
A Proofs of Propositions

A.1 Preliminaries

Transition times. Let τ (t) be the largest of t1 and the last time (π(t), x(t)) entered the

region Ωzlb from Ωss before or at time t. More formally,28

τ(t) = max {t1, τ zlb(t)} ,

τ zlb(t) = sup {s ≤ t : (π(s), x (s)) ∈ ∂Ω and ∃ε > 0 s.t. (π (s+ ε) , x (s+ ε)) ∈ Ωzlb} .

Let η(t) be the largest of t1 and the last time (π(t), x(t)) enters the region Ωss from Ωzlb

before or at time t, i.e.,

η(t) = max {t1, ηss(t)} ,

ηss(t) = sup {s ≤ t : (π(s), x (s)) ∈ ∂Ω and ∃ε > 0 s.t. (π (s+ ε) , x (s+ ε)) ∈ Ωss} .

Note that τ(t) and η(t) are piece-wise constant and thus for all t 6= τ(t) we have τ̇(t) = 0

and for all t 6= η(t) we have η̇(t) = 0.

Solution to IS and NKPC. Let

Azlb =

[
0 − 1

σ

−κ ρ

]
,

Ass =

[
1
σ
ξx

1
σ

(ξπ − 1)

−κ ρ

]
.

The matrix Azlb gives the dynamics of the system of ODEs (1)-(2) when i(t) = 0 while

the matrix Ass gives the dynamics when i(t) = rh + ξππ (t) + ξxx(t). The matrix Azlb has

eigenvalues φ1 and φ2 defined in equations (A.17)-(A.18). The eigenvalues of Ass are

α1 =
1

2σ

(
ξx + σρ+

√
(ξx − σρ)2 − 4κσ (ξπ − 1)

)
, (A.1)

α2 =
1

2σ

(
ξx + σρ−

√
(ξx − σρ)2 − 4κσ (ξπ − 1)

)
. (A.2)

Because stable dynamics always produce indeterminacy (see Lemma 3 in Appendix B.9 for

a proof), I restrict all analysis to cases in which either detAss > 0 and traceAss > 0, or

detAss < 0. Below, I use dexit and dtrap defined in equations (A.21) and (A.22).

28Recall that the supremum of the empty set is −∞. If there is no s such that (x (s) , π(s)) ∈ ∂Ω or @ε >
0 s.t. (x (s+ ε) , π (s+ ε)) ∈ Ωzlb, then τzlb(t) = −∞ and τ (t) = t1.
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For t ∈ [0, T ) the solution to (1)-(2) under the interest rate rule in equation (15) is

x(t) = − φ2

(φ1 − φ2)

(
dexit(0)− φ2

κ
(rh − rl)

)
eφ1t

+
φ1

(φ1 − φ2)

(
dtrap (0)− φ1

κ
(rh − rl)

)
eφ2t − ρ

κ
rl, (A.3)

π(t) = − κ

(φ1 − φ2)

(
dexit(0)− φ2

κ
(rh − rl)

)
eφ1t

+
κ

(φ1 − φ2)

(
dtrap (0)− φ1

κ
(rh − rl)

)
eφ2t − rl. (A.4)

For t ∈ [T, t1) the solution is

x(t) = −φ2dexit(t)

(φ1 − φ2)
eφ1(t−T ) +

φ1dtrap(t)

(φ1 − φ2)
eφ2(t−T ) − ρ

κ
rh (A.5)

π(t) = − κdexit(t)

(φ1 − φ2)
eφ1(t−T ) +

κdtrap(t)

(φ1 − φ2)
eφ2(t−T ) − rh (A.6)

For t ∈ [t1,∞), when (π(t), x (t)) ∈ Ωzlb, the solution is

x(t) = −φ2dexit (τ(t))

(φ1 − φ2)
eφ1(t−τ(t)) +

φ1dtrap (τ(t))

(φ1 − φ2)
eφ2(t−τ(t)) − ρ

κ
rh, (A.7)

π(t) = −κdexit (τ(t))

(φ1 − φ2)
eφ1(t−τ(t)) +

κdtrap (τ(t))

(φ1 − φ2)
eφ2(t−τ(t)) − rh. (A.8)

For t ∈ [t1,∞), when (π(t), x (t)) ∈ Ωss, I distinguish three cases:

Case I: ξπ 6= 1 and 4κσ (ξπ − 1) 6= (ξx − σρ)2 ;

Case II: ξπ = 1 and 4κσ (ξπ − 1) 6= (ξx − σρ)2 ;

Case III: 4κσ (ξπ − 1) = (ξx − σρ)2 .

For Case I, the solution is

x(t) = −(1− ξπ) π(η(t)) + (σα2 − ξx)x(η(t))

σ (α1 − α2)
eα1(t−η(t))

+
(1− ξπ) π(η(t)) + (σα1 − ξx)x(η(t))

σ (α1 − α2)
eα2(t−η(t)), (A.9)

π(t) =
(1− ξπ) π(η(t)) + (σα2 − ξx)x(η(t))

σ (ξπ − 1) (α1 − α2)
(ξx − σα1) e

α1(t−η(t))

−(1− ξπ) π(η(t)) + (σα1 − ξx)x(η(t))

σ (ξπ − 1) (α1 − α2)
(ξx − σα2) e

α2(t−η(t)). (A.10)
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For Case II, the solution is

x(t) = x(η(t))e
1
σ
ξx(t−η(t)), (A.11)

π(t) =
π(η(t)) (ξx − σρ) + κσx(η(t))

ξx − σρ
eρ(t−η(t)) − κσx(η(t))

ξx − σρ
e

1
σ
ξx(t−η(t)). (A.12)

For Case III, the solution is

x(t) =

(
1 +

1

2σ
(ξx − σρ) (t− t1)

)
x(η(t))e

1
2(ρ+ 1

σ
ξx)(t−η(t))

+
1

κ

(
1

2σ
(σρ− ξx)

)2

(t− t1)π(η(t))e
1
2(ρ+ 1

σ
ξx)(t−η(t)), (A.13)

π(t) = −κ (t− t1)x(η(t))e
1
2(ρ+ 1

σ
ξx)(t−η(t))

+

(
1− 1

2σ
(ξx − σρ) (t− t1)

)
π(η(t))e

1
2(ρ+ 1

σ
ξx)(t−η(t)). (A.14)

Saddle path in Ωss. The saddle path Υss is the set of points (π, x) such that

π =


(ξx−σα2)
(1−ξπ)

x , if detAss < 0 and ξπ 6= 1
κσ

(σρ−ξx)
x , if detAss < 0 and ξπ = 1

κ
ρ
x , if detAss = 0 and traceAss ≥ 0

∅ , otherwise

. (A.15)

A.2 Preliminaries 2

The goal of this section is to develop the prerequisite mathematical notation and economic

intuition to understand, in the next section, the necessary and sufficient conditions for global

determinacy of the optimal equilibrium under the rule in equation (15). As before, this rule

can be understood in three stages.

First stage (0 ≤ t < T ). The dynamics of the economy are exactly as in rule (10), since

i(t) = 0 and there are no other decisions for the central bank to make (recall liftoff occurs

after T by assumption). Each point (π(0), x(0)) maps to one and only one (π(T ), x(T )) and

the mapping is unaffected by expectations or outcomes. Figure 11 shows the phase portrait

that can be used to understand this mapping. Because the natural rate is negative, the

unique steady state for the first-stage dynamics, labeled (πl, xl) in the figure, is in the first

quadrant and given by πl = −rl > 0 and xl = −ρrl/κ > 0. While the dynamics and the

location of the steady state do not change with private-sector expectations or central bank

actions, the specific (π(0), x(0)) that is actually realized in equilibrium —and hence which

path is realized— does depend on them.
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▲▲

π

x

Figure 11: Dynamics of the economy for t ∈ [0, T ), when i(t) = 0 for all π(t) and x(t) and
r(t) = rl < 0. The green line is the saddle path and the orange triangle, labeled (πl, xl), is
the steady state.

Second stage (T ≤ t < t1). The central bank is committed to i(t) = 0 between T

and f(Rt1). The dynamics are identical to those in rule (10), with the only difference being

that they are maintained until f(Rt1), which depends on Rt1 , instead of until the constant

liftoff time t∗. In equilibrium, t1 = f(Rt1), so the actual duration of this stage is endogenous

and depends not only on the announced liftoff rule but also on private-sector expectations

and the realizations of inflation and output in the first stage. Given a known liftoff time t1,

analogous to what happens in the first stage, the dynamics of the economy and the mapping

from (π (T ) , x(T )) to (π(t1), x(t1)) are always unchanged, while the specific (π(T ), x(T )) and

(π(t1), x(t1)) that end up being realized change based on which equilibrium ends up being

realized.

Figure 12 shows the phase portrait of π(t) and x(t), which reveals saddle dynamics. I

denote the stable zlb saddle path by

Υzlb =

{
(π, x) : x =

φ1

κ
π − φ2

κ
rh

}
, (A.16)
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where

φ1 =
1

2
ρ+

1

2

√
ρ2 + 4

κ

σ
> 0, (A.17)

φ2 =
1

2
ρ− 1

2

√
ρ2 + 4

κ

σ
< 0, (A.18)

are the two eigenvalues of the system. The unstable zlb saddle path is given by

Ψzlb =

{
(π, x) : x =

φ2

κ
π − φ1

κ
rh

}
, (A.19)

which is the saddle path that would be stable if the system evolved backward in time.

The zlb saddle path Υzlb, a line with positive slope, intersects the unstable zlb saddle

path Ψzlb, a line with negative slope, at the zlb steady state

(πzlb, xzlb) =
(
−rh,−

ρrh
κ

)
. (A.20)

The point (πzlb, xzlb) always lies in the third quadrant of the π-x plane. Neither the location

of (πzlb, xzlb) nor the slopes of Υzlb and Ψzlb depend on policy choices of the central bank;

they are fully specified by the parameters κ, ρ, σ and rh. In the literature, the steady

state (πzlb, xzlb) is variously referred to as the “deflationary steady state,” the “liquidity trap

steady state,” the “expectational trap steady state” or the “unintended steady state.”

Two key objects to understanding the behavior of the economy and its determinacy

properties are:

dexit(t) = x(t)− φ1

κ
π(t) +

φ2rh
κ

, (A.21)

dtrap(t) = x(t)− φ2

κ
π(t) +

φ1rh
κ

. (A.22)

The value of dexit is a measure of the distance (with sign) to the stable zlb saddle path Υzlb

defined in equation (A.16). Similarly, dtrap gives a measure of distance (with sign) from

(π(t), x(t)) to the unstable saddle path Ψzlb defined in equation (A.19). A dexit closer to zero

means the economy is closer to Υzlb and hence will behave more similarly to an economy

that is on Υzlb, at least for some initial period of time. A dexit closer to zero also implies that

the economy at some point gets closer to the unintended steady state (πzlb, xzlb). In fact,

dexit(t) = 0 indicates that the economy is exactly on Υzlb at time t and converging toward

(πzlb, xzlb). In contrast, a dtrap closer to zero implies that the dynamics of the economy look

more like those of the unstable saddle path Ψzlb, pushing the economy further away from

(πzlb, xzlb).
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Figure 12: Dynamics of the economy for t ∈ [T, t1), when i(t) = 0 for all π(t) and x(t), and
r(t) = rh > 0. The red line, labeled Υzlb, is the saddle path. If the economy starts on Υzlb,
it converges to the deflationary steady state (πzlb, xzlb). The blue line, labeled Ψzlb, is the
“unstable saddle path.” If the economy starts on Ψzlb, it stays on Ψzlb and moves away from
the deflationary steady state (πzlb, xzlb). Under these dynamics, if the economy is not on
Υzlb, then inflation and output become unbounded.

The dynamics of the economy are a tug of war between two competing forces: one driving

the economy into the deflationary steady state (πzlb, xzlb) and another pulling the economy

away from it. The strength of these two forces is given by dexit and dtrap. Indeed, inflation

and output can be written as[
x(t)− xzlb
π(t)− πzlb

]
= dexit(t) vexit + dtrap(t) vtrap, (A.23)

where

vexit =

[
− φ2
φ1−φ2
− κ
φ1−φ2

]
and vtrap =

[
φ1

φ1−φ2
κ

φ1−φ2

]
, (A.24)

are the eigenvectors of the system. The eigenvector vexit is associated with the explosive

eigenvalue φ1 > 0 and lies on the unstable saddle path Ψzlb. The eigenvector vtrap is asso-

ciated with the stabilizing eigenvalue φ2 < 0 and lies on the stable saddle path Υzlb. The

eigenvalue vtrap is the “trap factor” that drives the economy into the expectational trap

steady state (πzlb, xzlb), while vexit is the “exit factor” pulling the economy away from it.

After a change of coordinates that makes (πzlb, xzlb) the origin and the eigenvectors of the
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system the coordinate basis vectors, the vector (π(t), x(t)) has coordinates (dexit(t), dtrap(t)):[
− φ2
φ1−φ2

φ1
φ1−φ2

− κ
φ1−φ2

κ
φ1−φ2

]−1 [
x(t)− xzlb
π(t)− πzlb

]
=

[
dexit(t)

dtrap(t)

]
(A.25)

In other words, projecting (π(t), x(t)) onto the eigenvalues gives loadings of (dexit(t), dtrap(t)).

