
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