This linear two-factor representation of the economy is exact in the sense that there is no

residual left once x(t) and π(t) are expressed as a linear combination of the factors plus

a constant. As already pointed out through various other arguments by Benhabib et al.

(2001b), Werning (2012) and others, the current levels of inflation and output are, on their

own, not very informative about whether the economy is in a liquidity trap, constrained by

the ZLB, at risk of converging to the unintended steady state, or on a desirable policy path.

For example, Benhabib et al. (2001b) show that an economy can have inflation and output

arbitrarily close to target (in the model I consider here, the target is the intended steady

state (πss, xss)) and yet converge to the unintended steady state (πzlb, xzlb). In contrast,

observing a dexit(t) = 0 immediately reveals that an economy is headed toward (πzlb, xzlb).

In addition, and more important for this paper, the necessary and sufficient conditions for

global determinacy in the next section are most simply expressed as functions of dexit(t)

and dtrap(t), highlighting not just their mathematical convenience but also their economic

importance. When a central bank is trying to assess private-sector expectations in order to

know what is needed to anchor expectations, the results in this paper suggest that it should

focus on the linear combinations of inflation and output given by dexit(t) and dtrap(t) rather

than on the levels of inflation and output by themselves.

Third stage (t ≥ t1). I split the π-x plane into two disjoint regions defined by whether

the ZLB is binding

Ωzlb(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh ≤ 0} , (A.26)

Ωss(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh > 0} , (A.27)

where the subscript zlb in Ωzlb stands for zero lower bound and the subscript ss in Ωss

stands for “intended steady state,” as the region Ωss(Rt1) contains (πss, xss) = (0, 0), the

steady state that the central bank would like the economy to converge to in the long run if

the optimal equilibrium is to be achieved. The boundary between the regions Ωzlb(Rt1) and

Ωss(Rt1) is a line

∂Ω(Rt1) = {(x, π) : ξπ(Rt1)π + ξx(Rt1)x+ rh = 0} ⊂ Ωzlb(Rt1). (A.28)

Henceforth, I suppress the dependence of ξx, ξπ, Ωzlb, Ωss and ∂Ω on Rt1 for ease of notation
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whenever it does not create confusion.

The derivatives of inflation and output with respect to time, π̇(t) and ẋ(t), inherit the

properties of i(t) and are therefore not differentiable on ∂Ω as a function of time (i.e., π(t) and

x(t) do not have second derivatives on ∂Ω). However, π̇(t) and ẋ(t) are always continuous

with respect to time, ensuring a continuous path for (π(t), x(t)).29 By the second line in

equation (15), after t1,

i(t) = 0 iff (π(t), x(t)) ∈ Ωzlb, (A.29)

i(t) = ξππ(t) + ξxx(t) + rh iff (π(t), x(t)) ∈ Ωss. (A.30)

When equations (A.29) and (A.30) are used in the IS equation and the NKPC, the dynamics

of the economy inside each of the two regions Ωzlb and Ωss are separately given by a system

of linear first-order ordinary differential equations (ODEs) in x(t) and π(t), each of which

is easy to analyze inside its respective region with standard methods. However, when the

two regions are analyzed together, the global dynamics are piecewise linear, with a non-

differentiable transition at ∂Ω. The behavior of piecewise linear dynamic systems can, in

general, exhibit a rich variety of non-linear phenomena such as limit cycles, bifurcations

and chaos. The global properties can also be quite different from those of each individual

region. For example, it is possible to construct paths that are globally bounded for systems

in which each separate region has explosive dynamics.30 To tackle the non-linearities of the

New Keynesian economy at hand, I first analyze the properties of each of the two regions

separately and then combine them and analyze the resulting global dynamics. Readers

familiar with New Keynesian models without a ZLB should find the analysis of each of the

separate regions familiar. The new results arise when I look at both regions together.

First, consider the behavior of the economy in the region Ωss. Inside Ωss, there is always a

single steady state, (πss, xss) = (0, 0). The dynamic behavior of the economy depends on the

choice of Taylor rule coefficients ξπ and ξx. I focus on Taylor rule coefficients that, absent the

ZLB, give either unstable or saddle dynamics, since the central bank would not pick stable

dynamics that have no explosive paths, as they always lead to indeterminacy.31 The Taylor

principle is the key concept needed to differentiate between unstable and saddle dynamics,

and between locally determinate and indeterminate equilibria. The Taylor principle is said

to hold if and only if

29In fact, (π̇(t), ẋ(t)) is Lipschitz continuous in (π(t), x(t)) and continuous in t, guaranteeing the global
existence and uniqueness of the continuous solution for t ≥ t1.
30For example, see Bernardo, Budd, Champneys, and Kowalczyk (2008).
31For stable dynamics, it is immediate that there is indeterminacy for any choice of ξπ, ξx and f . I also

exclude the knife-edge case in which the dynamics have a line whose points are all steady states, but the
dynamics are otherwise explosive. See Lemma 3 in Appendix B.9 for a proof that, in this case, there also is
indeterminacy for any choice of ξπ, ξx and f .
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κ (ξπ − 1) + ρξx > 0 and ξx + σρ > 0. (A.31)

When ξx = 0, the Taylor principle is equivalent to ξπ > 1, one of its most popular forms.

When the Taylor principle holds, if the dynamics of the Ωss region were extended to the

entire plane and nominal interest rates were allowed to be negative, or if I considered a

small enough neighborhood of (πss, xss) that lies entirely inside Ωss, the dynamics of the sys-

tem would be unstable. All paths would be unbounded —or exit the small neighborhood—

unless (π(t), x(t)) = (πss, xss) = (0, 0) for all t. Figure 13 shows representative phase por-

traits of two such economies. In the diagram on the left, the Taylor rule coefficients satisfy

(ξx − σρ)2 − 4κσ (ξπ − 1) < 0 and paths “slowly” spiral outward from the steady state.

When the reverse inequality holds, the steady state is instead a source, shown in the di-

agram on the right. In models without a ZLB, the Taylor principle is a necessary and

sufficient condition for local determinacy. When the ZLB is introduced, since there is al-

ways a small enough neighborhood of (πss, xss) that is contained entirely in Ωss, the Taylor

principle is still a necessary and sufficient condition for local determinacy of the equilibrium

with (π(t), x(t)) = (πss, xss) for all t ≥ t1. As I briefly discussed before and will expand on

later, the Taylor principle is, however, neither necessary nor sufficient for global determinacy

of the optimal equilibrium.

●● π

x

●● π

x

Figure 13: Dynamics of the economy for t ≥ t1 when the Taylor principle holds and there
is no ZLB. The dynamics of the diagram on the left have imaginary eigenvalues, while the
right-hand side have real ones. When there is no ZLB, the Taylor principle is necessary and
sufficient for local determinacy. Unless the economy starts at (0, 0), inflation and output
become unbounded.

The Taylor principle is said to not hold if and only if
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κ (ξπ − 1) + ρξx < 0. (A.32)

When the Taylor principle does not hold, if the dynamics of the Ωss region were extended

to the entire plane and interest rates were allowed to be negative, or if I considered a small

enough neighborhood of (πss, xss) that lies entirely in Ωss, the system would have saddle

dynamics. I denote the ss saddle path by Υss. It is a line through the origin whose slope

depends on the Taylor rule coefficients ξπ and ξx.
32 Paths are bounded —or stay in the

small neighborhood of (πss, xss)— if and only if they start on the ss saddle path. Figure 14

displays a typical phase diagram when the Taylor principle does not hold.

●● π

x

Figure 14: Dynamics of the economy for t ≥ t1 when the Taylor principle does not hold and
there is no ZLB. Unless the economy starts on its saddle path Υss, shown in green, inflation
and output become unbounded.

Note that because ξπ and ξx depend on Rt1 , whether the Taylor principle holds depends

on Rt1 . Within the same economy, there can be a subset of (off-equilibrium) paths for which

the Taylor principle holds and a different subset for which it does not hold. Instead, when

ξπ and ξx are constant, the Taylor principle must hold either for all paths or for no paths.

In all cases, the Taylor rule coefficients are fully determined by the time the central bank

lifts off and they remain unchanged from then on.

Now consider the behavior in the zlb region, Ωzlb. If the dynamics of the Ωzlb region were

extended to the entire π-x plane, the dynamics would be identical to those of the second

stage analyzed above, with the phase diagram given in Figure 12. Inside Ωzlb, the system

always has saddle dynamics with saddles Υzlb and Ψzlb.

32See equation (A.15) in Appendix A.1 for the explicit formula.

52



I now put the dynamics of the regions Ωss and Ωzlb together and describe some of the

global properties of the economy. The left panel of Figure 15 shows an example of the global

dynamics in which the Taylor principle holds, while the right panel shows an example in

which the Taylor principle does not hold. When the Taylor principle holds, the dynamics

inside Ωss look like those in Figure 13. When the Taylor principle does not hold, they look

like those in Figure 14. Of course, whether the Taylor principle holds or not, the dynamics

in Ωzlb always look like those in Figure 12, as they are not affected by the choice of ξx or ξπ.

However, the coefficients ξx and ξπ do have a crucial effect on the ZLB, as they determine

the location of the boundary ∂Ω and, consequently, whether the undesirable deflationary

steady state can exist in the economy. If the Taylor principle holds, the zlb steady state

(πzlb, xzlb) is in Ωzlb; when the Taylor principle does not hold, it is not. To see this, compute

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρrh

κ

)
+ rh, (A.33)

= −rh
κ

(κ (ξπ − 1) + ρξx) . (A.34)

By definition, the sign of this expression determines whether the zlb steady state (πzlb, xzlb)

is inside or outside Ωzlb. In turn, the sign of κ (ξπ − 1) + ρξx is determined by whether the

Taylor principle holds. When the Taylor principle holds, (πzlb, xzlb) is a steady state of the

global dynamics. Because of its saddle dynamics, equilibria are locally indeterminate around

(πzlb, xzlb). Together with the intended steady state (πss, xss), they are the two global steady

states of the economy. On the other hand, if the Taylor principle does not hold, (πzlb, xzlb)

is in Ωss. Under the Ωss dynamics, the point (πzlb, xzlb) is not a steady state. In this case,

the only steady state for the global dynamics is the desired one, (πss, xss).

The conclusion that following the Taylor principle outside the ZLB induces the existence

of a deflationary steady state at the ZLB is similar to one of the results in Benhabib et al.

(2001b). They further show that when the Taylor principle holds, the deflationary steady

state engenders an infinite number of suboptimal equilibria. As mentioned before, these

equilibria can start arbitrarily close to the intended steady state (πss, xss) and still converge

to (πzlb, xzlb). The same possibility is present in the setup I consider here. To construct

equilibria analogous to those in Benhabib et al. (2001b), I use the dynamics for the three

stages described above. For the next steps, refer to Figure 16. First pick two numbers q and

r such that r, q > T and r− q > T . Let (πb, xb) = ∂Ω ∩Υzlb.
33 Assume the Taylor principle

holds. Using (π(r), x(r)) = (πb, xb) as the starting point, trace the dynamics of (π(t), x(t))

backward in time using the interest rate specified by equation (A.30) for a length of time

33If κξπ + φ1ξx = 0, ∂Ω ∩ Υzlb = ∅. Albeit not a general strategy to eliminate all non-optimal equilibria,
picking ξx, ξπ such that κξπ +φ1ξx = 0 does preclude this particular class of equilibria from forming for any
choice of f . This possibility was not present in Benhabib et al. (2001b), as their model did not have both
inflation and output as state variables of the economy.
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Figure 15: Non-linear dynamics of the economy after liftoff t1. The central bank follows the
Taylor rule i(t) = max {0, ξππ(t) + ξxx(t) + rh}. When ξππ(t)+ξxx(t)+rh > 0, the economy
is in the region Ωss and follows the solid black flow lines. When ξππ(t) + ξxx(t) + rh ≤ 0,
it is in the region Ωzlb and follows the dashed blue flow lines. The boundary between the
two regions is the line ∂Ω. The point (πss, xss), shown in red, is always a steady state of the
economy. The point (πzlb, xzlb), shown as a black square, is a steady state of the economy if
and only if the Taylor principle holds, as in the left panel. When the Taylor principle does
not hold, as in the right panel, (πzlb, xzlb) is not in Ωzlb and is therefore not a steady state.

q. As in Benhabib et al. (2001b), these equilibria can get arbitrarily close to the intended

steady state: Because the dynamics of (π(t), x(t)) are unstable when going forward in time,

they are stable backward in time and (π(t), x(t)) converges to (πss, xss) as q → ∞.34 At

time r − q, trace the dynamics of (π(t), x(t)) backward in time using (π(r − q), x(r − q)) as

the starting point and i(t) = 0 throughout, until t = 0, when the path reaches (π(0), x(0)).

Of course, the natural rate is positive after T and negative before T , so the dynamics

change from those of the second stage to those of the first. Note that in Figure 16, the

gray flow lines in the background reflect the dynamics that prevail for t ≥ t1 only. Set

t1 = r − q > T . By construction, the path starting at (π(0), x(0)) reaches (πb, xb) at time r

when following the interest rate rule in equation (15). Now going forward in time, for t ≥ r,

(π(t), x(t)) ∈ Υzlb ⊂ Ωzlb, which means the economy travels on the zlb saddle path toward

the unintended steady state (πzlb, xzlb). The path constructed is continuous and bounded

and has consistent expectations: It is a rational expectations equilibrium. All equilibria in

34This result is not immediate, since it may be possible that (π(t), x(t)) exits Ωss before getting close to
(πss, xss) and then follows the Ωzlb dynamics for which (πss, xss) is no longer a sink (flowing backward in
time). However, I show in Appendix B.6, Lemma 2, item (d) that this never happens. For all q, the path of
(π(t), x(t)) remains entirely in Ωss.
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this class can be obtained by picking different q and r.
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π
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Figure 16: An equilibrium analogous to the one studied by Benhabib et al. (2001b). The flow
lines in the background correspond to the dynamics after liftoff, which occurs at t1. Because
the Taylor principle holds, there is a deflationary steady state (πzlb, xzlb), shown as a black
square. At time t1, even though the economy is outside the ZLB and can get arbitrarily
close to the “desired” steady state (πss, xss) = (0, 0), it still converges to the “unintended”
steady state (πzlb, xzlb). At time r, the economy enters the ZLB and stays there (i(t)=0)
forever after.

B Proofs of Propositions

B.1 Proof of Proposition 1

Proof. Assume that rule (11) implements the optimal equilibrium. I show that it also im-

plements a different second equilibrium. Let R∗0 = (π∗(0), x∗(0)). Because the rule (11)

implements the optimal equilibrium and max {0, ξπ(R∗0)π
∗(t∗) + ξx(R

∗
0)x
∗(t∗) + rh} > 0, we

have t = t∗.

Consider the path that starts at (π(0), x(0)) and reaches (πss, xss) = (0, 0) at t = t∗ when

following (1), (2) and (11). This path always exists, since we can find it by positioning the

economy on (0, 0) at t = t∗ and running time backward until t = 0 using i(t) = 0 throughout.
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Since the point (0, 0) is a steady state after t∗ for any choice of ξπ(R0) and ξx(R0), (π(t), x(t))

remains bounded. If κσλ 6= 1, (x (t) , π (t)) = (π(t∗), x(t∗)) = (0, 0) 6= (π∗(t∗), x∗(t∗)) (see

Werning (2012) for a proof that (0, 0) 6= (π∗(t∗), x∗(t∗)) when κσλ 6= 1). Hence, when

κσλ 6= 1, the path that starts at the (π(0), x(0)) that reaches (0, 0) at t = t∗ when i(t) = 0

between t = 0 and t = t∗ constitutes an equilibrium different from the optimal one for any

choice of functions ξπ(R0) and ξx(R0). When κσλ = 1, the optimal equilibrium happens to

have (x∗(t), π∗(t)) = (0, 0) for all t ≥ t∗ and the optimal equilibrium is indeed implementable

as the unique equilibrium (Appendix B.2 shows how). �

B.2 Case κσλ = 1 in Proposition 1

The next example shows that when κσλ = 1, it is indeed possible to implement the optimal

equilibrium uniquely with a constant liftoff time. Let t= t∗ and κσλ = 1. Pick

(ξπ(R0), ξx(R0)) =

{
(0, 0) , if R0 is such that (π (t) , x (t)) = (0, 0) or ρπ (t) 6= κx (t)(

1,− ρ
κ

)
, otherwise

(B.1)

Note that when the time of liftoff is constant, it is equivalent to write ξπ and ξx as a function

of R0 or as a function of (π (s) , x (s)) for any s > 0. Hence, equation (B.1) can be written

as

(ξπ, ξx) =

{
(0, 0) , if (x (t) , π (t)) = (0, 0) or ρπ (t) 6= κx (t)(

1,− ρ
κ

)
, otherwise

. (B.2)

I now show that the rule

i(t) =

{
0 , 0 ≤ t < t

max {0, ξππ(t) + ξxx(t) + r(t)} , t ≤ t <∞
(B.3)

implements the optimal equilibrium as the unique equilibrium of the economy.

When (π(t), x(t)) = (0, 0), the rule implements the optimal path. Werning (2012)

shows that when κσλ = 1, (π∗(t∗), x∗(t∗)) = (0, 0). Since t= t∗ and (π (t) , x (t)) =

(π∗(t∗), x∗ (t∗)) = (0, 0), (π(t), x(t)) = (π∗(t), x∗(t)) for t < t∗. By equation (B.2), ξx = ξπ =

0 and thus i(t) = i∗(t) = rh > 0 for t ≥ t1. As (0, 0) is a steady state, (π(t), x(t)) = (0, 0)

for all t ≥ t1, which shows that (π(t), x (t)) = (π∗(t), x∗ (t)) for t ≥ t1.

No other equilibrium exists since, for all R0 6= (π∗(0), x∗(0)), continuous paths are un-

bounded. If ρπ (t) 6= κx (t), equation (B.2) gives (ξx, ξπ) = (0, 0) and, by equation (A.15),

the saddle path is ρπ = κx. It follows that (π (t) , x (t)) /∈ Υss. In addition, i(t) = rh > 0

for t ≥t and thus (π(t), x(t)) ∈ Ωss for all t ≥t since Ωzlb is empty. The global saddle path

dynamics and (π (t) , x (t)) /∈ Υss imply that (π(t), x(t)) explodes as t→∞.
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If (π (t) , x (t)) 6= (0, 0) and ρπ (t) = κx (t), (ξx, ξπ) =
(
1,− ρ

κ

)
implies that the Taylor

principle does not hold, since κ (ξπ − 1) + ρξx = −κ < 0. In addition, (π (t) , x (t)) ∈ Ωss

since ξππ (t) + ξxx (t) + r (t) = rh > 0 and (π (t) , x (t)) /∈ Υss by equation (A.15). Because

the dynamics are saddle path stable and (π (t) , x (t)) is not on the saddle path, (π (t) , x(t))

either explodes or enters Ωzlb in finite time. By item (c) in Lemma 1 of Appendix B.5, if

(π(t), x(t)) enters Ωzlb it also explodes.

B.3 Constants in the Neo-Fisherian Rule of Section 5.1

To be on the saddle path at time t1, π(t1) = φx (t1). Using the continuous pasting conditions

in equation (B.6) to express π(t1) = φx (t1) in terms of x(0) and π(0) gives

p(t1)x(0) + q(t1)π (0) = v(t1),

where

p(t1) = κσ
(
(φ1 − κφ) e−φ1t1 − (φ2 − κφ) e−φ2t1

)
,

q(t1) = κ
(
(σφφ2 + 1) e−φ1t1 − (σφφ1 + 1) e−φ2t1

)
,

v(t1) = −
(

(κ+ σφ1 (ρ− κφ)) rl +
(rh − rl)φ1

φ1 − φ2

(
κ+ σφ2

1 − κσφ (φ1 − φ2)
)
e−Tφ2

)
e−φ1t1

+

(
(κ+ σφ2 (ρ− κφ)) rl −

(rh − rl)φ2

φ1 − φ2

(
κ+ σφ2

2 + κσφ (φ1 − φ2)
)
e−Tφ1

)
e−φ2t1

+
(σρ2 + 4κ) (ρ− κφ) rh

(φ1 − φ2)
e−φ1t1e−φ2t1 .

Evaluating these functions at t1 = t∗ and t1 = t∗ + 1 determines the constants A, B, C and

D, E, F , respectively.
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B.4 Proof of Proposition ??

By using the explicit solutions in Appendix A.1, the continuous pasting conditions for a path

(π(t), x(t)) with Rt1 = R and f(Rt1) = t1 imply

x0 =
φ1e

−φ2t1 − φ2e
−φ1t1

φ1 − φ2

x1 −
1

σ

e−φ1t1 − e−φ2t1
φ1 − φ2

π1

+
rh
κ

φ2
1e
−φ2t1 − φ2

2e
−φ1t1

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
, (B.4)

π0 = −κe
−φ1t1 − e−φ2t1
φ1 − φ2

x1 +
φ1e

−φ1t1 − φ2e
−φ2t1

φ1 − φ2

π1

+rh
φ1e

−φ2t1 − φ2e
−φ1t1

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl. (B.5)

Equations (B.4) and (B.5) are equivalent to continuous pasting at t1 if there already is

continuous pasting at T . Solving for (π1, x1) in equations (B.4) and (B.5) gives, in matrix

notation,[
x1

π1

]
=
e(φ1+φ2)t1

φ1 − φ2

 φ1e
−φ1t1 − φ2e

−φ2t1 1
σ

(
e−φ1t1 − e−φ2t1

)
κ
(
e−φ1t1 − e−φ2t1

)
φ1e

−φ2t1 − φ2e
−φ1t1

[ x(0)− h
(
t1
)

π(0)−m
(
t1
) ] , (B.6)

where

h
(
t1
)

= rh
φ2
1e
−φ2t1 − φ2

2e
−φ1t1

κ (φ1 − φ2)
+ (rh − rl)

φ2
2e
−Tφ1 − φ2

1e
−Tφ2

κ (φ1 − φ2)
− rlρ

κ
,

m
(
t1
)

= rh
φ1e

−φ2t1 − φ2e
−φ1t1

(φ1 − φ2)
+ (rh − rl)

φ2e
−Tφ1 − φ1e

−Tφ2

(φ1 − φ2)
− rl.

Solving for e−φ1t1 and e−φ2t1 in equation (B.6) and then eliminating t1 from one of the

equations gives that paths that are already continuous at T are also continuous at t1 if and

only if

0 = P
(
R
)
, (B.7)

t1 = T
(
R
)
, (B.8)
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where

P(R) =



1
{
dexit

(
t1
)
6= 0 or dtrap

(
t1
)
6= 0
}

, if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
dexit

(
t1
)

+ 1
{
dtrap

(
t1
)

= 0
}

, if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
dtrap

(
t1
)

+ 1
{
dexit

(
t1
)

= 0
}

, if dexit(0) 6= φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
(

dexit(t1)
dexit(0)+

φ2
κ
(rh−rl)(e−Tφ1−1)

)φ2
,

if dexit(0) 6= φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
−
(

dtrap(t1)
dtrap(0)+

φ1
κ
(rh−rl)(e−Tφ2−1)

)φ1

,

(B.9)

and

T (R) =



[T,∞) , if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) = φ1

κ
(rh − rl)

(
1− e−Tφ2

)
1
φ2

log
dtrap(t1)

dtrap(0)+
φ1
κ
(rh−rl)(e−Tφ2−1)

, if dexit(0) = φ2
κ

(rh − rl)
(
1− e−Tφ1

)
and dtrap(0) 6= φ1

κ
(rh − rl)

(
1− e−Tφ2

)
1
φ1

log
dexit(t1)

dexit(0)+
φ2
κ
(rh−rl)(e−Tφ2−1)

, otherwise

,

(B.10)

thereby proving Proposition ??. In the expression for P
(
R
)
, I have used the indicator

function 1 {E}, which is equal to 1 if E is true and zero otherwise.

To derive equations (B.7) and (B.8), which correspond to equations (??) and (??) in the

main body of the paper, and to find the explicit expressions for P and T shown in equations

(B.9)-(B.10), I consider four cases separately.

The first case corresponds to the economy reaching (πzlb, xzlb) at t1; the second and

third, to the economy reaching, respectively, Υzlb and Ψzlb at t1; the fourth case considers

all remaining R.
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The first case, shown in green in Figure ??, is defined by (π0, x0) such that35

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] =

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (B.11)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] =

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (B.12)

In the figure, the line defined by equation (B.11) is the black dashed line while the line

defined by equation (B.12) is the dashed gray line. This first case corresponds to (π0, x0) at

the intersection of these two lines. The economy reaches the zlb steady-state (πzlb, xzlb) at

t = T . Since between T and t1 the point (πzlb, xzlb) is a steady-state, the economy just sits

there for all t ∈ [T, t1). The continuous pasting conditions are

dexit (π(t), x(t)) = dtrap (π(t), x(t)) = 0, (B.13)

dexit (π1, x1) = dtrap (π1, x1) = 0, (B.14)

i.e., (π(t), x(t)) = (π1, x1) = (πzlb, xzlb). In Figure ??, the lines described in equations (B.13)

and (B.14) are shown in the solid black and gray lines, and correspond to Υzlb and Ψzlb.

Equations (B.13) and (B.14) define the function P for this case

P(R) = 1 {dexit (π1, x1) 6= 0 or dtrap (π1, x1) 6= 0} ,

We then have P
(
R
)

= 0 if and only if dtrap (π1, x1) and dtrap (π1, x1) are both zero. Graph-

ically, the set of R such that P(R) = 0 are the two points in Figure ?? where the lines

intersect, that is, where the green path begins and ends. Once (B.13) and (B.14) hold, any

t1 ≥ T is consistent with continuous pasting and thus

T (R) = [T,∞).

In the three remaining cases, T (R) is single-valued and depends on R.

The second case is defined by the economy reaching some point in the zlb saddle path

Υzlb at t1, except for (πzlb, xzlb), which was already analyzed. This case, shown in red in

Figure ??, occurs when

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] =

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (B.15)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] 6=

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (B.16)

35With slight abuse of notation, in this section I write dexit (π0, x0) instead of dexit(t) to emphasize that
dexit (π0, x0) is not a function of time since (π0, x0) is a vector of two numbers, as opposed to (π(0), x(0)),
which is a function of time evaluated at t = 0. The same notation applies to dtrap and to πT , xT , π1, x1.
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Continuous pasting at T requires

dexit (π(t), x(t)) = [x(t)− xzlb]−
φ1

κ
[π(t)− πzlb] = 0, (B.17)

T =
1

φ2

log

(
dtrap (πT , x(t))

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)
. (B.18)

Continuous pasting at t1 requires

dexit (π1, x1) = [x1 − xzlb]−
φ1

κ
[π1 − πzlb] = 0, (B.19)

t1 = T +
1

φ2

log

(
dtrap (π1, x1)

dtrap (π(t), x(t))

)
. (B.20)

Equations (B.15), (B.16), (B.17) and (B.19) describe the continuous pasting constraints on

(π0, x0) without any reference to t1. Combinations (π0, x0) that satisfy these equations can

be part of a continuous path for some t1. Equations (B.18) and (B.20) then show which

particular point is reachable with a specific t1. Any continuous path in this case must start

in the black dashed line of Figure ?? and be on the solid black line at times T and t1. For

a specific t1, or for a specific point in one of the two lines, only one path is continuous.

Combining equations (B.15)-(B.20) gives

P(R) = dexit (π1, x1) + 1 {dtrap (π1, x1) = 0} ,

T (R) =
1

φ2

log

(
dtrap (π1, x1)

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)
.

The indicator 1 {dtrap (π1, x1) = 0} in the equation for P is there to guarantee that equation

(B.15) holds. In Figure ??, the points R such that P(R) = 0 are given by the dashed and

solid black lines, with the exception of the points where the black lines intersect the gray

lines.

The third case is similar to the second and is represented by the blue line in Figure ??.

Instead of reaching Υzlb at t1, the economy reaches the unstable zlb saddle path Ψzlb at t1,

with the exception of (πzlb, xzlb), which was already studied. This case is defined by

dexit (π0, x0) = [x0 − xzlb]−
φ1

κ
[π0 − πzlb] 6=

φ2

κ
(rh − rl)

(
1− e−Tφ1

)
, (B.21)

dtrap (π0, x0) = [x0 − xzlb]−
φ2

κ
[π0 − πzlb] =

φ1

κ
(rh − rl)

(
1− e−Tφ2

)
. (B.22)
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Continuous pasting at T occurs if and only if

dtrap (π(t), x(t)) = [x(t)− xzlb]−
φ2

κ
[π(t)− πzlb] = 0, (B.23)

T =
1

φ1

log

(
dexit (πT , x(t))

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)

)
, (B.24)

while continuous pasting at t1 occurs if and only if

dtrap (π1, x1) = [x1 − xzlb]−
φ2

κ
[π1 − πzlb] = 0, (B.25)

t1 = T +
1

φ1

log

(
dexit (π1, x1)

dexit (π(t), x(t))

)
. (B.26)

It follows that

P(R) = dtrap (π1, x1) + 1 {dexit (π1, x1) = 0} ,

T (R) =
1

φ1

log

(
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)

)
.

The fourth and last case corresponds to all remaining choices for R that can be part of

a continuous path. The continuous pasting conditions are(
dtrap (π0, x0) + φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)
dtrap (π(t), x(t))

)φ1

=

(
dexit (π0, x0) + φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)
dexit (π(t), x(t))

)φ2

, (B.27)

T =
1

φ2

log
dtrap (π(t), x(t))

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)
, (B.28)

for T and (
dtrap (π1, x1)

dtrap (πT , x(t))

)φ1
=

(
dexit (π1, x1)

dexit (π(t), x(t))

)φ2
, (B.29)

t1 = T +
1

φ2

log

(
dtrap (π1, x1)

dtrap (π(t), x(t))

)
, (B.30)

for t1.

Assuming continuous pasting at T , equations (B.27)-(B.29) reveal the set of points
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(π0, x0, π1, x1) that can be reached through continuous paths for some t1, which give

P(R) =

(
dexit (π1, x1)

dexit (π0, x0) + φ2
κ

(rh − rl) (e−Tφ1 − 1)

)φ2

−

(
dtrap (π1, x1)

dtrap (π0, x0) + φ1
κ

(rh − rl) (e−Tφ2 − 1)

)φ1

+ 1 {dexit (π1, x1) = 0 or dtrap (π1, x1) = 0} .

Finally, equations (B.28) and (B.30) give

T
(
R
)

=
1

φ1

log
dexit

(
t1
)

dexit (0) + φ2
κ

(rh − rl) (e−Tφ2 − 1)
.

B.5 Proof of Proposition 2

I first prove a lemma and then proceed to the proof of Proposition 2.

Lemma 1. When the Taylor principle does not hold, the following are true:

(a) (πzlb, xzlb) /∈ Ωzlb.

(b) If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1, (π(t), x(t)) either explodes as t → ∞ or exits

Ωzlb in finite time.

(c) If (π(s), x(s)) ∈ Ωss for some s ≥ t1 and (π(q), x(q)) ∈ Ωzlb for some q > s, then

(π(t), x(t)) explodes as t→∞.

(d) If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1 and there exist no r ≥ q such that (π(r), x(r)) ∈
∂Ω ∩Υss, then (π(t), x(t)) explodes as t→∞.

(e) If (π(q), x(q)) ∈ Ωzlb for some q ≥ t1 and there exist r > q such that (π(r), x(r)) ∈
∂Ω ∩Υss, then there exist no t ∈ [q, r) such that (π(t), x(t)) ∈ Υss.

Proof of Lemma 1. (a) Plugging the steady-state from equation (A.20) into the Taylor

rule gives

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρ
κ
rh

)
+ rh,

= −rh
κ

(κ (ξπ − 1) + ρξx) ,

= −rhσ
κ

detAss,

> 0.
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where detAss < 0 because the Taylor principle does not hold.

(b) The saddle path stable dynamics in Ωzlb and (πzlb, xzlb) /∈ Ωzlb immediately imply that

paths starting in Ωzlb either explode or exit Ωzlb in finite time.

(c) Let n̂ be a unit vector normal to ∂Ω pointing towards Ωss. Because (π(t), x(t)) tran-

sitions from Ωss to Ωzlb and its path is continuous, there exist ω ∈ (s, q] such that

ξππ(ω) + ξxx(ω) + rh = 0, (B.31)

n̂ · (π̇(ω), ẋ(ω)) ≤ 0. (B.32)

Equation (B.31) says that (π(ω), x(ω)) ∈ ∂Ω. The non-positive dot product in equation

(B.32) says that (π(ω), x(ω)) is not moving towards Ωss (and moving towards Ωzlb when

the dot product is negative). Writing out the dot product gives

 ξx√
ξ2π+ξ

2
x

ξπ√
ξ2π+ξ

2
x

T [ − 1
σ

(π(ω) + rh)

ρπ(ω)− κx(ω)

]
= −π(ω) (ξx − σρξπ) + ξxrh + κσξπx(ω)

σ
√
ξ2π + ξ2x

≤ 0,

or, simplifying,

π(ω) (ξx − σρξπ) + ξxrh + κσξπx(ω) ≥ 0. (B.33)

The Taylor principle (TP) not holding, equation (B.31), equation (B.33) and φ1, rh > 0

imply that

− rh (κ (ξπ − 1) + ρξx)︸ ︷︷ ︸
<0 as TP does not hold

−κ (rh + ξππ(ω) + ξxx(ω))︸ ︷︷ ︸
=0 by eq. (B.31)

+ φ1 (π(ω) (ξx − σρξπ) + ξxrh + κσξπx(ω))︸ ︷︷ ︸
≥0 by eq. (B.33)

> 0. (B.34)

Equation (B.34) is a sufficient condition for
(
π(t), x(t)

)
to be in Ωzlb for all t ≥ ω. To

see this, use the dynamics in equations (A.7) and (A.8) to write

ξππ(t) + ξxx(t) + rh = W (t− ω) ,
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where

W (t) = Aeφ1(t−ω) +Beφ2(t−ω) + C,

A = − (φ1π(ω)− κx(ω)− φ2rh)
ξx − σφ1ξπ
σφ1 (φ1 − φ2)

,

B = (φ2π(ω)− κx(ω)− φ1rh)
ξx − σφ2ξπ
σφ2 (φ1 − φ2)

,

C =
rh
κ

(κ (1− ξπ)− ρξx) .

By definition, (π(t), x(t)) ∈ Ωzlb iff W (t) ≤ 0. Therefore, if W (t) has no zeros for

t > ω, (π(t), x(t)) remains in Ωzlb forever. Since φ2 < 0 < φ1 and W (ω) = 0 by (B.31)

and W ′(ω) ≤ 0 by (B.32), a sufficient condition for W (u) to have no zeros for u > ω

is that A < 0. After some manipulations, it can be seen that (B.34) is equivalent to

A < 0.

By (b), since (π(t), x(t)) never transitions to Ωss after ω, it follows that (π(t), x(t))

explodes as t→∞.

(d) By (b), if (π(t), x(t)) does not exit Ωzlb, it explodes. If (π(t), x(t)) exits Ωzlb at some

time η and (π(η), x(η)) is not on the ss saddle path, due to the saddle path dynamics

inside Ωss, (π(t), x(t)) either explodes or returns to Ωzlb in finite time. If (π(t), x(t))

returns to Ωzlb, by item (c), it explodes.

(e) By equation (A.15), Υss is a line through the origin, which can be written as Aπ−x = 0

with A 6= 0. If ξπ 6= 1 then A = (1− ξπ) / (ξx − σα2) and if ξπ = 1 then A =

(σρ− ξx) /κσ. Let

F (t) = Aπ(t)− x(t). (B.35)

The path of (π(t), x(t)) intersects Υss at some time t̄ iff F (t̄) = 0.

Plugging ξππ(t) + ξxx(t) + rh = 0 in the IS and NKPC after t1, it can be seen that

(π̇(t), ẋ(t)) is continuous on ∂Ω for all t ≥ t1. It follows that the right and left deriva-

tives of F (t) are equal at t = r. By equations (A.9)-(A.14) and (A.15), (π(t), x(t))

remains on Υss after intersecting it at t = r. Hence, the right derivative of F (t) at

t = r is zero.

Now I find the left derivative. If (π(t), x(t)) exits Ωzlb without intersecting ∂Ω ∩ Υss,

by uniqueness inside Ωss, it won’t intersect Υss ∩ Ωss. If (π(t), x(t)) re-enters Ωzlb

after being in Ωss \ Υss, by item (c), it explodes. Hence, between times q and r,

(π(t), x(t)) ∈ Ωzlb and its dynamics are given by equations (A.7) and (A.8).
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Using these dynamics in equation (B.35) gives

F (t) = Peφ1(t−τ(t)) +Qeφ2(t−τ(t)) +R, (B.36)

where

P =
φ2 − Aκ
κ (φ1 − φ2)

(φ2rh − φ1π(τ(t)) + κx(τ(t))) ,

Q = − φ1 − Aκ
κ (φ1 − φ2)

(φ1rh − φ2π(τ(t)) + κx(τ(t))) ,

R =
rh (ρ− Aκ)

κ
.

Note that P and Q cannot both be zero. Indeed, P = Q = 0 implies R = 0, since

F (r) = 0. But R = 0 implies A = ρ/κ, which in turn implies (x(τ(t)), π(τ(t))) =

(πzlb, xzlb) = (x(q), π(q)) ∈ Ωzlb, contradicting item (a). Thus, P and Q cannot both

be zero.

Using equation (B.36) to compute the left derivative of F (t) at t = r and setting it

equal to the value of the right derivative, which is zero as shown above, gives

F ′(r) = 0 = φ1Pe
φ1(r−τ(r)) + φ2Qe

φ2(r−τ(r)). (B.37)

In other words, the path for (π(t), x(t)) must be tangent to the ss saddle path Υss at

t = r. Since φ2 < 0 < φ1, equation (B.37) implies that P and Q have the same sign

(and the sign is not zero since P and Q cannot both be zero). In turn, P and Q having

the same (non-zero) sign implies that

F ′′(t) = φ2
1Pe

φ1(t−τ(t)) + φ2
2Qe

φ2(t−τ(t)) (B.38)

has the same (non-zero) sign for all t ∈ [q, r], so F ′(t) is strictly monotonic. A contin-

uous and strictly monotonic F ′(t) in t ∈ [q, r], together with F (r) = F ′(r) = 0, imply

that the only solution to F (t) = 0 for t ∈ [q, r] is r. �

Proof of Proposition 2. Consider the following condition:

(π(t1), x(t1)) ∈ Ωss ∩Υss,

or

(π(t1), x(t1)) ∈ Ωzlb and (π(r), x(r)) ∈ ∂Ω ∩Υss for some r ∈ [t1,∞).

(B.39)

I first show that condition (B.39) implies paths are not explosive. If (π(t1), x(t1)) ∈ Ωss∩
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Υss, then (π(t), x(t)) ∈ Υss for all t ≥ t1. If (x(t1), π(t1)) ∈ Ωzlb and (x(r), π(r)) ∈ ∂Ω ∩Υss

for some r ∈ [t1,∞), (π(t), x(t)) ∈ Υss for all t ≥ r. In either case, the path converges to

(0, 0) and therefore does not explode.

To prove the converse, I prove the contrapositive. There are two cases to consider.

Case 1: If (π(t1), x(t1)) /∈ Ωss and there exist no r ∈ [t1,∞) such that (π(r), x(r)) ∈
∂Ω ∩Υss, then (π(t), x(t)) explodes by item (e) of Lemma 1.

Case 2: If (π(t1), x(t1)) /∈ Υss and (π(t1), x(t1)) /∈ Ωzlb, (π(t), x(t)) either explodes or

enters Ωzlb. If it enters Ωzlb, it explodes by item (c) of Lemma 1.

Note that cases 1 and 2 above also cover the case in which (π(t1), x(t1)) /∈ Υss and there

exists no r ∈ [t1,∞) such that (xr, πr) ∈ ∂Ω ∩ Υss. Indeed, if (π(t1), x(t1)) /∈ Ωss, case 1

applies. And if (π(t1), x(t1)) /∈ Ωzlb, case 2 applies. �

B.6 Proof of Proposition 3

I first prove a lemma and then proceed to the proof of Proposition 3.

Lemma 2. When the Taylor principle holds, the following are true:

(a) (πzlb, xzlb) ∈ Ωzlb.

(b) If (π(m), x(m)) ∈ Ωzlb ∩Υzlb with m ≥ T , then (π(t), x(t)) ∈ Ωzlb ∩Υzlb for all t ≥ m.

(c) There exist (π(0), x(0)) such that (π(T ), x(T )) ∈ Ωzlb ∩Υzlb.

(d) If (π(s), x(s)) ∈ ∂Ω for some s ≥ t1, there is no p > 0 such that (π(t), x(t)) ∈ Ωss for

t ∈ (s, s+ p) and (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω.

(e) If (π(q), x(q)) ∈ Ωss for q ≥ t1 with (π(q), x(q)) 6= (πss, xss) and there is no p >

0 such that [(π(t), x(t)) ∈ Ωss for t ∈ (q, q + p) and (π(q + p), x(q + p)) ∈ Υzlb ∩ ∂Ω],

then (π(t), x(t)) explodes as t→∞.

(f) There is no chaos (in the sense of R. Devaney36).

Proof of Lemma 2. (a) Plugging the steady-state (A.20) into the Taylor rule gives

ξππzlb + ξxxzlb + rh = ξπ (−rh) + ξx

(
−ρ
κ
rh

)
+ rh,

= −1

κ
rh (κ (ξπ − 1) + ρξx) ,

= −rhσ
κ

detAss,

< 0.

36See Banks, Brooks, Cairns, Davis, and Stacey (1992) for a definition.
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where detAss > 0 because the Taylor principle holds.

(b) Let (x, π) be a point in the line segment with endpoints (π(m), x(m)) and (πzlb, xzlb),

i.e. (x, π) is in the portion of the zlb saddle path between (π(m), x(m)) and (πzlb, xzlb).

Then

(x, π) = a(π(m), x(m)) + (1− a) (πzlb, xzlb) ,

for some a ∈ [0, 1]. It follows that

ξππ + ξxx+ rh = ξπ (aπ(m) + (1− a) πzlb) + ξx (ax(m) + (1− a)xzlb) + rh,

= a (ξππ(m) + ξxx(m) + rh) + (1− a) (ξππzlb + ξxxzlb + rh) ,

< 0, (B.40)

where the last line uses that (π(m), x(m)) and (πzlb, xzlb) are both in Ωzlb. The line seg-

ment with endpoints (π(m), x(m)) and (πzlb, xzlb) is thus entirely in Ωzlb. For t ∈ [T, t1),

the dynamics of (π(t), x(t)) are given by (A.5)-(A.6) and thus (π(t), x(t)) travels along

the zlb saddle path. For t ≥ t1, equation (B.40) implies that max {0, ξππ(t) + ξxx(t) + rh} =

0 so that (π(t), x(t)) follows the same dynamics given by (A.7)-(A.8), which means

(π(t), x(t)) stays on the zlb saddle path and travels on it towards (πzlb, xzlb).

(c) Because (π(T ), x(T )) is in Ωzlb and in Υzlb, it satisfies

0 ≥ ξππ(t) + ξxx(t) + rh,

x(t) =
φ1

κ
π(t)− φ2

κ
rh,

which is equivalent to

x(t) =
φ1

κ
π(t)− φ2

κ
rh, (B.41)

(κξπ + ξxφ1) π(t) ≤ rh (φ2ξx − κ) . (B.42)

If κξπ + ξxφ1 6= 0, it is easy to find (π(t), x(t)) that satisfies (B.41) and (B.42). If

κξπ + ξxφ1 = 0, equation (B.42) holds because the Taylor principle holds. Any pair

(π(t), x(t)) that satisfies equation (B.41) will be in Ωzlb and in Υzlb. To find the

corresponding (π(0), x(0)), use the dynamics of (π(t), x(t)) for t ∈ [0, T ) given by

(A.3)-(A.4).
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(d) By direct computation, the set of points (x, π) ∈ Υzlb ∩ ∂Ω are

(x, π) =

{ (
−rh φ1+φ2ξπ

κξπ+φ1ξx
,−rh κ−φ2ξx

κξπ+φ1ξx

)
if κξπ + φ1ξx 6= 0

∅ if κξπ + φ1ξx = 0
. (B.43)

If κξπ + φ1ξx = 0, there is clearly no p > 0 such that (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω.

If κξπ + φ1ξx 6= 0, I analyze three cases according to the three different dynamics that

(π(t), x(t)) can follow in Ωss given in Section A.1.

Case I. Let t = s+ p. Then η(t) = s and (π(s+ p), x(s+ p)) ∈ Υzlb ∩ ∂Ω gives

x(s+ p) = −rh
φ1 + φ2ξπ
κξπ + φ1ξx

= −(1− ξπ) π(s) + (σα2 − ξx)x(s)

σ (α1 − α2)
eα1p

+
(1− ξπ) π(s) + (σα1 − ξx)x(s)

σ (α1 − α2)
eα2p,

π(s+ p) = −rh
κ− φ2ξx
κξπ + φ1ξx

=
(1− ξπ) π(s) + (σα2 − ξx)x(s)

σ (ξπ − 1) (α1 − α2)
(ξx − σα1) e

α1p

− (1− ξπ) π(s) + (σα1 − ξx)x(s)

σ (ξπ − 1) (α1 − α2)
(ξx − σα2) e

α2p.

Solving for (π(s), x(s)) as a function of p gives

x(s) (p) = −rh
σ

(−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

(κξπ + φ1ξx) (α1 − α2)
e−pα1

− rh
σ

(κ− κξπ − φ1ξx − φ2ξx + σα1φ1 + σα1φ2ξπ)

(κξπ + φ1ξx) (α1 − α2)
e−pα2 ,

π(s) (p) =
rh
σ

(ξx − σα1) (−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

(ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα1

+
rh
σ

(−ξx + σα2) (−κ+ κξπ + φ1ξx + φ2ξx − σα1φ1 − σα1φ2ξπ)

(ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα2 .
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Let

F (p) = −rh (−ξx + σα1ξπ) (−κ+ κξπ + φ1ξx + φ2ξx − σα2φ1 − σα2φ2ξπ)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα1

− rh (ξx − σα2ξπ) (−κ+ κξπ + φ1ξx + φ2ξx − σα1φ1 − σα1φ2ξπ)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
e−pα2

+
rhσ (ξπ − 1) (α1 − α2) (κξπ + φ1ξx)

σ (ξπ − 1) (κξπ + φ1ξx) (α1 − α2)
.

Then,

F (p) = ξππ(s) (p) + ξxx(s) (p) + rh,

and since (π(s), x(s)) ∈ ∂Ω, it follows that ξππ(s)(0) + ξxx(s)(0) + rh = 0 = F (0). I

show there is no p > 0 that satisfies F (p) = 0.

First, note that π(s) and x(s) are always real, even when α1 and α2 are complex. By

direct computation, I find that

F (0) = 0. (B.44)

F ′(p) = 0 has at most one solution for p > 0, (B.45)

F ′(0) =
rh
σφ1

(κ (ξπ − 1) + ρξx) > 0, (B.46)

lim
p→∞

F (p) = rh > 0. (B.47)

F ′(0) > 0 because the Taylor principle holds. Together, equations (B.44)-(B.47) and

continuity of F (p) show that there is no solution to F (p) = 0 for p > 0.

Case II. Let t = s+ p. Then η(t) = s and

−rh
ρ

κ+ φ1ξx
= x(s)e

1
σ
ξxp, (B.48)

−rh
κ− φ2ξx
κ+ φ1ξx

=
π(s) (ξx − σρ) + κσx(s)

ξx − σρ
eρp − κσx(s)

ξx − σρ
e

1
σ
ξxp. (B.49)

Using equation (B.43) and that ξππ(s) + ξxx(s) + rh = 0, equation (B.49) becomes

−rh
κ− φ2ξx
κ+ φ1ξx

=

(
(ξx − σρ) ξx − κσ

(ξx − σρ) (κ+ φ1ξx)
rhρe

− 1
σ
ξxp − rh

)
eρp

+
rhκσρ

(ξx − σρ) (κ+ φ1ξx)
. (B.50)

Solving for x(s) in equation (B.48) and plugging it into equation (B.50) gives

x(s) = ξx (κ− φ2ξx + σρφ2) , (B.51)
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and

ξx (κ− φ2ξx + σρφ2) = epρ (ξx − σρ) (κ+ φ1ξx)

+e
p
σ
(σρ−ξx)ρ

(
−ξ2x + κσ + σρξx

)
. (B.52)

I now show that there is no p > 0 such that equations (B.51)-(B.52) hold. If ξx = σφ1,

then −ξ2x + κσ + σρξx = 0 and equations (B.51)-(B.52) become

x(s) = −ρrh
e−pφ1

σφ2
1 + κ

,

1 = epρ.

The last equation has no solution for p > 0. If ξx 6= σφ1, and recalling that ξx 6= σφ2

so that Υzlb∩∂Ω is non-empty, then −ξ2x+κσ+σρξx 6= 0, and equations (B.51)-(B.52)

become

x(s) = − rhρ

κ+ φ1ξx
e−

1
σ
ξxp,

0 =
φ2ξx

ξx − σφ1

(epρ − 1) + ρepρ
(
e−

ξx
σ
p − 1

)
.

Let

F (p) =
φ2ξx

ξx − σφ1

(epρ − 1) + ρepρ
(
e−

ξx
σ
p − 1

)
.

Compute

F ′(p) =
ρξx
σ

(
e−

p
σ
ξx − σφ2

(ξx − σφ1)
e−pρ

)
,

F ′′(p) = −ρξx
σ2

(
ξxe
− p
σ
ξx − σ2ρφ2

(ξx − σφ1)
e−pρ

)
,

and

F (0) = 0, (B.53)

F ′(0) =
ρξx (ξx − σρ)

σ (ξx − σφ1)
, (B.54)

F ′(p) = 0⇒ e(ρ−
ξx
σ )p =

σφ2

(ξx − σφ1)
, (B.55)

lim
p→∞

F (p) = φ1

ξx − σρ
ξx − σφ1

, (B.56)

lim
p→∞

F ′(p) = 0. (B.57)
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If ξx − σφ1 > 0, F (p) is monotonic, which combined with F (0) = 0 gives no solutions

to F (p) = 0 for p > 0. If ξx−σφ1 < 0 and ξx−σρ < 0, then the unique local maximum

occurs for some p > 0 and F is positive at that maximum. Using (B.56) and (B.57)

then shows that there is no solution to F (p) = 0 for p > 0. If ξx − σφ1 < 0 and

ξx − σρ > 0, an analogous argument applies but instead of a unique maximum, there

is a unique minimum.

Case III. Let t = s+ p. Then η(t) = s and

x(p) =

((
1 +

1

2σ
(ξx − σρ) p

)
x(s) +

1

κ

(
1

2σ
(σρ− ξx)

)2

pπ(s)

)
e

1
2(ρ+ 1

σ
ξx)p,

(B.58)

π(p) =

(
−κpx(s) +

(
1− 1

2σ
(ξx − σρ) p

)
π(s)

)
e

1
2(ρ+ 1

σ
ξx)p. (B.59)

Using equation (B.43) and that ξππ(s) + ξxx(s) + rh = 0, equations (B.58)-(B.59)

become

− rh
φ1 + φ2ξπ
κξπ + φ1ξx

=

(
1 +

1

2σ
(ξx − σρ) p

)
x(s)e

1
2(ρ+ 1

σ
ξx)p

+
1

κ

(
1

2σ
(σρ− ξx)

)2

p

(
−(ξxx(s) + rh)

ξπ

)
e

1
2(ρ+ 1

σ
ξx)p, (B.60)

− rh
κ− φ2ξx
κξπ + φ1ξx

= −κpx(s)e
1
2(ρ+ 1

σ
ξx)p

+

(
1− 1

2σ
(ξx − σρ) p

)(
−(ξxx(s) + rh)

ξπ

)
e

1
2(ρ+ 1

σ
ξx)p. (B.61)

Combining equations (B.60)-(B.61), I solve for x(s) as a function of p

x(s) =
A0 + A1p

B0 +B1p
, (B.62)

where

A0 = −4σrh
(
φ2ξ

2
x + σ2ρ2φ2 + 4κσρ− 2σρφ2ξx

)
,

A1 = 2rh
(
ξ2x − σ2ρ2

)
(2κ− φ2ξx + σρφ2) ,

B0 = 4κσ
(
ξ2x + σ2ρ2 + 4κσ − 2σρξx + 4σφ1ξx

)
,

B1 = (ξx + σρ) (2κ− φ2ξx + σρφ2)
(
σ2ρ2 + 4κσ − ξ2x

)
.
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Plugging equation (B.62) into equation (B.60), I get

F (p) = 0,

where

F (p) = e
1
2(ρ+ 1

σ
ξx)p − 1 +

(ξx + σρ) (2κ− φ2ξx + σρφ2)

4κσ

(
ξx − σ (φ1 − φ2)

ξx + σ (φ1 − φ2)

)
p.

Since

F (0) = 0,

F ′(0) = − φ2

4κσ
(ξx + σρ)2 > 0,

F ′′(p) =
1

4

(
ρ+

1

σ
ξx

)2

e
1
2(ρ+ 1

σ
ξx)p > 0,

the equation F (p) = 0 has no solution for p > 0.

(e) The assumptions required for Theorem 3 in Appendix C, the Poincaré-Bendixson The-

orem, hold. Indeed, because

ẋ(t) = σ−1 (max {0, ξxx(t) + ξππ(t) + r(t)} − r(t)− π(t)) , (B.63)

π̇(t) = ρπ(t)− κx(t), (B.64)

are, as functions of π(t) and x(t), continuous and differentiable almost everywhere,

they are Lipschitz. The rest of the conditions are easy to check.

I show that the ω-limit set37 of (π(q), x(q)) contains no steady-states and is not a

periodic orbit. By Theorem 3, (π(t), x(t)) then explodes.

Because (πss, xss) is a locally unstable steady-state (by the Taylor principle) and

(π(q), x(q)) 6= (πss, xss), the ω-limit set of (π(q), x(q)) does not contain (πss, xss), as

(π(t), x(t)) is bounded away from (πss, xss) for all t ≥ q. Because (πzlb, xzlb) is locally

a saddle-path steady-state, the only paths converging to (πzlb, xzlb) as t → ∞ must

eventually be in Υzlb ∩Ωzlb. By hypothesis, (π(τ(t)), x(τ(t))) /∈ Υzlb ∩ ∂Ω, where recall

τ(t) is the time of first entry into Ωzlb after t. By item (d), if (π(t), x(t)) enters Ωzlb a

second time after τ(t) (of course, by first visiting Ωss) it is not through Υzlb ∩ ∂Ω. It

follows that the ω-limit set of (π(q), x(q)) does not contain (πzlb, xzlb), as the orbit of

(π(q), x(q)) never intersects Υzlb ∩ Ωzlb.

37See Appendix C for definitions of ω-limit sets and other concepts needed to state the Poincaré-Bendixson
Theorem.
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I now show that there are no closed orbits. The divergence of (π̇(t), ẋ(t)) computed in

the distribution sense is

div(π̇(t), ẋ(t)) =
∂ẋ

∂x
+
∂π̇

∂π
=


ρ , if (π(t), x(t)) ∈ Ωzlb \ ∂Ω

ξx
2σ

+ ρ , if (π(t), x(t)) ∈ ∂Ω
1
σ
ξx + ρ , if (π(t), x(t)) ∈ Ωss

,

where Ωzlb \ ∂Ω denotes the interior of Ωzlb.

The Taylor principle and ρ > 0 imply that div(π(t), x(t)) > 0 for all (π(t), x(t)). By

Theorem 2, there are no closed orbits38.

(f) The result that there is no chaos is a direct consequence of Theorem 3, which tightly

restricts the behavior of bounded solutions to two cases, none of which is chaotic. For

continuous systems, strange attractors and other chaotic behavior can only emerge

when the dimension of the phase space is three or more. Note that the concept of

chaos I consider here is different from chaos in the sense of Li and Yorke (1975) used

in Benhabib et al. (2002), which is more appropriate for a discrete time setting.

�

Proof of Proposition 3. Consider the following condition:

(π(t1), x(t1)) = (πss, xss) ,

or

(π(t1), x(t1)) ∈ Ωzlb ∩Υzlb, (B.65)

or

(π(t1), x(t1)) ∈ Ωss and (π(r), x(r)) ∈ ∂Ω ∩Υzlb for some r ∈ (t1,∞).

I first prove that if condition (B.65) holds, then (π(t), x(t)) is bounded. I consider three

cases.

Case 1: If (π(t1), x(t1)) = (πss, xss), then (π(t), x(t)) is bounded because (πss, xss) is a

steady-state.

38The version of the Poincaré-Bendixson theorem I have used is stronger than needed since our vector field
is continuous (but non-differentiable) in ∂Ω while the theorem allows for discontinuities across the boundary
between regions.

In addition, I have used one particular generalized derivative, the “derivative in the distribution sense.”
However, since the vector field under consideration is continuous, any generalized derivative (such as viscosity
solutions) would still give a finite value for (π̇(t), ẋ(t)). When the value of (π̇(t), ẋt) is finite along ∂Ω,
because ∂Ω has measure zero, its value does not contribute to the line integral along a closed loop. By
Green’s theorem, it then does not matter which concept of generalized derivative I use for this particular
purpose.
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Case 2: If (π(t1), x(t1)) ∈ Ωzlb∩Υzlb, then item (b) of Lemma 2 shows, by picking m = t1,

that (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for all t ≥ t1. The dynamics in equations (A.7)-(A.8) then

show (π(t), x(t))→ (πzlb, xzlb).

Case 3: If (π(t1), x(t1)) ∈ Ωss and (π(r), x(r)) ∈ ∂Ω ∩ Υzlb for some r ∈ (t1,∞), item

(b) of Lemma 2 shows, by picking m = r, that (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for all t ≥ r. The

dynamics in equations (A.7)-(A.8) then show (π(t), x(t))→ (πzlb, xzlb).

To prove the converse, I prove the contrapositive. Assume (π(t1), x(t1)) 6= (πss, xss) and

(π(t1), x(t1)) /∈ Ωzlb ∩Υzlb. I consider two cases.

Case 1: (π(t1), x(t1)) /∈ Ωss. Because of the saddle path dynamics in Ωzlb, if (π(t1), x(t1)) /∈
Υzlb, then (π(t), x(t)) either explodes or enters Ωss in finite time. If it enters Ωss by inter-

secting ∂Ω at some time r > t1, item (d) of Lemma 2 shows that there is no p > 0 such that

(π(t), x(t)) ∈ Ωss for t ∈ (r, r + p) and (π(r + p), x(r + p)) ∈ Υzlb ∩ ∂Ω. Then item (e) of

Lemma 2 shows that (π(t), x(t)) explodes.

Case 2: There is no r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ω∩Υzlb. If (π(t1), x(t1)) /∈ Ωss,

case 1 shows (π(t), x(t)) explodes. If (π(t1), x(t1)) ∈ Ωss, given that (π(t1), x(t1)) 6= (πss, xss),

(π(t), x(t)) either explodes or enters Ωzlb. By assumption, if it enters Ωzlb, it does not intersect

Υzlb. This means (π(t), x(t)) is eventually in the interior of Ωzlb but not in Υzlb. The same

logic applied in case 1 shows that (π(t), x(t)) explodes. �

B.7 Proof of Proposition 4

Assume the rule implements the optimal equilibrium, i.e. {x(t), πt, it} = {x∗(t), π∗(t), i∗(t)}
when the central bank follows the rule in equation (15). Werning (2012) shows that i∗(t) =

(1− κσλ)π∗(t) + r(t) > 0 for t ≥ t∗. It follows that f(R∗) ≤ t∗. In addition, f (R∗) ≥ s for

all s ≤ t∗ such that (1− κσλ) π∗(t) + r(t) > 0, since otherwise the rule (15) would prescribe

it > 0 while i∗(t) = 0. Pick s = t∗ to get f(R∗) ≥ t∗ since (1− κσλ) π∗t∗ + rt∗ > 0. Because

f(R∗) ≤ t∗ and f (R∗) ≥ t∗, it follows that f(R∗) = t∗, and equation (19) holds.

To prove (20), I use f(R∗) = t∗ to get that for all t ≥ t∗

max {0, ξπ(R∗)π∗(t) + ξx(R
∗)x∗(t) + r(t)} = ξπ(R∗)π∗(t) + ξx(R

∗)x∗(t) + rh,

= (1− κσλ) π∗(t) + rh, (B.66)

since otherwise it = i∗(t) would not hold. If κσλ 6= 1, use x∗(t) = φπ∗(t) in equation

(B.66) and then equation (20) follows immediately, as π∗(t) 6= 0 for t ∈ [t∗,∞). If κσλ =

1, any ξπ(R∗), ξx(R
∗) implement the optimal equilibrium as (0, 0) is a steady-state for all

ξπ(R∗), ξx(R
∗).

Now assume that equations (19)-(20) hold. I show rule (15) implements the optimal
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equilibrium. When (π0, x0) = (x∗0, π
∗
0), clearly it = i∗(t) = 0 and (π(t), x(t)) = (x∗(t), π∗(t))

for t < t∗. Because (πt, x(t)) and (x∗(t), π∗(t)) are continuous as a function of time and their

paths coincide in [t∗−ε, t∗) for any ε > 0, (x(t∗), π(t∗)) = (x∗(t∗), π∗(t∗)). As x∗(t∗) = φπ∗(t∗)

for t = t∗,

x(t∗) = φπ(t∗). (B.67)

If κσλ = 1, (x(t∗), π(t∗)) = (x∗(t∗), π∗(t∗)) = (0, 0), because (0, 0) is a steady-state,

(πt, x(t)) = (x∗(t), π∗(t)) = (0, 0) for all t ≥ t∗ and any ξπ(R∗), ξx(R
∗). In addition, if

(πt, x(t)) = (0, 0),

it = max {0, ξπ(R∗)π(t) + ξx(R
∗)x(t) + r(t)} = rh = i∗(t)

for all t ≥ t∗.

When κσλ 6= 1, using equations (A.9)-(A.14), it can be checked by direct computation

that (π(t), x(t)) = (x∗(t), π∗(t)) for all t ≥ t∗ where (x∗(t), π∗(t)) is given by

x∗(t) = x∗1 exp

(
−κλ
φ

(t− t1)
)
, (B.68)

π∗(t) = π∗1 exp

(
−κλ
φ

(t− t1)
)
. (B.69)

The following relations may be helpful for the computations: If ξπ(R∗) < κσλ + σφρ + 1,

then

α1 = ρ+
1− ξπ(R∗)

σφ
, (B.70)

α2 = −κλ
φ
. (B.71)

If ξπ(R∗) > κσλ+ σφρ+ 1, then

α1 = −κλ
φ
, (B.72)

α2 = ρ+
1− ξπ(R∗)

σφ
. (B.73)

If ξπ(R∗) = κσλ+ σφρ+ 1

α1 = α2 = −κλ
φ
. (B.74)

B.8 Proof of Proposition 5

I first assume the rule implements no equilibrium with R 6= R∗ and prove items (a)-(c) hold.
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Item (a): By Proposition 3, if the Taylor principle holds, there exist continuous bounded

paths with (π(t1), x(t1)) ∈ Ωzlb ∩ Υzlb. Since for these paths (π(t), x(t)) → (πzlb, xzlb), they

constitute non-optimal equilibria. By item (b) of Lemma 2, (π(t), x(t)) ∈ Ωzlb ∩ Υzlb for all

t ≥ t1, irrespective of the choice of t1. It follows that the only way to preclude these type of

equilibria is to have the Taylor principle not hold for (π(t1), x(t1)) ∈ Ωzlb ∩Υzlb.

Item (b): If there are continuous paths that satisfy the hypotheses of items i., ii. or iii.,

they are bounded by Propositions 2 and 3 and constitute non-optimal equilibria. Thus, all

paths that satsify the hypothesis in items i., ii. and iii. must be discontinuous, which implies

equation (21) holds.

Item (c): If ∂Ω∩Υss = ∅, then the item is vacuously true. If ∂Ω∩Υss is non-empty then

(π(r), x(r)) =


(
rh

(ξπ−1)
ξx−σα2ξπ

,−rh (ξx−σα2)
ξx−σα2ξπ

)
, if detAss < 0 and ξπ = 1(

−rh (ξx−σρ)
ξ2x−κσ−σρξx

, κσ rh
ξ2x−σρξx−κσ

)
, if detAss < 0 and ξπ 6= 1

(B.75)

Assume that the Taylor principle does not hold for (x(t1), πt1) ∈ Ωzlb and that there exist

some r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ωzlb ∩ Υss. I show that if equation (21) does

not hold, then there exist a non-optimal equilibrium. By assumption, t1 ∈ [T, r). Let P be

the set of points in the continuous path between (π(T ), x(T )) and (π(r), x(r)), which can

be obtained by running the system dynamics backward in time while respecting continuous

pasting. By the dynamics in equations (A.7)-(A.8) and equation (B.75), the time q at which

(π(t1), x(t1)) ∈ Ωzlb reaches (π(r), x(r)) while following a continuous path is

q =
1

φ1

log

(
dexit(r)

dexit(t1)

)
(B.76)

Note that q is not necessarily equal to r since the hypotheses of item (c) do not require

that paths are continuous. Because equation (22) does not hold, T ≤ t1 ≤ q and thus

(π(t1), x(t1)) ∈ P . By Theorem 2, the continuous path going through (π(t1), x(t1)) and

(π(r), x(r)) is bounded for t ≥ t1. Using the continuous pasting conditions in Section ??,

the path can be continuously extended from (π(t1), x(t1)) to (π(0), x(0)) to get a continuous

bounded path for all t ≥ 0. This equilibrium is non-optimal since no optimal path has

(π(t1), x(t1)) ∈ Ωzlb \ ∂Ω.

Conversely, I now assume items (a)-(c) hold and prove that the rule implements no

equilibria with Rt1 6= R∗. By Proposition 3 and item (a), there are no equilibria with

(x(t1), π(t1)) ∈ Ωzlb ∩ Υzlb. By Propositions 2 and 3, items i.-iii. and the continuous past-

ing conditions in Section ??, there are no equilibria when: The Taylor principle holds for

(π(t1), x(t1)) ∈ Ωss and there exist some r ∈ (t1,∞) such that (xr, πr) ∈ ∂Ω ∩ Υzlb, the
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Taylor principle holds for (π(t1), x(t1)) = (πss, xss), or the Taylor principle does not hold

for (x(t1), π(t1)) ∈ Ωss ∩ Υss. Item (e) of Proposition 2 and item (c) imply that there

is no continuous path from (π(t1), x(t1)) ∈ Ωzlb to (π(r), x(r)) ∈ ∂Ω ∩ Υss that remains

bounded after r, and thus there are no equilibria when the Taylor principle does not hold

for (π(t1), x(t1)) ∈ Ωzlb and there exist some r ∈ (t1,∞) such that (π(r), x(r)) ∈ ∂Ωzlb∩Υss.

By Propositions 2 and 3, all other cases lead to paths that are discontinuous or unbounded.

B.9 Proof of Proposition 6

Item (a). Assume f(Rt1) is constant in its first two arguments. I show there always exist a

non-optimal equilibrium. Denote the value of f(·, ·, 0, 0) by t̂ (because f is constant in its

first two arguments, f(a, b, 0, 0) = t̂ for all a, b). Define (π̂0, x̂0) by

x̂0 =
rh
κ

φ2
1e
−φ2 t̂ − φ2

2e
−φ1 t̂

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
, (B.77)

π̂0 = rh
φ1e

−φ2 t̂ − φ2e
−φ1 t̂

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl. (B.78)

The continuous path starting at (π̂0, x̂0) reaches (0, 0) at time t̂ by equations (B.4) and (B.5).

Since (0, 0) is a steady-state, (π(t), x(t)) = (0, 0) for all t ≥ t̂. The path for (π(t), x(t)) is

continuous, bounded and follows the IS, the NKPC and the interest rate rule: It is an

equilibrium. If κσλ 6= 1, the equilibrium is not optimal.

Item (b). Consider a rule with

ξπ(Rt1) = 1− κσλ

ξx(Rt1) = 0

f(R∗) = t∗

f(Rt1) = τ(π(0), x(0))

for some function τ : R2 → R. I use Proposition 5 to show that there exists a choice of τ

compatible with the optimal equilibrium being a unique equilibrium.

The choice of ξx, ξπ implies

α1 =
1

2

(
ρ+

√
ρ2 + 4κ2λ

)
= κφ > 0 (B.79)

α2 =
1

2

(
ρ−

√
ρ2 + 4κ2λ

)
< 0 (B.80)

α1α2 = −κ2λ < 0 (B.81)

α1 + α2 = ρ (B.82)
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The Taylor principle never holds, as κ (ξπ − 1) + ρξx = −κ2σλ < 0.

Item (a) of Proposition 5 is true because the Taylor principle does not hold. Subitems

(b)i. and (b)iii. of Proposition 5 do not apply, since the Taylor principle does not hold.

I now analyze subitem (b)ii. and item (c) of Proposition 5, and show they can be satisfied

with an appropriate choice of τ .

First, consider item (b)ii.. Because (π(t1), x(t1)) ∈ Υss,

π(t1) =
1

φ
x(t1) (B.83)

and because (π(t1), x(t1)) ∈ Ωss

(1− κσλ) π(t1) + rh ≥ 0.

Consider the four cases of the continuous pasting condition in equation B.7 given by equation

(B.9).

Case 1 : If dexit(t1) = 0 and dtrap (t1) = 0, x(t1) = xzlb = − 1
κ
rhρ and π(t1) = πzlb = −rh,

which contradicts equation (B.83) and hence there is no equilibrium for this case.

Case 2 : If dexit(t1) = 0 and dtrap (t1) 6= 0,

x(t1) =
φ1

κ
π(t1)−

rhφ2

κ
. (B.84)

If σλκ = 1, there is no (π(t1), x(t1)) that satisfies equations (B.84) and (B.83) simultaneously.

If σλκ 6= 1, equations (B.84) and (B.83) imply

x(t1) = rh
φ− σλφ2

(κσλ− 1)
,

π(t1) =
rh
φ

φ− σλφ2

(κσλ− 1)

But then, since φ2 < 0,

ξxx(t1) + ξππ(t1) + rh = (1− κσλ) π(t1) + rh =
λσφ2rh
φ

< 0

contradicts that (π(t1), x(t1)) ∈ Ωss and thus there is no equilibrium for this case.

Case 3 : If dexit(t1) 6= 0 and dtrap (t1) = 0,

x(t1) =
φ2

κ
π(t1)−

rhφ1

κ
. (B.85)

If σλκ = 1, there is no (π(t1), x(t1)) that satisfies equations (B.84) and (B.83) simultaneously.
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If σλκ 6= 1, equations (B.84) and (B.83) imply

x(t1) = rh
φ− σλφ1

(κσλ− 1)
, (B.86)

π(t1) =
rh

κσλ− 1

(φ− σλφ1)

φ
. (B.87)

The pasting condition in equations (B.8) and (B.10), and equation (B.87), give

T (Rt1) = − 1

φ1

log
π(0) +

(
rl + (rh − rl) φ1e

−Tφ2−φ2e−Tφ1
φ1−φ2

)
(π(t1) + rh)

(B.88)

= − 1

φ1

log
π(0) +

(
rl + (rh − rl) φ1e

−Tφ2−φ2e−Tφ1
φ1−φ2

)
(

rh
κσλ−1

(φ−σλφ1)
φ

+ rh

) (B.89)

= T (π(0), x(0)) (B.90)

Setting

τ(π(0), x(0)) 6= T (π(0), x(0))

precludes any equilibrium for this case.

Case 4 : If dexit(t1) 6= 0 and dtrap (t1) 6= 0, using equation (B.83), the continuous pasting

condition in equations (B.7) and (B.9) is

− 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π(t1) + φ2rh

κ

= − 1

φ2

log
x(0)− φ2

κ
π(0) + φ1rh

κ
+ φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)(
φ− φ2

κ

)
+ φ1rh

κ

(B.91)

Let

H(π(t1), π(0), x(0)) = − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π(t1) + φ2rh

κ

+
1

φ2

log
x(0)− φ2

κ
π(0) + φ1rh

κ
+ φ1

κ
(rh − rl)

(
e−Tφ2 − 1

)(
φ− φ2

κ

)
π(t1) + φ1rh

κ

Then G(π(t1), π(0), x(0)) = 0 iff equation (B.91) holds. Since

∂H(π(t1), π(0), x(0))

∂π(t1)
= 0 ⇐⇒ rh = (κσλ− 1)π(t1)
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the implicit function theorem implies that we can write H(π(t1), π(0), x(0)) = 0 as

π(t1) = G(π(0), x(0))

for some function G, except when

κσλ− 1 6= 0 and π(t1) =
rh

(κσλ− 1)
(B.92)

If equation (B.92) does not hold, then the continuous pasting conditions are given by

π(t1) = G(π(0), x(0))

T (Rt1) = − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
π(t1) + φ2rh

κ

= − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
g(π0, x0) + φ2rh

κ

= T (π(0), x(0))

If equation (B.92) holds, H(π(t1), π(0), x(0)) = H
(

rh
κσλ−1 , π(0), x(0)

)
. If there is no (π(0), x(0))

so that H
(

rh
(κσλ−1) , π(0), x(0)

)
= 0, then there are no equilibria since no path is continuous.

If there exists (π(0), x(0)) such that H
(

rh
(κσλ−1) , π(0), x(0)

)
= 0, continuous pasting gives

T (Rt1) = − 1

φ1

log
x(0)− φ1

κ
π(0) + φ2rh

κ
+ φ2

κ
(rh − rl)

(
e−Tφ1 − 1

)(
φ− φ1

κ

)
rh

(κσλ−1) + φ2rh
κ

= T (π(0), x(0))

In either case (when equation (B.92) holds and when it does not hold), setting

τ(π(0), x(0)) 6= T (π(0), x(0))

precludes any equilibrium for case 4. This concludes the analysis of item (b)ii. of Proposition

5.

Now consider item (c) of Proposition 5. If κσλ = 1, Υss ∩ ∂Ωzlb = ∅ and thus there are

no equilibria. If κσλ 6= 1, (π(r), x(r)) ∈ Υss ∩ ∂Ωzlb implies

x(r) =
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

)
(B.93)

π(r) =
rh

κσλ− 1
(B.94)
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Using (B.93)-(B.94) and that (π(t), x(t)) ∈ Ωzlb for t ∈ [t1, r], the continuous pasting equa-

tions (B.4) and (B.5) imply that

x(0) =
φ1e

−φ2r − φ2e
−φ1r

φ1 − φ2

(
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

))
− 1

σ

e−φ1r − e−φ2r

φ1 − φ2

rh
κσλ− 1

+
rh
κ

φ2
1e
−φ2r − φ2

2e
−φ1r

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π(0) = −κe
−φ1r − e−φ2r

φ1 − φ2

(
1

2κ

rh
κσλ− 1

(
ρ+

√
4λκ2 + ρ2

))
+
φ1e

−φ1r − φ2e
−φ2r

φ1 − φ2

rh
κσλ− 1

+ rh
φ1e

−φ2r − φ2e
−φ1r

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl.

Solving for r gives

r = ν(π(0), x(0))

where

A =
1

κ
ρrl +

1

κ
(rh − rl)

φ2
1e
−Tφ2 − φ2

2e
−Tφ1

φ1 − φ2

B = rl + (rh − rl)
φ1e

−Tφ2 − φ2e
−Tφ1

φ1 − φ2

are two constants and

ν(π(0), x(0)) = − 1

φ2

log

(
κ
σφφ2 + 1

rh (ρ− κφ)
(x(0) + A)− φ2 + κφ+ σρφφ2

rh (ρ− κφ)
(π(0) +B)

)
is a function of x(0) and π(0) only (not of x(t1), π(t1) or t1). Setting

τ(π(0), x(0)) > ν(π(0), x(0))

precludes all equilibria for the case in which (c) of Proposition 5 applies.

Item (c). The rule in the last item has constant Taylor rule coefficients.

B.10 Proof of Proposition 7
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I start with a Lemma.

Lemma 3. If detAss(r) = 0 for some R = (π0, x0), then there exist a non-optimal equilib-

rium.

Proof of Lemma 3. When detAss(r) = 0, (πzlb, xzlb) ∈ ∂Ω. A continuous path with (π(t), x(t)) ∈
Υzlb ∩ Ωzlb is bounded for any choice of f , since (π(t), x(t)) ∈ Ωzlb for all t and it converges

to (πzlb, xzlb), which is a steady-state of the economy. �

Now I prove Proposition 7. Item (a). By Proposition 5, if items (a)-(c) hold but with

equation (21) replaced with (23), then there is no equilibrium with R 6= R∗, since (23) implies

(21).

Conversely, assume there is no equilibrium with R 6= R∗. I show equation (23) holds.

To do so, I first show that the Intermediate Value Theorem is applicable and then use it to

show equation (23) holds. Let

Θ =
{
R ∈ R4 : P(r) = 0 and R 6= R∗

}
Because f , ξx and ξπ are continuous, their restriction to Θ are also continuous. In addition,

Θ is path-connected because the solution to the ODE (1)-(2) is continuous with respect to

time, the mapping from (π(0), x(0)) to (π(t1), x(t1)) is a continuous bijection for a fixed t1,

f(Rt1) = t1 is continuous in Rt1 , and the exclusion of R∗ from Θ does not destroy path-

connectedness because it is a zero-dimensional set while the dimension of Θ is 3. Because

f , ξx and ξπ are continuous in Θ and Θ is path-connected, we can apply the Intermediate

Value Theorem.

Assume, for the sake of contradiction, that there exists Rlow ∈ Θ with f(Rlow) < T (Rlow).

The inequality f(Rlow) < T (Rlow) implies f(r) < T (r) for all R ∈ Θ since otherwise, by the

Intermediate Value Theorem, there would be some R0 ∈ Θ with f(R0) = T (R0), contra-

dicting that there is no equilibrium with R 6= R∗. Consider the point RT = (π̂0, x̂0, π̂1, x̂1)

defined by

x̂0 =
rh
κ

φ2
1e
−φ2T − φ2

2e
−φ1T

φ1 − φ2

+

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ
,

π̂0 = rh
φ1e

−φ2T − φ2e
−φ1T

φ1 − φ2

+ (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl,

x̂1 = 0,

π̂1 = 0.

By the continuous pasting conditions in equations (B.4)-(B.5), RT ∈ Θ and f(RT ) = T =

T (RT ), contradicting that f(r) < T (r) for all R ∈ Θ.
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Item (b). Since ξπ(Rt1) and ξx(Rt1) are continuous, then either the Taylor principle holds for

all Rt1 , or the Taylor principle does not hold for all Rt1 . To see this, assume for the sake of

contradiction that there exists RTP that satisfies the Taylor principle and Rno-TP that does

not. Then

detAss(RTP ) = κ (ξπ(RTP )− 1) + ρξx(RTP ) > 0,

detAss(Rno-TP ) = κ (ξπ(Rno-TP )− 1) + ρξx(Rno-TP ) < 0.

By the Intermediate Value Theorem, there exist anR0 such that detAss(R0) = κ (ξπ(R0)− 1)+

ρξx(R0) = 0. By Lemma 3, there exist a non-optimal equilibrium.

By Proposition 4, when κσλ 6= 1, the Taylor principle does not hold for R∗. Because the

Taylor principle does not hold for one R, then it does not hold for all R.

Item (c). By item (a) of Proposition 6, the rule cannot be purely forward-looking.

I show that if the rule is purely backward-looking, that is, if f , ξx and ξπ are all constant

in their last two arguments, then there exists an equilibrium with R 6= R∗. By item (b) of

Proposition 7 just proved above, the Taylor principle never holds. I look for an equilibrium

with

π(t1) = c(Rt1)x(t1) (B.95)

with the function c(Rt1) > 0 defined by equation (A.15). Because ξx and ξπ are continuous

in Rt1 and constant in x(t1), π(t1), so is c. To see that c is continuous when ξπ = 1, compute

lim
ξπ→1

c(Rt1) = lim
ξπ→1

(ξx − σα2)

(1− ξπ)

= lim
ξπ→1
− 1

2 (ξπ − 1)

(
ξx − σρ+

√
ξ2x + σ2ρ2 + 4κσ − 4κσξπ − 2σρξx

)
= lim

ξπ→1
κσ
(
ξ2x + σ2ρ2 + 4κσ − 4κσξπ − 2σρξx

)− 1
2

=
κσ

|ξx − σρ|
=

κσ

σρ− ξx

The third line follows by L’Hospital’s Rule; in a small enough neighborhood of ξπ = 1, the

Taylor principle not holding implies ξx < 0 and thus both numerator and denominator in

the second line go to zero as ξπ → 1. The last line follows because ξx < 0 when ξπ = 1,

again because the Taylor principle does not hold. When ξπ 6= 1, c is continuous by equation

(A.15).
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Let

M (π(0), x(0)) =
φ1e

−φ2f − φ2e
−φ1f

φ1 − φ2

c− 1

σ

e−φ1f − e−φ2f

φ1 − φ2

N (π(0), x(0)) = −κe
−φ1f − e−φ2f

φ1 − φ2

c+
φ1e

−φ1f − φ2e
−φ2f

φ1 − φ2

P (π(0), x(0)) =
rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

Q (π(0), x(0)) = rh
φ1e

−φ2f − φ2e
−φ1f

φ1 − φ2

A =

(
rh − rl
κ

)
φ2
2e
−Tφ1 − φ2

1e
−Tφ2

φ1 − φ2

− rlρ

κ

B = (rh − rl)
φ2e

−Tφ1 − φ1e
−Tφ2

φ1 − φ2

− rl

The functions M , N , P and Q are continuous and depend only on x(0), π(0) (and not on

x(t1), π(t1)) because f and c are continuous and constant in π(t1), x(t1). The continuous

pasting conditions in equations (B.4)-(B.5) give

x(0) = Mπ(t1) + P + A (B.96)

π(0) = Nπ(t1) +Q+B (B.97)

If M 6= 0 and N 6= 0, the last two equations give

π(t1) =
x(0)− P − A

M
(B.98)

π(0) =
N

M
(x(0)− P − A) +Q+B (B.99)

Fix x(0) to x̂0 = x∗(0) + ε with ε > 0. The right hand-side of equation (B.99) is a function

of π(0) only. It is bounded above and below, as f ∈ [T,∞) and

lim
f→∞

N

M
(x̂0 − P − A) +Q+B,

=
κσ (ρ− 2φ1) (A− x̂0) +B (2κ+ σρφ1)

φ1 − φ2

lim
f→∞

c

(cσφ1 + 1)

−(2κ+ σρφ2) (A− x̂0) +B (ρ− 2φ1)

(φ1 − φ2)
lim
f→∞

1

(cσφ1 + 1)
,

is finite since c > 0. The left-hand side of equation (B.99), on the other hand, tends to ±∞
as π(0)→ ±∞. This means, since N , M , Q and B are continuous in π(0), that there is at

least one π(0), say π̂0, that satisfies equation (B.99). Plugging (π̂0, x̂0) into equations (B.95)
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and (B.98) give values for (π(t1), x(t1)), say (π̂1, x̂1). By construction, the path defined

by (π̂0, x̂0) is continuous. Picking ε small enough guarantees that (π̂1, x̂1) ∈ Ωss, since

(π∗(t∗), x∗ (t∗)) ∈ Ωss is bounded away from ∂Ω. Equation (B.95) implies (π̂1, x̂1) ∈ Υss.

Proposition 2 then shows the path defined by (π̂0, x̂0) is bounded and hence an equilibrium.

Because ε 6= 0, the equilibrium is not the optimal equilibrium.

If M = 0 and N 6= 0, the continuous pasting conditions (B.4)-(B.5) give

x(0) = P + A (B.100)

π(t1) =
π(0)− (Q+B)

N
(B.101)

But M = 0 implies

e−fφ2 =
cσφ2 + 1

cσφ1 + 1
e−fφ1

and thus

lim
f→∞

P + A = lim
f→∞

rh
κ

φ2
1e
−φ2f − φ2

2e
−φ1f

φ1 − φ2

+ A

= lim
f→∞

rh (ρ− cκ)

κ+ cκσφ1

e−fφ1 + A

= A

is finite. An argument analogous to the one used for the case in which M 6= 0 and N 6= 0

shows the existence of a non-optimal equilibrium. The case M 6= 0 and N = 0 can be treated

the same way and M = N = 0 cannot happen.

C Non-Linear dynamics – Poincaré-Bendixson Theo-

rem

Assume f : R2 → R2. Consider the two-dimensional system

ẋ(t) = f (x(t)) . (C.1)

Let φt (p) be a solution to (C.1) for t ≥ 0 with initial condition x0 = p. We assume that for

each p, there is a unique solution φ (t, p). This is the case, for example, if f is Lipschitz.

The positive semi-orbit of f through p is defined as

γ+ (p) =
{
x ∈ R2 : x = φt (p) for some t ∈ [0,∞)

}
.
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Similarly, the negative semi-orbit though p is

γ− (p) =
{
x ∈ R2 : x = φt (p) for some t ∈ (−∞, 0]

}
.

The orbit of f through p is the union

γ (p) = γ+ (p) ∪ γ− (p) .

A periodic solution is one for which φt+T (p) = φt (p) for some T > 0 and all t ∈ R. A

periodic orbit is the orbit γ (p) of periodic solution φt (p).

The ω-limit set of p, denoted by ω (p), is the set

ω (p) =
{
x ∈ R2 : ∃ {tk}∞k=0 , tk ∈ R with tk →∞ such that φtk (p)→ x as k →∞

}
.

Consider the following four assumptions:

(a) Ω is an open domain in R2, divided into a finite number of open sub-domains Ωi such

that
⋃

Ωi = Ω.

(b) If Ωi and Ωj are not disjoint and i 6= j, then Ωi∩Ωj = Γij, where Γij (joint boundaries)

are piecewise smooth.

(c) f is Lipschitz in all sub-domains Ωi and possibly discontinuous along Γij.

(d) The vector field f defines a direction at each point in Ω. In particular, at every point

of Γij the vector field f (x) specifies into which Ωi the flow is directed.

Theorem 1 (Extension of the Poincaré-Bendixson theorem). Consider the planar autonomous

system (C.1). Let the conditions 1-4 be satisfied and let f be bounded in Ω. Suppose that K

is a compact region in Ω, containing no fixed points of (C.1). If the solution of (C.1) is in

K for all t ≥ t0, then (C.1) has a closed orbit in K.

Theorem 2 (Extension of the Bendixson criterion). Consider the planar autonomous system

(C.1). Let the conditions 1-4 be satisfied and let f be bounded in the simply connected region

Ω and C1 in each Ωi. If div f (the divergence of f calculated in the distribution sense) is of

the same sign and is not identically zero in Ω, then (C.1) has no closed orbit in Ω.

Remark The requirement that f is bounded is too strong; it suffices that∫∫
D

div f and

∫
C

f · n ds
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are well-defined (in the distribution sense) for all smooth closed curves C, where D is the

region enclosed by C and n is a unit vector normal to C.

A proof of both theorems can be found in Melin (2005). Compared to the classical

Poincaré-Bendixson theorem, Melin (2005) allows for some discontinuities in f .

We have cited the theorems exactly as they appear in Melin (2005). However, in this

context, it is perhaps more familiar for economists to refer to points for which f = 0 as

steady-states instead of fixed points and to periodic orbits instead of closed orbits.

We now prove an immediate consequence of this “extended” Poincaré-Bendixson theorem.

Theorem 3. Assume Theorem 1 holds. If a solution ϕt is bounded for all t ≥ 0, then either

(a) ω (ϕ) contains a steady-state

or

(b) ω (ϕ) is a periodic orbit

Proof. First, note that because ϕ is bounded, ω (ϕ) is non-empty. Indeed, consider a sequence

xi = ϕti (x) for some x. The sequence {xi} is bounded and infinite, so there exist a convergent

subsequence. If such convergent subsequence converges to p, then p ∈ ω (ϕ) and thus ω (ϕ)

is non-empty.

If ω (ϕ) contains a steady-state, item (a) obtains. If ω (ϕ) contains no steady-states (no

fixed points), then Theorem 1 implies that ω (ϕ) is a periodic orbit, corresponding to item

(b) (note that because ϕ is bounded we can always find a compact set K that contains

it). �

D BSGU Equilibria

The conclusion that following the Taylor principle outside the ZLB induces the existence

of a deflationary steady state at the ZLB is similar to one of the results in Benhabib et al.

(2001b). They further show that when the Taylor principle holds, the deflationary steady

state engenders an infinite number of suboptimal equilibria. As mentioned before, these

equilibria can start arbitrarily close to the intended steady state (πss, xss) and still converge

to (πzlb, xzlb). The same possibility is present in the setup I consider here. To construct

equilibria analogous to those in Benhabib et al. (2001b), I use the dynamics for the three

stages described above. For the next steps, refer to Figure 16. First pick two numbers q and

r such that r, q > T and r− q > T . Let (πb, xb) = ∂Ω ∩Υzlb.
39 Assume the Taylor principle

39If κξπ + φ1ξx = 0, ∂Ω ∩ Υzlb = ∅. Albeit not a general strategy to eliminate all non-optimal equilibria,
picking ξx, ξπ such that κξπ +φ1ξx = 0 does preclude this particular class of equilibria from forming for any
choice of f . This possibility was not present in Benhabib et al. (2001b), as their model did not have both
inflation and output as state variables of the economy.
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holds. Using (π(r), x(r)) = (πb, xb) as the starting point, trace the dynamics of (π(t), x(t))

backward in time using the interest rate specified by equation (A.30) for a length of time

q. As in Benhabib et al. (2001b), these equilibria can get arbitrarily close to the intended

steady state: Because the dynamics of (π(t), x(t)) are unstable when going forward in time,

they are stable backward in time and (π(t), x(t)) converges to (πss, xss) as q → ∞.40 At

time r − q, trace the dynamics of (π(t), x(t)) backward in time using (π(r − q), x(r − q)) as

the starting point and i(t) = 0 throughout, until t = 0, when the path reaches (π(0), x(0)).

Of course, the natural rate is positive after T and negative before T , so the dynamics

change from those of the second stage to those of the first. Note that in Figure 16, the

gray flow lines in the background reflect the dynamics that prevail for t ≥ t1 only. Set

t1 = r − q > T . By construction, the path starting at (π(0), x(0)) reaches (πb, xb) at time r

when following the interest rate rule in equation (15). Now going forward in time, for t ≥ r,

(π(t), x(t)) ∈ Υzlb ⊂ Ωzlb, which means the economy travels on the zlb saddle path toward

the unintended steady state (πzlb, xzlb). The path constructed is continuous and bounded

and has consistent expectations: It is a rational expectations equilibrium. All equilibria in

this class can be obtained by picking different q and r.

40This result is not immediate, since it may be possible that (π(t), x(t)) exits Ωss before getting close to
(πss, xss) and then follows the Ωzlb dynamics for which (πss, xss) is no longer a sink (flowing backward in
time). However, I show in Appendix B.6, Lemma 2, item (d) that this never happens. For all q, the path of
(π(t), x(t)) remains entirely in Ωss.
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Figure 17: An equilibrium analogous to the one studied by Benhabib et al. (2001b). The flow
lines in the background correspond to the dynamics after liftoff, which occurs at t1. Because
the Taylor principle holds, there is a deflationary steady state (πzlb, xzlb), shown as a black
square. At time t1, even though the economy is outside the ZLB and can get arbitrarily
close to the “desired” steady state (πss, xss) = (0, 0), it still converges to the “unintended”
steady state (πzlb, xzlb). At time r, the economy enters the ZLB and stays there (i(t)=0)
forever after.

90


